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Abstract

Low-rank adaptation (LoRA) achieves parame-
ter efficient fine-tuning for large language mod-
els (LLMs) by decomposing the model weight
update into a pair of low-rank projection ma-
trices. Yet, the memory overhead restricts it to
scale up when the model size increases. We
propose Randomized LoRA (RLoRA) which
adopts Randomized Walsh-Hadamard Trans-
form to achieve significant reduction in the
size of trainable parameters compared to LoRA.
At the same time, it allows a PAC-Bayes reg-
ularizer to be efficiently incorporated to im-
prove generalization. We evaluate the effective-
ness of RLoRA on LLMs RoBERTa, GPT-2
and LLaMA-7B using GLUE, E2E and math
reasoning benchmarks. With a much lower
memory requirement, RLoRA can give similar
performance as the SOTA low-rank adaptation
methods for these three tasks and significantly
better performance under few-shot settings.

1 Introduction

Pre-trained Language Models (PLMs), typically
consisting of millions or billions of parameters,
have achieved the state-of-the-art performance on
NLP tasks (Devlin et al., 2018). While PLMs can
be fine-tuned for specific downstream tasks, their
increasing scale makes the fine-tuning and model
storage formidable.

Parameter-efficient fine-tuning (PEFT) aims to
fine-tune a pre-trained model efficiently by adapt-
ing only a small set of parameters. Various ap-
proaches for PEFT have been explored. i) The
adapter-based approach (Houlsby et al., 2019;
mahabadi et al., 2021; Pfeiffer et al., 2020; He
et al., 2021) introduces trainable adapter modules
to achieve fine-tuning with the PLM frozen. This
approach however falls short of the inference la-
tency introduced. ii) The masking-based approach
updates only some selected subset of the PLM’s
parameters (Guo et al., 2020; Zaken et al., 2021;

Figure 1: Performance of PEFT methods on fine-tuning
Roberta-base using 200 training data points from the
GLUE datasets. PA: Parallel Adapter (He et al., 2021);
SA: Sequential Adapter (Houlsby et al., 2019); SAID:
Intrinsic Dimension Adaptation (Aghajanyan et al.,
2021); LoRA: Low-rank Adaptation (Hu et al., 2021),
RLoRA: Randomized LoRA (proposed).

Fu et al., 2022; Sung et al., 2021). As it requires
access to the PLM for updating, its application is
restricted. iii) Prefix-tuning (Li and Liang, 2021)
and prompt-tuning (Lester et al., 2021) prepend
additional tokens to the input embeddings and only
train these soft prompts where the contextual infor-
mation is wrapped to the inputs (or hidden states)
without modifying the PLM. This approach how-
ever converges much slower than the adapter-based
one (Ding et al., 2022; Hu et al., 2021).

Low-rank adaptation (LoRA) (Hu et al., 2021)
hypothesizes that the PLM’s weight update for the
fine-tuning possesses a low “intrinsic rank” dom-
inating the desirable optimization trajectory (Li
et al., 2018; Aghajanyan et al., 2021), and proposes
to decompose the update of the weight (e.g., Trans-
former’s self-attention weight metrics) into two
low-rank projection matrices. This reparametera-
tion trick has been shown particularly effective in
reducing the number of trainable parameters com-
pared to other PEFT approaches. Yet, the memory
overhead is still considerably large when the size
of the model increases.
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To this end, inspired by the work on random
feature projection for kernel machines (Rahimi
and Recht, 2007; Liu et al., 2021),we propose
randomized low-rank adaptation (RLoRA) which
adopts the random matrix approximation to con-
struct the up-projection and down-projection ma-
trices in LoRA. In particular, we adopt the Ran-
domized Walsh-Hadamard Transform (WHT) and
a learnable scaling vector to reparameterize the
low-rank projections to reduce both the time and
space requirements. Using random matrices to re-
duce the memory requirement has also been ex-
plored in some recent work like LoRA-FA (Zhang
et al., 2023b), VERA (Kopiczko et al., 2024) and
NOLA (Koohpayegani et al., 2023). To contrast,
RLoRA adopts the Randomized WHT which is
orthogonal and recursively defined, which can fur-
ther reduce the resources needed for the gradient
computation w.r.t. the hidden states.

Also, the proposed RLoRA adopts PAC-Bayes
regularization to enhance generalization perfor-
mance, which is particularly important for adapting
PLMs where only a small training set is available.
Some related ideas have been explored in Lotfi et al.
(2022, 2023), which empirically showed that the
PAC-Bayesian theories provide a tighter bound and
understanding for the role of model size and gener-
alization ability. Achille et al. (2019); Wang et al.
(2021) used the PAC-Bayesian framework to esti-
mate the information in neural networks. The adop-
tion of the Randomized WHT in RLoRA allows the
regularization to be efficiently incorporated. To the
best of our knowledge, work on incorporating the
PAC-Bayes generalization bound for regularizing
PEFT is still lacking in the literature.

Our contribution can be summarized as:

1. The number of trainable parameters in LoRA
can be substantially reduced by incorporation
of Randomized WHT.

2. We show theoretically how the “intrinsic sub-
space” of the PLM’s weight update is charac-
terized by Randomized WHT.

3. We show how a PAC-Bayes regularization
term can be efficiently estimated and incor-
porated for fine-tuning RLoRA to boost its
generalization performance.

4. We conduct comprehensive experiments to
demonstrate the effectiveness of RLoRA for
fine-tuning PLMs including Roberta-base,
Roberta-large, GPT-2 medium and LLaMA-
7B based on the GLUE, E2E and math reason-

ing benchmarks.

Our code will be made available for sharing via
gitHub.

2 Background

In this section, we provide background and related
work on low-rank adaptation, random matrix meth-
ods, and PAC-Bayes generalization bound.

2.1 Low-Rank Adaptation (LoRA)
LoRA (Hu et al., 2021) starts with the PLM W0

which is frozen and reparameterizes the PLM’s
weight update ∆W using two low-rank projection
matrices. The forward pass becomes:

h = W0x+∆Wx = W0x+WBWAx (1)

where WB ∈ Rdout×r and WA ∈ Rr×din are
the trainable parameters, and r ≪ min{din, dout}.
The memory overhead for LoRA is still an issue
because of: i) high memory consumption to store
the activation during the forward pass and to con-
struct the gradient; and ii) the minimum number of
trainable parameters lower-bounded by the rank-1
decomposition of the weight matrix which is con-
siderably large as the model size increases.

2.2 LoRA with Random Matrix Methods
Random matrix theory has been applied to achieve
PEFT. For instance, LoRA-FA (Zhang et al.,
2023b) freezes the down-projection matrix WA

which is randomly initialized. VERA (Kopiczko
et al., 2024) replaces both WA and WB with ran-
dom matrices so that the weight update becomes:
∆WV ERA = dWBbWA where only two scaling
vectors d, b are learned. NOLA (Koohpayegani
et al., 2023) uses multiple random seeds to gener-
ate the random basis to form WA and WB , and
learn the combination vectors α and β to compute
∆WNOLA = (

∑k
i=1 αiWAi)×

∑l
j=1(βjWBj ).

In this paper, random projection methods (Li
et al., 2018; Liu et al., 2021) are further explored
to reduce the time and storage requirements while
maintaining the effectiveness. In particular, we
focus on the Randomized Walsh-Hadamard Trans-
form (WHT) as it can efficiently draw a random
matrix from a highly structured distribution (Tropp,
2011) (to detailed in the next section).

2.3 PAC-Bayes Generalization Bound
The PAC-Bayes bound is a theoretical framework
that provides a probabilistic guarantee on the gen-
eralization performance of a learning algorithm.
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It is based on the principles of probably approxi-
mately correct (PAC) learning and Bayesian infer-
ence. Given the true risk R and the empirical risk
R̂S , the PAC-Bayes bound can be defined as:

R− R̂S ≤ ES
{
Eh∼H

[
KL

(
P (h)

∣∣∣
∑

h′∈H P (h′|S)
|H|

)]}

(2)
where S represents the training data, H is the hy-
pothesis space, P (h) is the prior distribution over
hypotheses, and P (h′|S) is the posterior distribu-
tion over hypotheses given the data. The risk dif-
ference is upper bounded by the expected KL di-
vergence between the prior and the data-dependent
posterior distributions over hypotheses. This im-
plies the PAC-Bayes framework rewards the model
has strong prior on it parameters aligned with the
data (Lotfi et al., 2022). The proposed RLoRA
makes use of a PAC-Bayes bound to guide its fine-
tuning process.

3 Methodology

In this section, we present the details about how
the proposed RLoRA. In particular, Section 3.1
presents the Randomized WHT and how it is in-
tegrated into RLoRA to gain parameter-efficiency
and reduction in computational cost during train-
ing. In Section 3.2, we show theoretically how the
posterior distribution of the PLM’s weight update
based on the reparameterization is associated with
a lower-dimensional “intrinsic subspace” charac-
terized by the Randomized WHT. We derive the
PAC-Bayes generalization bound in Section 3.3 and
explain how the reparameterization by Random-
ized WHT allows the bound to be efficiently incor-
porated into RLoRA to regularize the fine-tuning.
Fig. 2 shows an overall illustration of RLoRA.

3.1 LoRA with Randomized WHT
Incorporated

RLoRA builds upon LoRA. It replaces WA and
WB in LoRA with two WHTA and WHTB approx-
imated by Random WHT as well as two trainable
scaling vectors α and β, so that the low-rank de-
composition of ∆W becomes:

∆W = [diag(β)WHTB][diag(α)WHTA], (3)

where diag(α)ii = αi.

3.1.1 Efficient generation of projection
matrices

The projection matrices WHTA and WHTB can be
efficiently generated by i) first setting a random

seed and ii) applying the WHT without the need to
explicitly store the projection matrix.

Specifically, according to (Choromanski et al.,
2017), a d× d Gaussian random matrix R ∈ Rd×d
can be approximated by a product of Randomized
Walsh-Hadamard matrice H and diagonal matrices
S and Bi, given as:

R =
1

σ
√
d
S

k∏

i=1

HBi. (4)

S is a random scaling and subsample matrix. Bi

has elements of independent random signs {−1, 1}
along its diagonal. The memory cost of S and Bi

is both O(d). The value of k determines how many
independent random signals Bi should be multi-
plied. Increasing the value of k can improve the
randomness and the orthogonality of the resulting
matrix R. Empirical findings suggest that setting
k = 2 or 3 is sufficient for practical applications.

For the matrix H ∈ Rd×d, it can be efficiently
generated due to its recursive definition: Hd =[
Hd/2 Hd/2

Hd/2 −Hd/2

]
with H2 =

[
1 1
1 −1

]
. The

generation iterates two simple steps: i) dividing the
data into two halves, and ii) performing a simple
± operation. Fig. 2(c) shows an example of an
8-dimensional WHT. This fast WHT allows Hx
to be computed in O(d log d) time and the transfor-
mation basis to be orthogonal.

3.1.2 Efficient matrix multiplication during
backpropagation

Assume that the hidden state is denoted as x ∈
Rn×din and the weight as W ∈ Rdin×dout where
n is the batch size and din(dout) is the dimension
of the input(output) hidden state. The information
propagates between layer l and layer l + 1 as:

xl+1 = xlWl

g(W ) = g(xl+1)xl g(xl) = g(xl+1)Wl

(5)

where g(W ) is the gradient used to update the
trainable parameters and g(xl) is for propagating
the gradient to other layers. Given the Randomized
WHT adopted, Eq.5 becomes:

xl+1 = αlWHT l(xl)

g(αl) = g(xl+1)WHT l(xl)

g(xl) = WHT−1
l (g(xl+1))

(6)

where WHT l(xl) is the multiplication for layer
l which can be efficiently computed, WHT−1

l ()
is the reverse projection to layer land αl is the
corresponding scaling vector.
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(a) LoRA (b) RLoRA (c) Walsh-Hadamard Transform

Figure 2: Illustration of LoRA, RLoRA and the Walsh-Hadamard Transform. In Fig.2(c), the green and red lines
indicate the “add” and “minus” operations respectively. The whole process iteratively divides the data into two
halves and applies simple ± operations. A simple WHT only needs O(d log d) to embed a single block.

3.2 Intrinsic Subspace and Posterior
Distribution of Weight Update

To better understand the intrinsic subspace of the
PLM’s weight update, we first assume that the pos-
terior distribution of the weight update ∆W fol-
lows a matrix-variate Gaussian. Then, we show that
the distribution after the reparameterization is asso-
ciated with a low-dimensional “intrinsic subspace”
characterized by the Randomized WHT matrices.

With reference to the analysis in (Rossi et al.,
2020), we assume that the posterior distribution of
the weight update ∆W = WAWB ∈ Rdin×dout
follows a matrix-variate Gaussian distribution,
given as ∆W ∼ MN (M ,U ,V ) where M is
the mean, and V ∈ Rdout×dout and U ∈ Rdin×din
denote the covariance matrices among the rows
and columns of ∆W respectively. The vectorized
version of ∆W can be expressed equivalently as:

vect(∆W ) ∼ N (vect(M),V ⊗U), (7)

where ⊗ denotes the Kronecker product.

3.2.1 Intrinsic subspace of ∆W
We rewrite ∆W by replacing WA and WB using
the Randomized WHT according to Eqs. 4 and 3.
For the convenience of the analysis, we assume k =
11 and drop the scalar factor 1

σ
√
d

. Also, we denote
the matrix selecting the first r rows (columns) from
WA (WB) as SWA

(SWB
). Then, it gives:

∆W = diag(β)SWB
HBWB

STWA
diag(α)SWA

HBWA
.

(8)

1Note that the result of this analysis can be easily gener-
alized to cases with other values of k. We leave that in the
Appendix.

By putting HBWA
= [v1,v2, . . . ,vd] where vi =

H(i,:)BWA (i,i), vect(∆W ) can be expressed as:

vect(∆W ) = Gα

=




diag(β)SWB
HBWB

STWA
SWA

diag(v1)
diag(β)SWB

HBWB
STWA

SWA
diag(v2)

...
diag(β)SWB

HBWB
STWA

SWA
diag(vd)


 α

(9)

where G ∈ Rdindout×r, α ∈ Rr, β ∈ Rdout . The
factor STWA

SWA
is essentially randomly selecting

r basis vectors from G to construct the projection
from α to vect(∆W ).

3.2.2 Posterior distribution of ∆W
Assume that RLoRA’s trainable parameters α,β ∼
N (µα,Σα),N (µβ,Σβ), it gives

vect(∆W ) ∼ N (µαG,G
TΣαG). (10)

This implies that the posterior distribution of ∆W
is in fact lying on the dα-dimensional subspace
of dindout-dimensional space embedded by the or-
thogonal projector G. The orientation of the space
∆W is controlled by the random directions BWB

BWA
and the learnable β, which could be regarded

as the learnable intrinsic subspace of the network
(Aghajanyan et al., 2021).

In addition, we can show that Eq. 10 is equiva-
lent to a matrix-variate Gaussian for ∆W with the
parameters M ,U ,V given as:

M = diag(µβ)SWB
HBWB

STWA
diag(µα)SWA

HBWA

U
1
2 = diag(β)SWB

HBWB
STWA

diag(Σ1/2
α )STWB

diag(β)

V
1
2 =

1√
tr(U)

BWA
HSTWA

diag(Σ1/2
α )

(11)
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which can be estimated based on the Randomized
WHT. See Appendix B for detailed derivation.

3.3 PAC-Bayes Regularization

We derive an approximation of the PAC-Bayesian
generalization bound to guide the learning process
for better generation. According to Section 3.2,
if α follows the Gaussian distribution, the weight
update matrix ∆W will follow the matrix-variate
Gaussian. For the clarity reason, we use w to de-
note the trainable model parameters (i.e., α and β
for our case) in the sequel.

3.3.1 PAC-Bayes generalization bound
Suppose the posterior of the model parameters w
given the training data S of size N for a specific
fine-tuning task is p(w|S) ∼ N (µS ,ΣS) and the
oracle prior p(w) = Ep(S)[p(w |S)] ∼ N (µ,Σ) .
The expectation of the KL divergence between the
posterior and the prior of w over the task-specific
data S becomes:

I(w) = Ep(S) [KL (p(w|S), p(w))]

∝ Ep(S)
[
log

|ΣS |
|Σ| + tr

(
Σ

ΣS

)

+(µS − µ)TΣ−1(µS − µ)

]
(12)

where |A| and tr(A) are the determinant and
trace of matrix A, respectively. By assuming
the covariance of prior and posterior to be pro-
portional, which is common for building PAC-
Bayesian bound (Dziugaite and Roy, 2018), the
log and trace terms become constant. We have

I(w) ∝ Ep(S)
[
(µS − µ)TΣ−1(µS − µ)

]

= Ep(S)
[
µTSΣ

−1µS

]
− µTΣ−1µ.

(13)

To achieve a small KL with the data-dependent
posterior, the prior should essentially be a good
predictor for the posterior, which will be hard with-
out access to the data distribution p(S).

3.3.2 Estimating prior covariance matrix
As the pre-trained network has already converged
to a stable solution, we assume that the weight up-
date introduced by fine-tuning for the downstream
task are small perturbations to refine this prior. So
we first assume ∆W is 0 mean matrix-variate
Gaussian. To achieve this, we initialize α,β as
α ∼ N (0,Σα) and β = 0. Then, to obtain the
bound, we only need to focus on estimating the

prior covariance:

Σ = Ep(S)
[
(µS − µ)(µS − µ)T

]
(14)

As mentioned, the exact estimation of Σ in re-
quires knowledge of the distribution p(S). Inspired
by Wang et al. (2021), we can bootstrap (resample
with replacement) from the training data S for NS

times to construct the bootstrap datasets {Si}NS
i=1.

Σ ≈ 1

NS

NS∑

i=1

[
(µS − µSi)(µS − µSi)

T
]

(15)

However, to get µSi , we still need to optimize over
the bootstrap datasets {Si}NS

i=1, which is not practi-
cal in neural network training. Instead, we approx-
imate this using the group influence effect which
studies the change to the model if we remove a
group of data.

Lemma 3.1. Group Influence Function (Basu
et al., 2020) Assume that when all samples in a
group U are up-weighted by ϵ→ 0, the parameter
difference can be approximated as:

µS−U − µS
∆
= − 1

1− p

1

|S|H
−1
µS

∑

z∈U
∇l(hµS (z))

(16)

where S is the training sample set, ∇l(hµS (z)) and
Hµ = ∇2

µl(hµS (z)) are the gradient and Hessian
of the loss function l defined on the model hµS (),
and µS refers to the optimal parameters trained by
dataset S. By taking U as a subset resampled from
the training data S, we can show that the oracle
prior covariance in Eq. 15 can be estimated by

Σ ∝ H−1
µ

∑

z∈U
∇l(hµ)

∑

z∈U
∇l(hµ)T (H−1

µ )T

∝ H−1
µ Fµ,U (H

−1
µ )T ∝ F−1

µ,U

(17)

where Fµ,U is the Fisher information matrix es-
timated using the resampled dataset U . See Ap-
pendix B for detailed derivation.

3.3.3 Estimating the bound for regularization
Based on Eq. 17, the generalization bound in Eq. 13
can be estimated as:

I(w) = Ep(S) [KL(p(w|S), p(w))]

∝ Ep(S)
[
(µS − µ)TFµ(µS − µ)

]

≃ I(w;S) =
∑

t∈U

[
∆µT∇µlt(µS)

]2 (18)
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where I(w) is further approximated by I(w;S) in
the third step as the U is resampled from S. The
overall objective function is:

min
w

L(w;S) + λI(w;S) (19)

where L(w;S) = −∑N
i=1 log(p(yi|xi,w) is the

likelihood with yi the output labels in S. To utilize
this regularization in practice, we can estimate the
information every few steps (e.g. at the end of each
epoch) and use this as the regularization term until
the next estimation of I(w;S).

4 Experiment

We evaluate the performance of RLoRA using
RoBERTa-base/RoBERTa-large (Liu et al., 2019)
and GPT-2-medium (Radford et al., 2019). Our
experiments encompass a diverse range of tasks,
including natural language understanding (NLU)
and natural language generation (NLG). Specif-
ically, we evaluate the models on the GLUE
benchmark (Wang et al., 2018) for RoBERTa-
base/RoBERTa-large. For evaluation on GPT-2
medium, to facilitate direct comparison, we adopt
the experimental setup outlined in the original work
of LoRA (Hu et al., 2021). Additional details
regarding the datasets used can be found in Ap-
pendix C. All the experiments were conducted us-
ing the NVIDIA Tesla V100.

4.1 Baselines
• Full Fine-tuning (FT): The model is initialized

with pre-trained weights and all the parame-
ters are trained.

• Adapter (Adpt) (Houlsby et al., 2019): It in-
serts adapter layers (two-layer fully connected
with bias) between the self-attention and the
MLP modules.

• BitFit (Zaken et al., 2021): It freezes the pre-
trained weight matrix and trains the biases.

• Low-Rank Adaptation (LoRA) (Hu et al.,
2021): It represents the weight update using a
low-rank decomposition.

• Vector-based Random Adaptation (VeRA)
(Kopiczko et al., 2024): It replaces the low-
rank matrices in LoRA with random matrices
and learn only scaling vectors.

4.2 Natural Language Understanding
We first evaluate our approach on the General Lan-
guage Understanding Evaluation (GLUE) bench-
mark which consists of multiple tasks including

paraphrase detection (MRPC), sentiment classifi-
cation (SST-2), natural language inference (RTE,
QNLI) and linguistic acceptability (CoLA). Since
the original test sets are not publicly available, we
use the original validation set as the test set. For
estimating the information term in Eq. 18, we ran-
domly resample 100 training data at the end of each
epoch for analysis.

Table 1 shows the fine-tuning results on
RoBERTa-base and RoBERTa-large using the
GLUE benchmark. For RoBERTa-base model, due
to the budget limitation, we did not use the MNLI
trick2 to fine-tune the MRPC, RTE and STSB. Ac-
cording to the results on RoBERTa-large, RLoRA
can achieve the best results on 6 datasets just like
LoRA and VeRA. At the same time, similar to
VeRA, RLoRA has the number of trainable param-
eters subtantially reduced by ∼ 13 times compare
to LoRA due to the use of the random WHT for the
low-rank projection. Additionally, it is worth not-
ing that while RLoRA can achieve comparable per-
formance as LoRA and VeRA on different datasets,
its standard deviation is the smallest among them.
This indicates that the PAC-Bayes regularization
allows RLoRA to be more robust against the effect
due to the random seeds and improve the stabil-
ity of training results under different random seed
settings.

4.2.1 Effectiveness of PAC-Bayes
Regularization

To further evaluate the effectiveness of incorporat-
ing the PAC-Bayes term for enhancing the gener-
alization performance, we compare the few-shot
performance among LoRA, VeRA and RLoRA. We
need to re-train LoRA and VeRA to evaluate their
performance on the few-shot settings. We also in-
clude a version of RLoRA without the PAC-Bayes
regularization term for the ablation study to under-
score the impact of the regularization. We select
five tasks from the GLUE benchmark for this few-
shot evaluation and train the models with only 100
and 200 data samples. The performance is evalu-
ated on the original evaluation set. As shown in
Table 2, we can observe that only utilizing the Ran-
domized WHT can reduce the number of trainable
parameters to 0.02% of the original model (1/35 of
LoRA) while achieving comparable performance.
Furthermore, incorporating the PAC-Bayes regu-

2Hu et al. (2021) used the checkpoint fine-tuned with
MNLI task instead of the pre-trained checkpoint to initial-
ize the model for MRPC, RTE and STSB.

5241



Table 1: Results of different PEFT methods on the GLUE benchmark. We report Matthew’s correlation for CoLA,
Pearson correlation for STS-B, and accuracy for the remaining tasks. In all cases, higher values indicate better
performance. Results of the baselines are sourced from prior work (Kopiczko et al., 2024). Bold font and the
Underline font indicate the best and the second-best performance for each dataset.

Method # Trainable
Parameters

SST-2 MRPC CoLA QNLI RTE STS-B Avg.

B
A

S
E

FT 125M 94.8 90.2 63.6 92.8 78.7 91.2 85.2
BitFit 0.1M 93.7 92.7 62.0 91.8 81.5 90.8 85.4
AdptD 0.3M 94.2±0.1 88.5±1.1 60.8±0.4 93.1±0.1 71.5±2.7 89.7±0.3 83.0
AdptD 0.9M 94.7±0.3 88.4±0.1 62.6±0.9 93.0±0.2 75.9±2.2 90.3±0.1 84.2
LoRA 0.3M 95.1±0.2 89.7±0.7 63.4±1.2 93.3±0.3 86.6±0.7 91.5±0.2 86.6
VeRA 0.031M 94.5±0.3 89.7±0.8 64.1±1.7 91.9±0.2 75.8±1.8 90.3±0.2 84.4
RLoRA 0.031M 94.6±0.16 90.2±0.28 61.±0.45 91.8±0.04 77.8±0.18 90.9±0.14 84.5

L
A

R
G

E

AdptP 3M 96.1±0.3 90.2±0.7 68.3±1.0 94.8±0.2 83.8±2.9 92.1±0.7 87.6
AdptP 0.8M 96.6±0.2 89.7±1.2 67.8±2.5 94.8±0.3 80.1±2.9 91.9±0.4 86.8
AdptH 6M 96.2±0.3 88.7±2.9 66.5±4.4 94.7±0.2 83.4±1.1 91.0±1.7 86.8
AdptH 0.8M 96.3±0.5 87.7±1.7 66.3±2.0 94.7±0.2 72.9±2.9 91.5±0.5 84.9
LoRA 0.8M 96.2±0.5 90.2±1.0 68.2±1.9 94.8±0.3 85.2±1.1 92.3±0.5 87.8
VeRA 0.061M 96.1±0.1 90.9±0.7 68.0±0.8 94.4±0.2 85.9±0.7 91.7±0.8 87.8
RLoRA 0.061M 96.4±0.1 90.8±0.4 67.5±0.2 94.1±0.2 85.7±0.5 92.1±0.2 87.8

Table 2: Training on GLUE datasets using only 100 and 200 training data samples. The percentage of trainable
parameters with reference to the full model is indicated in the bracket next to each method.

# of train data Method RTE MRPC STS-B SST-2 QNLI Avg

B
A

S
E

100

LoRA (0.71%) 54.87±1.28 76.66±0.16 7.61±3.89 86.62±0.38 57.05±0.09 56.56
VeRA (0.02%) 57.16±2.07 76.62±0.09 21.23±1.79 76.38±2.42 53.93±0.22 57.06

RLoRA (0.02%) 57.25±1.12 76.63±0.17 24.07±0.96 84.06±2.11 54.64±0.94 59.36
w/o PAC-Reg 57.16±2.25 76.72±0.25 22.39±1.40 82.30±2.74 54.61±0.69 58.64

200

LoRA (0.71%) 54.87±0.56 79.25±0.94 66.74±5.23 88.49±0.66 75.02±1.73 72.88
VeRA (0.02%) 54.39±0.90 80.78±1.32 72.88±1.41 89.14±0.14 77.69±0.62 74.98

RLoRA (0.02%) 56.08±0.68 80.34±0.98 79.05±1.29 89.33±1.29 76.08±2.64 76.18
w/o PAC-Reg 53.79±0.88 79.95±1.32 61.86±1.29 89.18±0.66 76.38±1.35 72.23

larization can further improve the generalization
performance indicating that the model manages to
capture the task-related information from the input
data. Fig.1 shows an overall performance com-
parison between RLoRA and other baselines for
fine-tuning large models given a small training set.
The advantage of RLoRA with PAC regularization
can be clearly observed.

To illustrate the importance of using the general-
ization bound as the information measure for reg-
ularizing the fine-tuning process instead of using
it only for sub-network selection (like the mask-
based approach), we perform experiments to mon-
itor the information change based on Eq. 18 in
each layer of Roberta-base during the fine-tuning
on RTE and MRPC datasets for 10 epochs. We
estimate the layer-wise information at the end of
each epoch. Fig. 3 show the temporal dynamics
of the information flow during the fine-tuning pro-
cess. We can observe that at different stages of

training, the information “flows” through the lay-
ers. This implies that identifying and fixing some
sparse masks on the network could be a too restric-
tive approach for regularizing the entire training
process. In particular, a wrongly estimated mask
might steer the whole optimatization process astray.

4.3 NLG Benchmark

For the performance of RLoRA on Natural Lan-
guage Generation (NLG) models, we make use of
GPT-2 medium (Radford et al., 2019). To make a
direct comparison, we keep our experiment setup
as close as possible to the approach in (Hu et al.,
2021). Due to the space limit, we will only present
our results on the E2E NLG Challenge.

For fine-tuning LoRA and VeRA, we use
the values of the hyperparameters provided in
their papers and tune the learning rate from{
5× 10−1, 1× 10−1, 5× 10−2, ..., 5× 10−5

}
.
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Table 3: Results of different PEFT methods on the E2E benchmark using the GPT-2 medium. Results for methods
with asterisk (*) are taken from prior work (Hu et al., 2021). For all metrics, the higher the better. Bold fonts and
the Underline fonts indicate the best and the second-best performance for each dataset.

Method # Trainable
Parameters

BLEU NIST METEOR ROUGE-L CIDEr

FT* 354.92M 68.2 8.62 46.2 71.0 2.47
AdptL* 0.37M 66.3 8.41 45.0 69.8 2.40
LoRA 0.35M 67.48 8.61 46.2 69.2 2.35
VeRA 0.098M 67.22 8.55 44.92 67.35 2.27
RLoRA 0.098M 68.16 8.66 46.2 68.97 2.37
w/o PAC-Reg 0.098M 67.19 8.60 45.69 67.63 2.34

(a) RTE (b) MRPC

Figure 3: Dynamics of the layer-wise information in net-
work during the fine-tuning process. The x-axis shows
the training progress from the initial epoch on the left
to the final epoch on the right. The y-axis is the index
of the layer from the input layer on the top to the output
layer at the bottom. The degree of redness indicates the
density of information.

We further search for the best regularization
strength λ from 10−4 ∼ 10−6. Detailed hyperpa-
rameter settings can be found in Appendix C.

As shown in Table 3, for generating text us-
ing GPT-2 medium fine-tuned with E2E datasets,
RLoRA as compared to LoRA, VeRA, and Adpt
achieves the best or second-best results across most
of the metrics and is competitive with full fine-
tuning. Furthermore, by referring to the last rows
in Table 3, we can clearly observe the improvement
brought by the PAC-Bayes regularization.

4.4 Arithmetic Reasoning

To evaluate the performance comparison on more
recent large model, we finetune the LLaMA7B and
the corresponding consumption of computational
resources.

By following the experiment settings in (Hu
et al., 2023), we evaluate the performance of fine-
tuning LLaMA7B model for math reasoning tasks
where a math reasoning dataset with 10K training

data is used and 4 different tasks were being evalu-
ated. Results with * in the following table are taken
from the original paper.

The results in Table.4 show that RLoRA can
attain performance comparable to other baseline
methods (Prefix, Adapter and LoRA) with the
fewest number of parameters. The last 4 rows
reveal that given similar memory requirements,
RLoRA exhibits superior performance than LoRA.
Also, comparing with LoRA(r=32) and Adapter,
RLoRA can achieve comparable performance with
8× smaller space required for storing the model.
The more downstream tasks we need to tackle, the
more obvious our storage advantage becomes. For
100 tasks, LoRA would require 20G space, while
RLoRA needs only 2G storage for similar perfor-
mance. In addition, the smallest possible model for
LoRA is the one with rank=1 which highly likely
will not give good adaptation performance. Yet, its
size may still restrict it to be applied under some
extreme memory resource constraint situations.

To evaluate the reduction in memory utiliza-
tion, we compared the resource consumption with
minimum requirements for training LoRA. For
RLoRA, it is much more computationally efficient
due to the adoption of Walsh-Hadamard Trans-
form (WHT). Table.5 shows the minimum Flops
and CUDA memory usage needed by LoRA and
RLoRA. RLoRA consumes less computational re-
sources than LoRA, and we set the batchsize=1 to
get this result.

4.5 Comparison: RLoRA vs VeRA

In comparison with the contemporaneous work
VeRA which also generates a random projection
matrix as well, RLoRA implements the structured
Randomized WHT which can make the weight mul-
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Table 4: Accuracy comparison of LLMs with different adapters on 4 math reasoning datasets. Results for methods
with asterisk (*) are taken from prior work

Method Param(%) Storage (MB) MultiArith AddSub SingleEq SVAMP Avg
Adapter* 0.99 256MB 92.8 80.0 83.5 52.3 77.13

LoRA (r=32)* 0.83 215MB 95.0 83.3 84.4 52.1 78.65
Prefix* 0.11 28.5MB 63.2 57.0 55.3 38.1 53.4

LoRA (r=4) 0.10 27MB 94.5 83.3 84.1 46.7 77.07
RLoRA 0.10 27MB 96.5 82.8 83.9 47.2 77.6

LoRA (r=1) 0.026 6.8M 92.5 77.4 77.2 44.2 72.8
VeRA 0.017 4.1MB 92.6 71.1 69.8 38.8 69.08

RLoRA 0.017 4.1MB 93.8 76.7 79.7 44.8 73.95

Table 5: Impact on GPU memory

Method Max. CUDA Memory
RLoRA(rank=64) 16537 MB
LoRA (rank=64) 17619 MB

tiplication more efficient (O(d log d)). Based on
our current implementation (not yet optimized), it
can enhance the training from processing 14.7 sam-
ples per sec. for VeRA to 15.3 samples per sec.
for RLoRA 3. Also, the use of Randomized WHT
can effectively scale the PAC-Bayes regularization
to large models, leading to improved performance
evidenced by our experiment results.

5 Limitations and Future Work

In this paper, we proposed Randomized Walsh-
Hadamard low-rank adaptation to reduce the fine-
tuning resource consumption and scale the PAC-
Bayesian regularization to larger model. The cur-
rent estimation of the PAC-Bayes generation bound
requires additional gradient computation on the re-
sampled data. Better ways to integrate the estima-
tion of the information into the training process is
worth pursuing. In addition, how to select a proper
rank for low-rank adaptation is another research
issue where methods like AdaLoRA (Zhang et al.,
2023c) and IncreLoRA (Zhang et al., 2023a) pro-
pose different parameter importance scores for the
rank selection. This issue is not yet considered in
this paper.

6 Conclusion

We propose the randomized low-rank adapta-
tion RLoRA which integrates LoRA with the

3We train the RoBERTa-base on RTE datasets for 1 epoch
to get this result.

Randomized Walsh-Hadamard Transform to gain
parameter-efficiency for fine-tuning and PAC-
Bayes regularization to further boost generaliza-
tion capability. Via comprehensive experiments,
we demonstrates that RLoRA can achieve compa-
rable performance as LoRA where the number of
trainable parameters required is only 0.02% of the
original model (and 1/35 of LoRA). Also, under
few-shot settings, the PAC-Bayes regularization
makes RLoRA outperforms LoRA and other SOTA
low-rank adaptation methods. For future work,
more effective and efficient ways for estimating the
information-based regularization is worth pursuing.
In addition, how to selecting the optimal rank is
another open research issue.
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A Matrix-variate Posterior Distribution Approximated by WHT

The matrix W̃ = diag(β)S1HB1S
T
2 diag(α)S2HB2 = WBHB1S

T
2 diag(α)S2HB2 in Eq. 8, where

WB = diag(β)S1. The covariance matrices are:

U =
1

tr(V )
E
[
(W −M)(W −M)T

]

V =
1

tr(U)
E
[
(W −M)T (W −M)

] (20)

As the covariance matrix is non-identifiable (Glanz and Carvalho, 2018) which means that for any scale
factor

MNm×n(W | M ,U ,V ) = MNm×n(W | M , sU , 1sV ), (21)

we can constrain tr(V ) = 1, and M = S1HB1S
T
2 diag(µβ)S2HB2

U = E
[
HB1S

T
2 diag(Σ1/2

α ϵ)S2HB2B2HST
2 diag(Σ1/2

α ϵ)S2B1H
]

= E
[
HB1S

T
2 diag(Σ1/2

α ϵ)S2S
T
2 diag(Σ1/2

α ϵ)S2B1H
]

= HB1S
T
2 E [diag(Σα)]S2B1H

V =
1

tr(U)
E
[
B2HST

2 diag(Σ1/2
α ϵ)S2B1HHB1S

T
2 diag(Σ1/2

α ϵ)S2HB2

]

=
1

tr(U)
B2HST

2 E [diag(Σα)]S2HB2

(22)

Then, the root of U ,V can be found

U1/2 = HB1S
T
2 diag(Σ

1/2
α )

V 1/2 =
1√
tr(U)

B2HST
2 diag(Σ1/2

α )
(23)

Lemma A.1. Suppose W ∼ MNm×n(MT ,V ,U). Let D ∈ Rr×m r ≤ m and C ∈ Rn×p, p ≤ n
are both full rank matrices. Then a linear transform of the W , i.e., DWC also follows matrix-variate
Gaussian distribution.

DWC ∼ MN r×s(DMC,DUDT ,CTV C). (24)

So, U
W̃

= diag(β)S1UST1 diag(β) and V
W̃

= V .

B PAC-Bayesian Estimation

When Uψ is bootstrapping from S and Ψ is the selection matrix and ψi = 1 means sample point i will be
removed. Ψ is the resampled data index and we use g ∈ Rd×n to denotes the gradient matrix.

µS−U − µS
∆
= − 1

1− p

1

|S|H
−1
µS

∑

z∈U
∇l(hµS (z))

=
1

1− p

1

|S|H
−1
µS

n∑

i=1

ψi∇l(hµS (zi))

so µU − µS
∆
=

1

1− p

1

|S|H
−1
µS

n∑

i=1

(1− ψi)∇l(hµS (zi))

≃ H−1
µS

g(1−Ψ).

(25)
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Then we have

E
[
(µU − µS)(µU − µS)

T
]

= E
[
H−1
µS

g(1−Ψ)(H−1
µS

g(1−Ψ))T
]

= H−1
µS

gE
[
(1−Ψ)(1−Ψ)T

]
gT (H−1

µS
)T

(26)

while Ψ ∼ Poisson(k, 1n , ...,
1
n),

E
[
(1−Ψ)(1−Ψ)T

]
ij

=

{
1− 2 kn + k(1−n)

n + ( kn)
2 i = j

1− 2 kn + k2

n2 i ̸= j

(27)

In practice as n increases, (E
[
(1−Ψ)(1−Ψ)T

]
ii
) → 2 and (E

[
(1−Ψ)(1−Ψ)T

]
ij
) → 1. So

E
[
(1−Ψ)(1−Ψ)T

]
≃ (I + 11T ) (28)

and Eq. 26 can be rewritten as:

H−1
µS

gE
[
(1−Ψ)(1−Ψ)T

]
gT (H−1

µS
)T

= H−1
µS

g(I + 11T )gT (H−1
µS

)T

= H−1
µS

gIgT (H−1
µS

)T

∝ H−1
µ Fµ,U (H

−1
µ )T

(29)

C Experiment Details

C.1 GLUE full datasets
The detailed hyperparameter settings of our proposed RLoRA can be found in Table 6.

Table 6: Hyperparameter settings for RLoRA

Hyperparameter SST2 MRPC CoLA QNLI RTE STS-B

B
A

S
E

Max sequence length 128
Rank r 512

Batch size 64 32 32 64 32 32
Epoch 10 30 30 10 30 30

RLoRA lr 5E-2 5E-2 1E-3 1E-2 5E-2 1E-2
Classifier lr 5E-4 1E-3 1E-3 5E-4 1E-3 1E-3

λ 1E-4 1E-4 1E-4 5E-5 5E-5 1E-4

L
A

R
G

E

Max sequence length 128
Rank r 256

Batch size 128 64 64 128 64 64
Epoch 60 80 80 25 160 80

RLoRA lr 5E-2 1E-2 1E-2 5E-2 1E-2 5E-2
Classifier lr 1E-4 5E-5 1E-4 1E-4 5E-5 1E-4

λ 1E-3 1E-3 1E-4 5E-5 5E-3 1E-4

C.2 GLUE datasets for few-shot experiments
For our few-shot experiments, we make of GLUE and train the model for 20 epoch with batch size = 32 in
all experiments. Detailed hyperparameter settings for our proposed RLoRA can be found in Table 7.

C.3 E2E benchmark
The hyperparameter to reproduce the results for the E2E benchmark is shown in Table 8.

5248



Table 7: Hyperparameter settings for RLoRA in few-shot experiments

# of train data Method RTE MRPC STS-B SST-2 QNLI

B
A

S
E

100

RLoRA lr 5E-4 1E-3 5E-3 1E-2 1E-2
Classifier lr 5E-4 1E-2 1E-2 1E-3 1E-2
RLoRA λ 1E-4 1E-4 5E-3 1E-4 1E-2

Classifier λ 1E-4 1E-4 1E-2 1E-4 1E-2

200

RLoRA lr 1E-4 5E-2 5E-2 5E-2 5E-2
Classifier lr 5E-2 5E-4 5E-3 5E-3 1E-4
RLoRA λ 5E-3 1E-3 5E-4 5E-3 1E-2

Classifier λ 0 5E-3 5E-4 1E-4 5E-4

Table 8: Hyperparameter configurations for RLoRA, VeRA and LoRA on the E2E benchmark.

Hyperparameter RLoRA VeRA LoRA

# GPUs 1
Optimizer AdamW
Learning Rate Schedule Linear
Batch Size 8
Epochs 5
Warmup Steps 500
Label Smooth 0.1
LoRA α 32
regularization λ 1E-6 0 0
Rank 1024 1024 8
Learning Rate 1E-1 1E-1 5E-4
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