@inproceedings{lei-etal-2024-fast,
title = "Fast Randomized Low-Rank Adaptation of Pre-trained Language Models with {PAC} Regularization",
author = "Lei, Zijian and
Qian, Dong and
Cheung, William",
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2024",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-acl.310/",
doi = "10.18653/v1/2024.findings-acl.310",
pages = "5236--5249",
abstract = "Low-rank adaptation (LoRA) achieves parameter efficient fine-tuning for large language models (LLMs) by decomposing the model weight update into a pair of low-rank projection matrices. Yet, the memory overhead restricts it to scale up when the model size increases. We propose Randomized LoRA (RLoRA) which adopts Randomized Walsh-Hadamard Transform to achieve significant reduction in the size of trainable parameters compared to LoRA. At the same time, it allows a PAC-Bayes regularizer to be efficiently incorporated to improve generalization. We evaluate the effectiveness of RLoRA on LLMs RoBERTa, GPT-2 and LLaMA-7B using GLUE, E2E and math reasoning benchmarks. With a much lower memory requirement, RLoRA can give similar performance as the SOTA low-rank adaptation methods for these three tasks and significantly better performance under few-shot settings."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lei-etal-2024-fast">
<titleInfo>
<title>Fast Randomized Low-Rank Adaptation of Pre-trained Language Models with PAC Regularization</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zijian</namePart>
<namePart type="family">Lei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dong</namePart>
<namePart type="family">Qian</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">William</namePart>
<namePart type="family">Cheung</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Low-rank adaptation (LoRA) achieves parameter efficient fine-tuning for large language models (LLMs) by decomposing the model weight update into a pair of low-rank projection matrices. Yet, the memory overhead restricts it to scale up when the model size increases. We propose Randomized LoRA (RLoRA) which adopts Randomized Walsh-Hadamard Transform to achieve significant reduction in the size of trainable parameters compared to LoRA. At the same time, it allows a PAC-Bayes regularizer to be efficiently incorporated to improve generalization. We evaluate the effectiveness of RLoRA on LLMs RoBERTa, GPT-2 and LLaMA-7B using GLUE, E2E and math reasoning benchmarks. With a much lower memory requirement, RLoRA can give similar performance as the SOTA low-rank adaptation methods for these three tasks and significantly better performance under few-shot settings.</abstract>
<identifier type="citekey">lei-etal-2024-fast</identifier>
<identifier type="doi">10.18653/v1/2024.findings-acl.310</identifier>
<location>
<url>https://aclanthology.org/2024.findings-acl.310/</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>5236</start>
<end>5249</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Fast Randomized Low-Rank Adaptation of Pre-trained Language Models with PAC Regularization
%A Lei, Zijian
%A Qian, Dong
%A Cheung, William
%Y Ku, Lun-Wei
%Y Martins, Andre
%Y Srikumar, Vivek
%S Findings of the Association for Computational Linguistics: ACL 2024
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F lei-etal-2024-fast
%X Low-rank adaptation (LoRA) achieves parameter efficient fine-tuning for large language models (LLMs) by decomposing the model weight update into a pair of low-rank projection matrices. Yet, the memory overhead restricts it to scale up when the model size increases. We propose Randomized LoRA (RLoRA) which adopts Randomized Walsh-Hadamard Transform to achieve significant reduction in the size of trainable parameters compared to LoRA. At the same time, it allows a PAC-Bayes regularizer to be efficiently incorporated to improve generalization. We evaluate the effectiveness of RLoRA on LLMs RoBERTa, GPT-2 and LLaMA-7B using GLUE, E2E and math reasoning benchmarks. With a much lower memory requirement, RLoRA can give similar performance as the SOTA low-rank adaptation methods for these three tasks and significantly better performance under few-shot settings.
%R 10.18653/v1/2024.findings-acl.310
%U https://aclanthology.org/2024.findings-acl.310/
%U https://doi.org/10.18653/v1/2024.findings-acl.310
%P 5236-5249
Markdown (Informal)
[Fast Randomized Low-Rank Adaptation of Pre-trained Language Models with PAC Regularization](https://aclanthology.org/2024.findings-acl.310/) (Lei et al., Findings 2024)
ACL