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Abstract

The remarkable capability of large language
models (LLMs) for in-context learning (ICL)
needs to be activated by demonstration exam-
ples. Prior work has extensively explored the
selection of examples for ICL, predominantly
following the "select then organize" paradigm,
such approaches often neglect the internal re-
lationships between examples and exist an in-
consistency between the training and inference.
In this paper, we formulate the problem as a
Sequential Selection problem and introduce
Se2, a sequential-aware method that leverages
the LLM’s feedback on varying context, aiding
in capturing inter-relationships and sequential
information among examples, significantly en-
riching the contextuality and relevance of ICL
prompts. Meanwhile, we utilize beam search
to seek and construct example sequences, en-
hancing both quality and diversity. Extensive
experiments across 23 NLP tasks from 8 dis-
tinct categories illustrate that Se2 markedly
surpasses competitive baselines and achieves
42% relative improvement over random selec-
tion. Further in-depth analysis shows the ef-
fectiveness of proposed strategies, highlight-
ing Se2’s exceptional stability and adaptabil-
ity across various scenarios. Code available at
https://github.com/microsoft/LMOps.

1 Introduction

Large Language Models (LLMs) (Radford et al.,
2019; Brown et al., 2020; Zhang et al.; Touvron
et al., 2023a) have demonstrated remarkable ca-
pabilities in handling a wide range of problems
and tasks through In-Context Learning (ICL). ICL
allows these models to learn from a limited num-
ber of examples without the need for parameter
updates. Despite Wei et al. (2022c); Wang et al.
(2022); Wei et al. (2022b) shows the ICL superior
potential for various scenarios, the performance of
ICL heavily relies on the careful example selec-
tion (Liu et al., 2021; Rubin et al., 2021; Su et al.,

Figure 1: The "select then organize" paradigm and our
sequential example selection.

2022; Zhang et al., 2022; Cheng et al., 2023). Re-
cent work (Lu et al., 2022; Zhang et al., 2022) has
also shown there are significant variances in perfor-
mance across different sets of examples. Thus, the
example selection plays a vital role in the behavior
of ICL.

Given the diverse nature of NLP tasks, re-
searchers have proposed various heuristic criteria
for example selection, including entropy (Lu et al.,
2022; Wu et al., 2023), influences (Nguyen and
Wong, 2023), uncertainty (Diao et al., 2023), and
so on. There are also some approaches focused
on retrieving examples based on the similarity be-
tween the input and the examples (Liu et al., 2022;
Su et al., 2022). More recent efforts (Rubin et al.,
2021; Cheng et al., 2023) have explored selecting
examples based on their contribution to output per-
formance. The above methods select examples and
concatenate them together, following the "select
then organize" paradigm, as shown in Figure 1.
However, these methods often overlook the impact
of the relationship between examples. To address
this, Zhang et al. (2022) proposes a reinforcement
learning (RL) approach to formalize the process.
Yet, this approach faces limitations in modeling
and applicability due to the constraints of the RL
framework.
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Selecting an optimal example sequence from
a large candidate pool is an NP-hard problem.
To overcome this challenge, we propose a novel
method for example selection, called Se2, which
selects the ideal sequence by modeling the condi-
tional probability of the example sequence given
the current context. Se2 employs a sequential-
aware model that utilizes feedback from an LLM
across a diverse set of prompting examples as train-
ing data. This allows Se2 to model the interrela-
tionships and sequential information between ex-
amples. During inference, we adopt a beam search
strategy to construct example sequences, which can
enhance the quality and diversity of prompts.

We empirically validated the effectiveness of
Se2 at 23 popular tasks, including question an-
swering, paraphrase detection, and so on. Se2 out-
performed competitive baselines and achieved a
42% relative improvement over random selection.
Our quantitative evaluations demonstrate the advan-
tages of Se2, showing a significant performance
boost with little variance from the sequential train-
ing pattern and improved example sequence qual-
ity through beam search. Moreover, Se2 exhibits
strong transferability, enhancing larger LLMs with
feedback from smaller scoring LLMs. The case
study also reveals Se2’s ability to identify exam-
ple sequences with inherent logical relationships.

Overall, our contributions are summarized as
follows:

• In this paper, we explore a novel sequential ex-
ample selection paradigm for ICL and figure
out the importance of a sequential approach
in the selection process.

• We propose Se2, a sequence-aware method
that can adeptly handle sequential relation-
ships, generating ideal example sequences as
in-context prompts.

• Through extensive experimentation on 23 pop-
ular benchmarks, Se2 demonstrates signifi-
cant performance improvements, highlighting
its ability to uncover and leverage the intrinsic
connections between selected examples.

2 Preliminary

In-context learning (ICL) is a pivotal capability of
Large Language Models (LLMs), enabling these
models to undertake a variety of tasks by ob-
serving task prompts without updating parameters.
In-context prompts are typically sequences that

comprise multiple examples. Formally, a K-shot
prompt for ICL consists of K examples. Given a
test sample (xtest, ytest), LLMs predicts ŷ based
on the in-context prompt and input xtest:

ŷ = LLM(eK⊕, ...,⊕e1 ⊕ xtest) (1)

where ei = (xi, yi)
K
i=1 represents an example

consisting of an input-output pair, K denotes the
shot number and ⊕ is the concatenation opera-
tion. Our objective is to optimize the in-context
prompt by seeking the ideal example sequence
{eK , . . . , e1} in E for xtest, aiming to make the
LLM’s prediction ŷ match the ground truth ytest.

3 Method

In this work, we depart from the traditional "select
then organize" paradigm and propose a novel se-
quential example selection method, namely Se2, to
construct in-context prompts. This section outlines
our method, including example scoring, context
sequence construction, training, and the inference
pipeline.

3.1 Example Scoring
As described in Section 2, LLM generates ŷ
conditioned on in-context prompts composed of
examples. Prior work (Rubin et al., 2022; Cheng
et al., 2023) indicates that selecting examples
solely based on semantic similarity does not yield
optimal performance. An intuitive and more
generalized approach involves scoring by the
LLM itself. Our method is adaptable to various
NLP tasks, encompassing both Natural Language
Understanding (NLU) and Natural Language
Generation (NLG). We apply the following scoring
functions for them. Given a data instance (x, y)
and an example e, we measures the benefit of e for
(x, y) by:

NLU

SNLU(x, y, e) =
LH(y | e⊕ x)∑

y′∈Y LH(y′ | e⊕ x)
, (2)

where the label space is Y , LH(· | ·) is the per-
token conditional likelihood of the LLM.

NLG
ŷ = LLM(e⊕ x) (3)

SNLG(x, y, e) = metric(y, ŷ), (4)
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Figure 2: The process of Context Sequence Construction, mainly includes sampling examples, scoring and ranking
examples for varying context input, and selecting and extending example sequences.

where metric(·) is the task-specific metric (e,g.,
Rouge (Lin, 2004)) to compare the prediction ŷ
and ground truth y.

3.2 Context Sequence Construction

Previous methods (Cheng et al., 2023; Rubin et al.,
2022) concatenated different examples with input x
of data instance (x, y) and scored them separately,
but this process ignored the sequential information
and inherent connections among examples. Addi-
tionally, it was not consistent with the K-shot ICL
setting (when K ̸= 1). To address this, we con-
struct the example sequence and find reasonably
supervised signals to align this setting. Specifically,
as Figure 2 shows, we sample L candidate exam-
ples from the example pool E as C, where L is the
sample size. We score and rank C using frozen
LLM. Then, we select a example ec from scored C
based on its rank:

p(rank) =
f(rank)

ΣL
rank′=1f(rank

′)
(5)

f(rank) = exp(−rank) (6)

where rank ∈ [1, L], the higher-scoring example is
more likely to be selected and the diversity of the
data is preserved. We iteratively update the context
input to ec⊕x, continuing the process of sampling,
scoring, ranking, and extending example sequences
until the K-shot data are all constructed. Algo-
rithm 1 presents the context sequence construction
procedure. Through this process, we approximate
the optimal example sequence incrementally and
obtain the example selection signals for varying
context inputs, thereby establishing the foundation
for the training process.

Algorithm 1 Context Sequence Construction

Input: data instance (x, y), example pool E , shot
number K, sample size L

Output: Training Data D for (x, y)
1: for i=1 to K do
2: C ← Random Sample L examples from E
3: Score and rank C for (x, y) based on for-

mula 2 and 4
4: Append {x, y, C} and their scores to D
5: Select ec from C based on formula 5
6: x← ec ⊕ x
7: end for

3.3 Training
After completing the context sequence construc-
tion, we obtained feedback from the LLM on can-
didate examples for varying context inputs. We
then initialize two encoders Ee(·) for examples
and Ex(·) for inputs. The aim is to maximize the
bi-encoder score between the current input and its
most effective example. Accordingly, the top-1
example with the highest score is selected as the
current input’s positive example e+. For the set
of negative samples N , we sample B examples
from E and choose the bottom-B candidates as
hard-negative examples to enhance the model’s dis-
criminatory capability. The training loss is defined
using InfoNCE (van den Oord et al., 2019):

L(x, e+,N ) =

− log
exp(sim(x, e+))∑

e′∈{N ⋃
e+} exp(sim(x, e′))

(7)

where scores are computed via inner product:
sim(·, ·) = Ee(·)⊤Ex(·). Observing the cross-shot
example sequence data allows the model to discern
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Figure 3: The process of searching for example se-
quences during inference using beam search. We draw
the case of w = 1 to illustrate this briefly.

the optimal example for varying context input.

3.4 Inference
During inference, we encode the entire example
pool E using the trained Ee(·) and index them.
For a test input xtest, we identify beneficial exam-
ples—those with the highest inner product scores,
as illustrated in Figure 3. However, the greedy
search may not be globally optimal for sequential
selection. Therefore, we utilize beam search to
increase the search space. We compute the rep-
resentation of xtest with Ex(·) and search for the
top-w examples, where w is beam size. These
examples are then concatenated with the current
inputs as new context sequences, aligning with the
training process. And, the scores given by the re-
triever are accumulated into the example sequences
scores. This process is repeated, encoding inputs
and seeking examples to maintain the w highest
scoring candidate sequences until each contains K
examples. The final predictions are generated by
LLM conditioned on the example sequences and
evaluated using the corresponding metric for each
task.

4 Experiments

We conducted extensive experiments on a wide
range of NLP tasks. The results and analysis of
the experiments demonstrate the effectiveness and
advantages of our method.

4.1 Experiment Settings
Task and Dataset We utilized a total of 23 tasks
across 8 distinct categories, including Paraphrase
Detection, Common Reasoning, Natural Language
Inference, Story Generation, Data-to-Text Gener-
ation, Question Answering, Sentiment Analysis,
and Text Summarization, based on references (Wei
et al., 2022a; Cheng et al., 2023; Li et al., 2023).

The prompt templates, and dataset details for dif-
ferent tasks are provided in Appendix A.

Implementation Details We use GPT-Neo-
2.7B (Black et al., 2022) as the scoring and in-
ference LLM for most experiments, in line with its
widespread adoption in prior research (Rubin et al.,
2022; Cheng et al., 2023). Both encoders were ini-
tialized with "BERT-base-uncased" (Devlin et al.,
2019).

For computational efficiency, we randomly se-
lect up to 10k data points for each task to construct
the training data and example pool while maintain-
ing class balance in classification tasks. Training
instances lacking positive e+ were filtered out.

We configured the default sample size L = 50,
which will be larger for some tasks1, the (hard) neg-
ative number B = 20, the shot number K = 3, and
the beam size w = 3 to balance the performance
and efficiency. The candidate example sequence
with the highest score within the beam is selected
as the in-context prompt. For comprehensive de-
tails on training hyperparameters and additional
experimental specifics, please refer to Appendix B.

Method Comparison We compared our method
with prior competitive ICL methods using GPT-
Neo-2.7B as inference LLM, including:

• Random Selection: We randomly sample
demonstrations from the example pool, repeat-
ing 10 times. We report the average perfor-
mance as "Random" and the best performance
as "Best-of-10".

• BM25 (Robertson and Zaragoza, 2009): A
commonly used sparse retriever that extends
TF-IDF to rank relevant examples for the test
input.

• SBERT (Reimers and Gurevych, 2019): A
dense retriever by computing sentence embed-
ding. We follow Rubin et al. (2022) to take
"paraphrase-mpnet-basev2" as the encoder.

• Instructor2 (Su et al., 2023): A new compet-
itive model for computing text embeddings
given instructions. It trained on 330 tasks
and achieved SOTA on 70 diverse embedding

1L = 200 for OBQA and COPA, L = 100 for Common-
Gen, Gigaword, Roc Story and Roc Ending, consistent with
UPRISE.

2https://instructor-embedding.github.io/. We use
the updated checkpoint released on 2024/01/21:
https://huggingface.co/hkunlp/instructor-base
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Method

Paraphrase Detection Common Reasoning

MRPC QQP PAWS Average COPA HellaSwag Average
Acc. F1 Acc. F1 Acc. Acc. Acc.

Zero-shot 46.6 46.0 48.4 42.1 51.8 47.0 67.0 54.5 60.8
Random 61.4 73.1 45.5 47.2 50.4 55.5 71.8 53.7 62.8
Best-of-10 69.4 81.3 63.2 53.9 55.8 64.7 74.0 54.4 64.2
BM25 58.8 70.2 55.3 55.7 49.8 58.0 68.0 54.8 61.4
SBERT 58.8 70.1 58.1 55.9 49.0 58.4 67.0 55.0 61.0
Instructor 58.8 70.0 56.4 57.4 49.1 58.3 71.0 55.2 63.1
AES 64.2 N/A 63.0 N/A 51.7 N/A N/A N/A N/A
UPRISE 76.0 84.2 77.9 74.3 49.2 72.3 72.0 54.3 63.2
Se2 77.9 85.6 79.2 75.6 58.4 75.3 76.0 54.6 65.3

Method

Natural Language Inference Story Generation

MNLI-m MNLI-mm QNLI SNLI RTE Average Roc Story Roc Ending Average
Acc. Acc. Acc. Acc. Acc. Rouge-L Rouge-L

Zero-shot 35.3 36.6 50.9 35.3 34.3 38.5 5.8 3.2 4.5
Random 35.9 35.5 51.6 33.7 51.7 41.7 14.6 17.4 16.0
Best-of-10 41.3 40.2 53.2 35.0 54.5 44.8 19.8 17.4 18.6
BM25 36.8 36.8 51.9 38.0 53.4 43.4 10.7 17.5 14.1
SBERT 37.1 38.1 52.7 39.5 48.4 43.2 10.4 17.4 13.9
Instructor 39.4 40.1 53.5 40.3 49.5 44.6 11.6 17.4 14.5
AES 43.2 29.5 61.5 35.0 47.5 43.3 N/A N/A N/A
UPRISE 62.9 64.8 72.5 75.5 55.2 66.2 18.2 18.0 18.1
Se2 69.8 69.8 80.2 78.4 56.0 70.8 20.4 17.8 19.1

Method

Data-to-Text Generation Question Answering

CommonGen E2E NLG Average ARC-C ARC-E OBQA Average
Rouge-L Rouge-L Acc. Acc. Acc.

Zero-shot 14.2 7.6 10.9 29.5 48.3 43.0 40.3
Random 28.8 43.1 36.0 30.8 56.9 45.3 44.3
Best-of-10 33.9 48.7 41.3 31.8 60.5 47.2 46.5
BM25 29.9 47.9 38.9 31.8 61.6 47.2 46.9
SBERT 29.9 42.6 36.3 32.0 62.9 47.2 47.4
Instructor 30.0 43.3 36.6 32.4 64.0 47.6 48.0
AES N/A N/A N/A N/A N/A N/A N/A
UPRISE 33.0 51.9 42.5 32.9 64.1 49.8 48.9
Se2 34.6 53.4 44.0 33.3 63.3 50.0 48.9

Method

Sentiment Analysis Text Summarization

SST-2 SST-5 Sent140 Average AGNews Gigaword AESLC Average
Acc. Acc. Acc. Acc Rouge-L Rouge-L

Zero-shot 52.4 28.2 64.3 48.3 38.4 1.4 1.8 13.9
Random 52.9 22.5 66.2 47.2 35.4 18.1 3.1 19.9
Best-of-10 57.3 27.7 73.3 52.8 47.8 21.8 9.2 26.3
BM25 65.6 27.5 73.3 55.5 81.7 23.3 11.6 38.9
SBERT 72.5 22.6 73.5 56.2 85.0 19.4 7.8 37.4
Instructor 80.8 20.1 85.5 62.1 87.3 19.9 10.3 39.2
AES 82.8 20.9 69.1 57.6 78.2 N/A N/A N/A
UPRISE 78.8 52.6 84.4 71.9 91.4 25.8 13.4 43.5
Se2 89.0 52.7 83.8 75.2 91.6 25.8 14.0 43.8

Table 1: Main results on various tasks. We bold the best results. The column "Average" is the mean performance of
the same category task. "N/A" means that the task or metric is not applicable to the corresponding method.
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Beam Size Candidates PD. CR. NLI. SG. DTG. QA. SA. TS.

w = 1 / 74.96 64.84 70.96 18.78 43.93 48.63 74.99 43.81

w = 2
top-1 74.99 63.79 70.65 19.01 43.90 48.63 75.04 43.71
avg 74.91 64.30 70.61 19.03 43.87 48.34 75.05 43.85

w = 3
top-1 75.34 65.30 70.84 19.10 44.00 48.87 75.20 43.81
avg 75.32 65.15 70.79 19.00 43.85 48.36 75.19 44.20

Table 2: The average performance of the 8 categories of tasks at different beam sizes.

tasks. We compared ours with the released
instructor-base model.

• Active Example Selection (AES)3 (Zhang
et al., 2022): An RL-based method to select
examples. For a fair comparison, we extended
its tasks and re-trained it with GPT-Neo-2.7B.

• UPRISE4 (Cheng et al., 2023): A recently
proposed prompt retriever for cross-task and
different LLMs. We re-trained task-specific
UPRISE that aligns settings for fair compari-
son.

In the Baselines compared, BM25, SBERT, In-
structor, and UPRISE all estimate the usefulness
of each example separately, we take the TOP-N of
their retrieved examples as prompt. Notably, the
parameters of our encoders are identical to SBERT
and UPRISE, so there is no extra burden on de-
ployments and applications. For more details about
baselines, please refer to Appendix C.

4.2 Main Results

Table 1 presents the overall results of ICL meth-
ods at various benchmarks. We found that random
sampling does lead to sizable gains compared to
zero-shot. This demonstrates the necessity of pro-
viding examples for LLMs in downstream tasks.
Compared to random sampling, Se2 shows over
42% average relative improvement. BM25 and
SBERT have a significant gain over random sam-
pling. The text embedding model Instructor bene-
fits from extensive training data and performs better
than BM25 and SBERT. It shows that the appropri-
ate demonstration selection is beneficial. In com-
parison, Se2 achieves an average relative improve-
ment of 25%, but with fewer parameters and less

3https://github.com/ChicagoHAI/active-example-
selection. GPT-2 Medium is used in the original paper.

4https://github.com/microsoft/LMOps/tree/main/uprise

training data. This demonstrates the effectiveness
of our data construction and modeling approach.

Meanwhile, AES, UPRISE, and Se2 perform
better due to using LLM’s feedback to find appro-
priate examples. Compared with UPRISE, Se2

benefits from modeling varying context inputs, cap-
turing relationships between examples, as well as
the beam search strategy, showing significantly bet-
ter performance on the majority of tasks. The result
shows that the sequential selection is essential for
K-shot ICL.
Se2 and AES both consider the sequence for-

mulation. However, AES assumes that the reward
function r is valid only if f(LM) acts as a value
function considering the long-term implications of
each prompt sequence addition. Contrarily, f(LM)
primarily focuses on immediate content, neglecting
the essential long-term rewards critical for accurate
value estimation. In terms of implementation, AES
made many simplifications and adaptations to ap-
ply the RL framework to example selection, which
makes AES difficult to model the rich semantic re-
lations in natural language. The complex pipeline
of RL is also difficult to apply for varied tasks. In-
stead, Se2 uses a pre-trained bert-based model as
encoders, while our scoring function can be used
for a wide range of NLU and NLG tasks, which al-
lows our approach to significantly outperform AES
in terms of performance and generalisability.

4.3 Analysis

In this section, we delve into evaluating the effec-
tiveness of Se2’s strategy, examining the impact of
search strategy, the stability of selected examples,
the transferability across models, and providing
some case studies for a tangible demonstration of
Se2’s advantages.

On the Effect of Search Strategy In our method,
we employ beam search to seek candidate demon-
stration example sequences, with beam size de-
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Inference Model Method 1-shot 2-shot 4-shot 8-shot 16-shot

GPT2-XL
BM25 51.40 51.38 52.26 52.53 53.14

UPRISE 64.29 65.83 66.07 66.31 66.23
Se2 67.19 67.66 68.46 68.26 68.57

GPT-Neo-2.7B
BM25 51.69 52.62 54.22 55.24 55.27

UPRISE 66.93 66.98 66.92 67.10 66.84
Se2 69.11 69.64 69.60 69.72 69.63

LLaMA2-7B
BM25 57.31 57.87 60.19 63.34 65.44

UPRISE 69.36 69.17 71.09 72.01 72.40
Se2 71.79 72.12 72.97 73.27 73.67

Table 3: Se2’s average performance across 17 NLU tasks from 1-shot to 16-shot on LLMs with parameter scales
1.5B to 7B.

noted as w. In this section, We investigate the ef-
fect of our search strategy by setting w = [1, 2, 3],
where w = 1 corresponds to a greedy search strat-
egy. Performance evaluations of searched candi-
date sequences are depicted in Table 2, with "top-1"
indicating results from the highest scoring prompts
among w candidates, and "avg" representing the av-
erage performance across w candidate prompts. We
report the average performance of the 8 categories
of tasks. Results demonstrate that as beam size
w increases, enlarging the search space, there’s a
notable performance improvement, signifying Se2

found more optimal candidate example sequences.
Moreover, "top-1" performance tends to be better
than "avg", indicating Se2’s ability to accurately
identify and prioritize the most effective candidates,
thereby affirming the strategy’s efficacy. Over-
all, Se2’s approximate search strategy successfully
identifies superior example sequences, enhancing
downstream task performance.

On the transferability of Se2 In the above ex-
periments, we show the results when the infer-
ence model and the scoring model are consis-
tent. As the LLM is scaling up, aligning the scor-
ing and inference models is time-consuming and
resource-intensive. Thus, We explored Se2’s exam-
ple selection effectiveness across different LLMs,
transferring it to 2 various size models GPT2-
XL (1.5B) (Radford et al., 2019) and LLAMA2-
7B (Touvron et al., 2023b), comparing against
BM25 and UPRISE baselines. Table 3 illustrates
that Se2 consistently outperforms BM25 and UP-
RISE from 1-shot to 16-shot across models ranging
from 1.5B to 7B parameters. Despite Se2 being
trained on 3-shot data, it shows a progressive per-
formance increase with more examples, especially
enhancing smaller models due to their greater re-

Random Ours
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53.5

54.0

54.5

55.0

(a) Hellaswag.

Random Ours
20.0
22.5
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37.5

(b) CommonGen.

Random Ours
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(c) ARC-E.

Random Ours
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7.5

10.0
12.5
15.0

(d) AESLC.

Figure 4: The performance distribution of Se2 and ran-
dom sampling when tuning in-context prompts.

HellaSwag CommonGen ARC-E AESLC

Original 54.62 34.47 62.92 14.44
Permutation 54.55 34.34 62.59 13.99

Table 4: Average performance of original sequences and
their full permutations obtained by Se2.

liance on high-quality examples for task execution,
which is in line with the recent findings (Wang
et al., 2023).

On the stability of selected examples As sug-
gested by Lu et al. (2022); Zhao et al. (2021a),
ICL performance can vary significantly, with differ-
ent in-context examples causing fluctuations from
near state-of-the-art (SOTA) performance to ran-
dom guessing, and different orderings may lead to
strong fluctuations in the performance.

In this section, we explore the stability of Se2
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Figure 5: Two case studies on ARC-C where Se2 helps LLM infer the correct answer, but UPRISE does not.

across 4 different categories of tasks, HellaSwag,
Roc Story, ARC-E, and AESLC. We randomly
sample 5 distinct example sets for each task, con-
ducting a full permutation on them and recording
5 ∗ 3! = 30 results. We also perform a full permu-
tation on 3 candidate sequences obtained through
Se2 with w = 3, recording 3∗3! = 18 results. Fig-
ure 4 displays the performance distribution, high-
lighting that random demonstration selection re-
sults in substantial performance variability, align-
ing with prior findings (Lu et al., 2022; Li and Qiu,
2023). In contrast, Se2 not only enhances perfor-
mance but also ensures significantly greater sta-
bility, indicating its selected examples effectively
support and describe the tasks. Further analysis
of the average performance of the 3 original se-
quences against their permutations reveals Se2’s
original sequences outperform alternative permuta-
tions, showcasing the benefits of modeling sequen-
tial information and example relationships for ideal
sequence generation without the need to reconsider
organizing or ordering.

Case Study For an intuitive grasp of the Se2’s
effectiveness, we present some interesting cases
on the ARC-C task. In Figure 5, We compare
prompts derived from UPRISE and Se2, indicating

the examples’ answers with underscores. UPRISE-
selected examples, although relevant to science,
were somewhat broad and discrete, resulting in in-
accurate model predictions. Conversely, in the first
case, Se2-selected examples were relevant to the
biological truisms of energy, food, cells, and de-
cay, showing a process similar to Chain-of-Thought
prompting. In the second case, Se2 chose examples
that related to gravity and energy conversion to ki-
netic energy, exhibiting a conceptually progressive
relationship that guided the model to the correct
answer. This demonstrates how Se2’s sequential
formulation fosters a rich, informative relationship
between examples, which improves the accuracy
of LLM predictions.

5 Related Work

Selecting appropriate in-context examples for
LLMs is crucial for enhancing performance in
downstream tasks. Due to the variety of NLP tasks,
various heuristic criteria have been proposed, in-
cluding entropy (Lu et al., 2022; Wu et al., 2023),
diversity (Ye et al., 2023b; Hongjin et al., 2022),
influences (Nguyen and Wong, 2023), sensitivity
(Chen et al., 2023), and uncertainty (Diao et al.,
2023). Another research line posits that benefi-
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cial examples are those semantically similar to the
test inputs, leading Agrawal et al. (2023) to adopt
BM25 (Robertson and Zaragoza, 2009) to retrieve
examples in machine translation, Liu et al. (2022);
Lee et al. (2022) to retrieve example with a dense
encoder (Devlin et al., 2019). However, the as-
sumption that model performance consistently cor-
relates with semantic similarity is not universally
reliable. Consequently, methods like EPR (Rubin
et al., 2022), CEIL (Ye et al., 2023a), UDR (Li
et al., 2023), and UPRISE (Cheng et al., 2023) uti-
lize LLMs to score examples to select examples
that the model truly prefers.

Despite these advancements, existing methods
often overlook the internal relationships between
examples, a factor that significantly influences
model performance (Zhang et al., 2022). Mean-
while, ICL prompts are often sequences composed
of multiple examples, modeling such a sequence
is a kind of NP-hard problem. Zhang et al. (2022)
introduced an RL algorithm to develop general-
ized policies for example selection. However,
this method simply utilizes the number of exam-
ples as the feature representation and MLP as
the Q-network within the constraints of RL set-
tings, struggles to capture the nuanced semantic
features of natural language. This paper proposes a
novel approach to the sequential example selection
paradigm for ICL, demonstrating a more effective
method for enhancing ICL performance than previ-
ously considered.

6 Conclusion

In this work, we explore a new sequential exam-
ple selection paradigm for ICL and propose Se2,
a sequential-aware method that can end-to-end se-
lect ideal example sequences for test inputs. Se2

leverage the feedback from LLMs across a broad
spectrum of inputs and examples. This approach
not only facilitates the modeling of sequential infor-
mation and the intrinsic connections between exam-
ples but also empowers the construction of prompts
through the beam search strategy. Through exten-
sive experimentation, Se2 demonstrated superior
performance over established baselines, highlight-
ing its ability to generate more effective prompts
through beam search.

Our analysis revealed Se2’s effectiveness and
robustness in example selection, contributing to
its stability and adaptability across different tasks
and LLMs. This work underscores the importance

of sequential example selection in improving ICL,
offering valuable insights for future research in
natural language processing.

Limitations

Our research primarily utilized GPT-Neo-
2.7B (Black et al., 2022) for experiments,
constrained by computational resource limitations.
This choice, while effective, also meant con-
fronting the model’s sequence length limitations,
potentially leading to the truncation of overly
long inputs. Recent advancements (Ge et al.,
2024) have explored innovative approaches for
compressing inputs and prompts to expand the
usable context window, presenting a valuable
direction for future exploration. Furthermore,
evolving from a BERT-based encoder to a more
capable decoder-only model represents another
promising avenue for enhancing our framework’s
capacity and effectiveness. We see exploring this
in our future work.

Additionally, the presence of various biases
within LLMs, as identified in studies by Zhao et al.
(2021b); Fei et al. (2023), poses a challenge. Since
our method relies on feedback from LLMs, it’s
conceivable that our results could be influenced by
these inherent biases. Addressing this, we recog-
nize the exploration of strategies to achieve fair and
explainable outcomes from these complex models
as an essential and promising area of research.

Our discussions aim to inspire further investiga-
tion within the community, encouraging advance-
ments that address these limitations and propel the
field of NLP research forward.
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Appendices

A Overview of tasks and datasets

• Paraphrase Detection: MRPC (Dolan and
Brockett, 2005), QQP (Wang et al., 2018), and
Paws Wiki (Zhang et al., 2019).

• Commonsense Reasoning: COPA (Roemmele
et al., 2011), and HellaSwag (Zellers et al., 2019).

• Natural Language Inference: MNLI-
m/mm (Williams et al., 2018), QNLI (Rajpurkar
et al., 2018), SNLI (Bowman et al., 2015), and
RTE (Bentivogli et al., 2009).

• Story Generation: Roc Story and Roc End-
ing (Mostafazadeh et al., 2016).

• Data-to-Text Generation: CommonGen (Lin
et al., 2020), and E2E NLG (Dušek et al., 2019).

• Question Anwering: ARC-c/e (Bhakthavat-
salam et al., 2021), and OBQA (Mihaylov et al.,
2018).

• Sentiment Analysis: SST-2/5 (Socher et al.,
2013), and Sentiment140 (Go et al., 2009).

• Text Summarization: AESLC (Zhang and
Tetreault, 2019), AGNews (Zhang et al., 2015),
and Gigaword (Napoles et al., 2012).

The detailed datasets’ statistical information is
shown in Table 6 for reference. We mainly use in-
struction templates from FLAN (Wei et al., 2022a)
to convert task datasets into natural language in-
structions. Each task dataset corresponds to approx-
imately seven templates. For SST5, ROC Story,
and ROC Ending tasks which are not included in
FLAN, we write a single template for each of them,
readers can refer to Table 11 for details.

B HyperParameters and Implementation
Details

We list the overall hyperparameters in Table 5.
Since we use two encoders initialized with "BERT-
base-uncased" (Devlin et al., 2019), the total num-
ber of parameters of Se2 is about 220M. The scor-
ing stage takes about 7 hours per task, the training
process takes about 9 hours per task. NLG tasks
are much more time-consuming than NLU tasks.

The subscripts in Section 3.3 range from 1 to L,
but in the actual exp(·) calculation, they range from
0 to L− 1. It is fine to use any other probability.

We extended the available tasks to AES and re-
did the task-specific training, but AES is currently

Hyperparameter Assignment
Computing Infrastructure 8 V100-32GB GPUs
Number of epochs 6
Batch size per GPU 8
Maximum sequence length 512

Maximum learning rate
1e-5 (default),
5e-6 for AESLC,
3e-5 for OBQA

Optimizer Adam
Adam epsilon 1e-8
Adam beta weights 0.9, 0.999
Learning rate scheduler warmup linear
Weight decay 0.0
Warmup steps 1000
Learning rate decay linear

Table 5: Hyperparameter settings

limited in the tasks and metrics it can support.
Specifically, AES requires the model to predict
a single target token, the tasks that contain multi-
ple tokens in the answer, such as multiple choice
with textual content, and generation tasks are not
supported for the time being. We report them as
"N/A" in Table 1.

In Section 4.3, we found that some models do not
follow the prompts as expected in the generation
task, resulting in incomparable performance. For a
fair comparison, we report the average performance
across all NLU tasks.

C Settings and Performance of Different
Work

In the experiments in this paper, we compare Se2

with representative SOTA methods. Due to vari-
ations in the language models, tasks, instruction
templates, training and testing datasets, as well as
evaluation metrics used by different methods, and
due to limitations in computational resources, it is
hard to include all related work in the comparison.
So we collected the settings and reported perfor-
mance of previous work in Table 9 and Table 10
for reference only.

D Analysis of the Scoring Stage

In the scoring stage, we used random sampling to
obtain the candidate examples and scored them us-
ing LLM. We counted the relationship between the
score ranking of these examples and the model per-
formance, and the results are shown in the Table 7.

We calculated the LLM’s performance when us-
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Category Task Train Test Metric

Paraphrase Detection
MRPC 3,668 408 Accuracy
QQP 363,846 40,430 Accuracy

PAWS 49,401 8,000 Accuracy

Common Reasoning
COPA 400 100 Accuracy

HellaSwag 39,905 10,042 Accuracy

Natural Language Inference

MNLI-m 392,702 9,815 Accuracy
MNLI-mm 392,702 9,832 Accuracy

QNLI 104,743 5,463 Accuracy
SNLI 549,367 9,824 Accuracy
RTE 2,490 277 Accuracy

Story Generation
Roc Story 87,526 9,799 Rouge-L

Roc Ending 87,906 9807 Rouge-L

Data-to-Text Generation
CommonGen 67,389 4,018 Rouge-L

E2E NLG 33,525 1,847 Rouge-L

Question Answering
ARC-C 1,117 1,165 Accuracy
ARC-E 2,241 2,365 Accuracy
OBQA 4,957 500 Accuracy

Sentiment Analysis
SST-2 67,349 872 Accuracy
SST-5 8,534 2,210 Accuracy

Sent140 1,600,000 359 Accuracy

Text Summarization
AGNews 120,000 7,600 Accuracy
Gigaword 2,044,465 730 Rouge-L
AESLC 13,181 1,750 Rouge-L

Table 6: The categories, statistics, split and evaluation metrics of each dataset.

ing the example with the top scoring and the av-
erage performance of the L candidates. We found
the top-scoring examples make LLM get a much
higher performance than average, proving their
quality. When the shot number is increased from
1 to 3, the performance of both improves. (Note
that the tasks in the last table are all generation
tasks and their performance is not comparable to
the tasks in the previous tables.) We also filter out
data lacking positive examples for all NLU tasks in
our implementation (i.e., the top-scoring examples
also derive incorrect answers), ensuring that the
scores obtained by our method are of high quality
and reliability. This forms the basis for the SOTA
performance Se2 achieve.

E More Case Studies

In addition, there are more interesting cases, such
as the following examples of Common Reasoning,
Multiple Choice, and Data-to-Text Generation in

Table 8, including 3 examples and a test input, the
LLM is still GPT-Neo-2.7B.

We found that the examples retrieved by UP-
RISE were somewhat discrete and unrelated to
each other. In contrast, the examples constructed
by Se2 are not only related to the Test Input, but
also have an inherent logical relationship with each
other, and all of them lead the model to the correct
answer. Specifically, in the Common Reasoning
case, Se2 constructed examples that were highly
relevant to elements such as shooting, close-ups,
recreational activities, puppies, and Frisbees, while
in the multiple-choice case, Se2 chose examples
that related to biological and physical concepts and
guided the model to the correct answer. In Data-to-
Text Generation case, Se2 chooses examples that
are relevant to similar scenarios, thus helping the
model output a more reasonable answer.
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MRPC QQP PAWS COPA HellaSwag MNLI QNLI SNLI

1-shot
Top-scoring 1.000 1.000 0.999 0.900 0.639 1.000 1.000 1.000

Average 0.520 0.500 0.502 0.688 0.549 0.332 0.505 0.335

2-shot
Top-scoring 1.000 1.000 1.000 0.923 0.670 1.000 1.000 1.000

Average 0.891 0.837 0.870 0.822 0.611 0.715 0.804 0.702

3-shot
Top-scoring 1.000 1.000 1.000 0.933 0.685 1.000 1.000 1.000

Average 0.970 0.962 0.957 0.865 0.641 0.940 0.935 0.962

RTE ARC-C ARC-E OBQA SST-2 SST-5 Sent140 AGNEWS

1-shot
Top-scoring 1.000 0.561 0.796 0.673 0.995 0.993 0.987 1.000

Average 0.500 0.297 0.497 0.444 0.530 0.199 0.555 0.258

2-shot
Top-scoring 1.000 0.639 0.846 0.715 0.999 0.998 0.995 1.000

Average 0.852 0.472 0.728 0.595 0.766 0.466 0.822 0.869

3-shot
Top-scoring 1.000 0.676 0.866 0.736 1.000 0.998 0.996 1.000

Average 0.940 0.547 0.787 0.649 0.908 0.814 0.944 0.953

Roc Story Roc Ending CommonGen E2E NLG Gigaword AESLC

1-shot
Top-scoring 0.362 0.439 0.557 0.689 0.407 0.169

Average 0.201 0.208 0.181 0.320 0.105 0.016

2-shot
Top-scoring 0.385 0.464 0.593 0.725 0.481 0.224

Average 0.246 0.307 0.414 0.567 0.306 0.087

3-shot
Top-scoring 0.395 0.470 0.602 0.735 0.497 0.251

Average 0.265 0.333 0.451 0.607 0.359 0.139

Table 7: When scoring the sampled examples, the top scoring example and all examples sampled result in the
performance achieved by the model.
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Task: Common Reasoning (HellaSwag)

Test Input: What is the most logical next event? Jesse the dog runs and catches frisbee. We see jesse close up in the
camera. Jesse is running around catching the frisbee the lady throws.

UPRISE:
Example1: This is a test of commonsense. Complete the next sentence: The third boy starts rapping and riding the
tractor mower. The third boy pretends to sleep on the tractor. The three boys dance around the tractor.
Anwser: All three boys pause and rap together.

Example2: Continue writing the next sentence in this paragraph: The video then shows the two boys mixing ingredients
together. They roll the dough into balls and place them into an oven.
Anwser: The boys take the cookies out of the oven and begin eating them.

Example3: This is a test of commonsense. Complete the next sentence: Two girl boxers approach each other and start
kick boxing. The taller boxer approaches the shorter boxer and hits the shorter boxer with a straight kick.
Anwser: Both boxers exchange punches and kicks in the center of the ring.

Test Input Answer: "We see a fish landing into the water." ✗

Se2:
Example1: How does the next paragraph end? A small group of people are seen lifting a large object into the back of a
van and close ups of them and a building.
Answer: The people are seen riding around a large gymnasium on roller blades performing various flips and tricks.

Example2: How does the next paragraph end? A small group of people are seen lifting a large object into the back of
a van and close ups of them and a building. The people are seen riding around a large gymnasium on roller blades
performing various flips and tricks.
Answer: The boys continue skating around and interacting with one another and performing impressive tricks.

Example3: Write the next sentence in this paragraph: A woman is seen standing in a living room with a dog holding a
frisbee. The woman then begins playing with the dog and spinning around the frisbee.
Anwser: The woman does tricks with the dog while still holding the frisbee in her hands.

Test Input Anwser: "We see five still shots of jesse jumping in the air." ✓

Task: Multiple Choice (ARC)

Test Input: If you throw each one of these things away, which will decay fastest?
" A glass bottle",
" A metal can",
" A plastic bottle",
" An apple core"

UPRISE:
Example1: A student is looking at insects using a magnifying lens. What about the insects can best be seen with the
magnifying lens? Type of eyes insects have.

Example2: Which of these most likely has the GREATEST mass? Horse.

Example3: Which of these activities is used to conserve water? Planting crops that survive in droughts.

Test Input Anwser: " A plastic bottle" ✗

Se2:
Example1: What do cells break down to produce energy? What is the correct answer to this question? Food.

Example2: One important difference between living things and nonliving things is that only living things have? Cells.

Example3: Which is a major function of the vacuoles found in cells? To store water and food for cells.

Test Input Anwser: " An apple core" ✓

Task: Multiple Choice (ARC)

Test Input: Energy changes form or is transferred through the action of forces. An example of kinetic energy changing
to potential energy is Pick the answer from these options.
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" A boulder sitting on a cliff",
" A person running around a track",
" A car being driven up a hill and being parked",
" A rubber band being stretched and being broken"

UPRISE:
Example1: Wind is becoming more common as a source of energy. Wind farms require large open spaces for the wind
turbines. A negative consequence of this technology is wind turbines? May hurt the flying animals in the area.

Example2: The body of a fish is covered by scales for? Protection.

Example3: Storms transport water in the form of rain. The energy that starts this process comes from the? Sun.

Test Input Anwser: " A person running around a track" ✗

Se2:
Example1: The force of gravity on an object depends primarily on the? Object’s mass.

Example2: The pull of gravity on Earth is a direct result of? The mass of Earth.

Example3: As a heavy metal ball rolls down a hill, it goes faster and faster. Which statement is true? The ball’s
potential energy is changing to kinetic energy.

Test Input Anwser: " A car being driven up a hill and being parked" ✓

Task: Data-to-Text Generation (CommonGen)

Test Input: Here are some concepts: eye, move, look. What is a sentence about these concepts?

UPRISE:
Example1: Here are some concepts: mountain, forest, mist. What is a sentence about these concepts?
Anwser: a pine forest in mist in the mountains

Example2: Here are some concepts: ear, wheat, road, sky, field. What is a sentence about these concepts?
Anwser: road in the field with green ears of wheat under cloudy sky

Example3: Here are some concepts: home, leave, fan, flower. What is a sentence about these concepts?
Anwser: a fan leaves flowers outside childhood home

Test Input Answer: "look at the eye of the moving fan " ✗

Se2:
Example1: Write a sentence about the following things: eye, stare, blink.
Answer: The boy stared into the camera and started to blink his eyes rapidly.

Example2: Write a sentence about the following things: talk, thing, speaker.
Answer: A young man talking on a loud speaker and telling people different things while others watch.

Example3: Here are some concepts: ribbon, twirl, gymnast. What is a sentence about these concepts?
Anwser: A gymnast in an orange outfit twirling an orange ribbon.

Test Input Anwser: "A person looking at a person and moving his eyes." ✓

Table 8: More case studies on different tasks.

Method Mainly utilized LMs Shot Number

UDR (Li et al., 2023) GPT-Neo-2.7B 8
CEIL (Ye et al., 2023a) GPT-Neo-2.7B 50

AES (Zhang et al., 2022) GPT-2-M 4
TopK+MDL (Wu et al., 2023) GPT-2-XL 8

LENS (Li and Qiu, 2023) GPT-2-L 8 for SST-2 and AGNews, 10 for SST-5
GlobalE (Lu et al., 2022) GPT-2/3 Series 2 for AGNews, 4 for others

Ours GPT-Neo-2.7B 3

Table 9: The setting of the related methods.
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Method E2E NLG Commongen Roc Story Roc Ending

UDR (Li et al., 2023) 32.6(BLEU-4) 27.1(BLEU-3) 17.6(BLEU-1) 24.7(BLEU-1)
Ours 53.4(Rouge-L) 34.6(Rouge-L) 20.4(Rouge-L) 17.8(Rouge-L)

Method COPA Hellaswag AGNews SST-2 SST-5 MRPC QNLI SNLI RTE

UDR (Li et al., 2023) 72.8 / 91.5 92.4 50.5 / / 83.6 65.3
CEIL (Ye et al., 2023a) / 43.2 / / 47.05 80.15 85.41 / /

AES (Zhang et al., 2022) / / 70.8 81 / / / / /
TopK+MDL (Wu et al., 2023) / / 87.94 91.51 40.27 / 61.43 58.77 /

LENS (Li and Qiu, 2023) / / 77.9 86.3 44.9 / / / /
GlobalE (Lu et al., 2022) / / 78.1 80.2 43.2 / / / 51.3

Ours 76 54.6 91.6 89 52.7 77.9 80.2 78.4 56

Table 10: The performance of the related methods on the same tasks.

Task Category: Paraphrase Detection

Task: MRPC
Prompt Templates:

("Here are two sentences: {sentence1} {sentence2} Do they have the same meaning?", "{answer}"),
("Here are two sentences: {sentence1} {sentence2} Are the two sentences saying the same thing?", "{answer}"),
("{sentence1} {sentence2} Do the above sentences mean the same thing?", "{answer}"),
("{sentence1} {sentence2} Please tell me if the sentences above mean the same.", "{answer}"),
("{sentence1} {sentence2} Are these sentences conveying the same meaning?", "{answer}"),
("{sentence1} {sentence2} If the first sentence is true, is the second one also true?", "{answer}"),
("{sentence1} {sentence2} Are these two sentences paraphrases of each other?", "{answer}"),
("Do the following two sentences have the same meaning? {sentence1} {sentence2}", "{answer}"),
("Do these two sentences mean the same thing? {sentence1} {sentence2}", "{answer}"),
("Do these sentences have the same meaning? {sentence1} {sentence2}", "{answer}"),

Task: QQP
Prompt Templates:

("{question1} {question2} Would you say that these questions are the same?", "{answer}"),
("{question1} {question2} Do those questions have the same meaning?", "{answer}"),
("{question1} {question2} Are these two questions inquiring about the same information?", "{answer}"),
("{question1} {question2} Please tell me if those questions are the same.", "{answer}"),
("{question1} {question2} Are these two questions paraphrases of each other?", "{answer}"),
("First question: {question1} Second question: {question2} Are these two questions asking the same thing?",

"{answer}"),
("Question 1: {question1} Question 2: {question2} Are questions 1 and 2 asking the same thing?", "{answer}"),
("Question 1: {question1} Question 2: {question2} Would the answer to these two questions be the same?",

"{answer}"),
("Are the following two questions the same? {question1} {question2}", "{answer}"),
("Do these questions have the same meaning? {question1} {question2}", "{answer}"),

Task: PAWS
Prompt Templates:

("{sentence1} {sentence2} Do these sentences mean the same thing?", "{answer}"),
("{sentence1} {sentence2} Are these two sentences paraphrases of each other?", "{answer}"),
("1. {sentence1} 2. {sentence2} Are these two sentences paraphrases of each other?", "{answer}"),
("(1) {sentence1} (2) {sentence2} Do these two sentences mean the same thing?", "{answer}"),
("Sentence 1: {sentence1} Sentence 2: {sentence2} Do these two sentences convey the same information?",

"{answer}"),
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("Do these two sentences from wikipedia have the same meaning? {sentence1} {sentence2}", "{answer}"),
("Same meaning? {sentence1} {sentence2}", "{answer}"),
("Are these paraphrases? {sentence1} {sentence2}", "{answer}"),
("Do these mean the same? {sentence1} {sentence2}", "{answer}"),
("Please check if these have the same meaning. Answer "yes" if they do, otherwise "no". {sentence1} {sentence2}",

"{answer}"),

Task Category: Paraphrase Detection

Task: COPA
Prompt Templates:

("{premise}" What is the {question}?", "{answer}"),
("Here is a premise: "{premise}" What is the {question}?", "{answer}"),
("{premise}" What is the {question} of the preceding sentence?", "{answer}"),
("{premise}" What is a plausible {question}?", "{answer}"),
("Based on the following sentence, what is the {question}? "{premise}", "{answer}"),
("{premise}" {question}: ", "{answer}"),
("What is the {question} of the following sentence? "{premise}", "{answer}"),
("Answer the following question about this sentence: "{premise}" What is the {question}?", "{answer}"),

Task: HellaSwag
Prompt Templates:

("What happens next in this paragraph? {context}", "{answer}"),
("Continue writing the next sentence in this paragraph: {context}", "{answer}"),
("Continue writing the next sentence. {context}", "{answer}"),
("This is a test of commonsense. Complete the next sentence: {context}", "{answer}"),
("Write the next sentence in this paragraph: {context}", "{answer}"),
("How does the next paragraph end? {context}", "{answer}"),
("What most naturally follows? {context}", "{answer}"),
("What happens next? {context}", "{answer}"),
("What is the most logical next event? {context}", "{answer}"),
("Write the next sentence in the following story. {context}", "{answer}"),

Task Category: Natural Language Inference

Task: MNLI
Prompt Templates:

("Premise: "{premise}" Hypothesis: "{hypothesis}" Does the premise entail the hypothesis? Yes, No, or Maybe?",
"{answer}"),

("Premise: "{premise}" Hypothesis: "{hypothesis}" Is the hypothesis entailed by the premise? Yes, No, or Maybe?",
"{answer}"),

("Here is a premise: "{premise}" Here is a hypothesis: "{hypothesis}" Is it possible to conclude that if the premise
is true, then so is the hypothesis? Yes, No, or Maybe?", "{answer}"),

("Sentence 1: "{premise}" Sentence 2: "{hypothesis}" Is this second sentence entailed by the first sentence? Yes,
No, or Maybe?", "{answer}"),

("Sentence 1: "{premise}" Sentence 2: "{hypothesis}" If the first sentence is true, then is the second sentence true?
Yes, No, or Maybe?", "{answer}"),

("Based on the premise "{premise}", can we conclude the hypothesis "{hypothesis}" is true? Yes, No, or Maybe?",
"{answer}"),

("Premise: "{premise}" If this premise is true, what does that tell us about whether it entails the hypothesis
"{hypothesis}"? Yes, No, or Maybe?", "{answer}"),

("Premise: "{premise}" Based on this premise, is the hypothesis "{hypothesis}" true? Yes, No, or Maybe?",
"{answer}"),

("If "{premise}", can we conclude that "{hypothesis}"? Yes, No, or Maybe?", "{answer}"),
("{premise}" Does it follow that "{hypothesis}"? Yes, No, or Maybe?", "{answer}"),

Task: QNLI
Prompt Templates:

("Does the sentence "{sentence}" answer the question "{question}"?", "{answer}"),
("Does the sentence "{sentence}" provide a valid answer to the question "{question}"?", "{answer}"),
("Is "{sentence}" a good answer to the question "{question}"?", "{answer}"),
("Does "{sentence}" correctly answer the question of "{question}"?", "{answer}"),
("Does "{sentence}" contain the correct answer to "{question}"?", "{answer}"),
("Q: {question} A: {sentence} Does the answer correctly answer the question?", "{answer}"),
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("Question: {question} Answer: {sentence} Is the question answered in a satisfactory fashion?", "{answer}"),
("Question: {question} Is {sentence} a good answer to this question?", "{answer}"),
("Question: {question} Is "{sentence}" the correct answer?", "{answer}"),

Task: SNLI
Prompt Templates:

("If "{premise}", does this mean that "{hypothesis}"? Yes, No, or Maybe?", "{answer}"),
("If "{premise}", can we conclude "{hypothesis}"? Yes, No, or Maybe?", "{answer}"),
("If "{premise}", does it logically follow that "{hypothesis}"? Yes, No, or Maybe?", "{answer}"),
("Based on the sentence "{premise}", is the sentence "{hypothesis}" a true sentence? Yes, No, or Maybe?",

"{answer}"),
("Premise: {premise} Hypothesis: {hypothesis} Can we conclude that the hypothesis is true if the premise is true?

Yes, No, or Maybe?", "{answer}"),
("Premise: {premise} Hypothesis: {hypothesis} Given the premise, can we conclude the hypothesis? Yes, No, or

Maybe?", "{answer}"),
("Here is a premise: "{premise}" Here is a hypothesis: "{hypothesis}". Does the premise tell us whether the

hypothesis is true? Yes, No, or Maybe?", "{answer}"),
("Is it possible to conclude that "{premise}" if "{hypothesis}"? Yes, No, or Maybe?", "{answer}"),
("Is the premise "{premise}" true if "{hypothesis}"? Yes, No, or Maybe?", "{answer}"),

Task: RTE
Prompt Templates:

("{premise} Based on the paragraph above can we conclude that "{hypothesis}"? Yes, No, or Maybe?", "{answer}"),
("{premise} Based on that paragraph can we conclude that this sentence is true? {hypothesis} Yes, No, or Maybe?",

"{answer}"),
("{premise} Can we draw the following conclusion? {hypothesis} Yes, No, or Maybe?", "{answer}"),
("{premise} Does this next sentence follow, given the preceding text? {hypothesis} Yes, No, or Maybe?", "{an-

swer}"),
("{premise} Can we infer the following? {hypothesis} Yes, No, or Maybe?", "{answer}"),
("Read the following paragraph and determine if the hypothesis is true: {premise} Hypothesis: {hypothesis} Yes,

No, or Maybe?", "{answer}"),
("Read the text and determine if the sentence is true: {premise} Sentence: {hypothesis} Yes, No, or Maybe?",

"{answer}"),
("Can we draw the following hypothesis from the context? Context: {premise} Hypothesis: {hypothesis} Yes, No,

or Maybe?", "{answer}"),
("Determine if the sentence is true based on the text below: {hypothesis} {premise} Yes, No, or Maybe?",

"{answer}"),

Task Category: Story Generation

Task: Roc Story
Prompt Templates:

("Beginning of the story: {question} Please continue the story: ", "{target}"),

Task: Roc Ending
Prompt Templates:

("Beginning of the story: {question} Please write the end of the story: ", "{target}"),

Task Category: Data-to-Text Generation

Task: CommonGen
Prompt Templates:

("Concepts: {concepts}. Write a sentence that includes all these words.", "{target}"),
("Keywords: {concepts}. What is a sentence that includes all these keywords?", "{target}"),
("Here are some concepts: {concepts}. What is a sentence about these concepts?", "{target}"),
("Produce a sentence which mentions all of these concepts: {concepts}.", "{target}"),
("Write a sentence about the following things: {concepts}.", "{target}"),
("Generate a sentence that includes all the following words: {concepts}.", "{target}"),

Task: E2E NLG
Prompt Templates:

("Attributes: {meaning_representation}. Produce a detailed sentence about this restaurant.", "{target}"),
("Data: {meaning_representation}. Can you generate a sentence about this data?", "{target}"),
("Data: {meaning_representation}. What is a sentence that describe this data?", "{target}"),
("Here are some keywords about a restaurant: {meaning_representation}. Write a sentence that describes the

following attributes of a restaurant.", "{target}"),
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("Here is some data about a restaurant: {meaning_representation}. Write a sentence that includes the following data
about a restaurant.", "{target}"),

("Sentence: {meaning_representation}. Can you represent the content in this sentence in data form?", "{target}"),
("Write a sentence about a restaurant with all the following attributes: {meaning_representation}.", "{target}"),
("Write a sentence that is about a restaurant with all the following properties: {meaning_representation}.", "{tar-

get}"),
("Produce a detailed sentence about a restaurant using the following words: {meaning_representation}.", "{target}"),
("Generate a descriptive sentence about a restaurant using the following words: {meaning_representation}.",

"{target}"),

Task Category: Question Answering

Task: ARC
Prompt Templates:

("{question}", "{answer}"),
("Question: {question} Answer:", "{answer}"),
("Question: {question} What is the correct answer to the question from the following choices?", "{answer}"),
("Q: {question} What is the correct answer to this question?", "{answer}"),
("What is the answer? {question}", "{answer}"),
("Answer the question {question}", "{answer}"),
("{question} Pick the answer from these options.", "{answer}"),

Task: OBQA
Prompt Templates:

("{fact} {question}", "{answer}"),
("Read this fact: "{fact}" Now answer this question: "{question}", "{answer}"),
("Given the fact "{fact}", what is the answer to the question or completion "{question}", "{answer}"),
("Knowing that "{fact}", how would one answer "{question}", "{answer}"),
("Use evidence from the fact that {fact} to answer this question: "{question}", "{answer}"),
("Fact: {fact} Question: {question} What’s the answer?", "{answer}"),
("Use this fact to answer the question: {fact} {question}", "{answer}"),

Task Category: Sentiment Analysis

Task: SST-2
Prompt Templates:

("Review: "{sentence}" Is this movie review sentence negative or positive?", "{answer}"),
("Short movie review: "{sentence}" Did the critic thinking positively or negatively of the movie?", "{answer}"),
("Sentence from a movie review: "{sentence}" Was the movie seen positively or negatively based on the preceding

review?", "{answer}"),
("{sentence}" How would the sentiment of this sentence be perceived?", "{answer}"),
("Is the sentiment of the following sentence positive or negative? "{sentence}", "{answer}"),
("What is the sentiment of the following movie review sentence? "{sentence}", "{answer}"),
("Would the following phrase be considered positive or negative? "{sentence}", "{answer}"),
("Does the following review have a positive or negative opinion of the movie? "{sentence}", "{answer}"),

Task: SST-5
Prompt Templates:

("Review: "{sentence}". It was", "{answer}"),

Task: Sentiment140
Prompt Templates:

("{text} What is the sentiment of this tweet?", "{answer}"),
("{text} How would the sentiment of this tweet be described?", "{answer}"),
("{text} Describe the sentiment embodied by this tweet.", "{answer}"),
("Tweet: {text} Predict the sentiment of this tweet.", "{answer}"),
("What is the sentiment of the following tweet? Tweet:{text}", "{answer}"),
("How would one describe the sentiment of this tweet? {text}", "{answer}"),

Task Category: Text Summarization

Task: AGNews
Prompt Templates:

("{text}" What is this text about? World, Sports, Business, or Technology?", "{answer}"),
("{text}" Which topic is this article about? World, Sports, Business, or Technology?", "{answer}"),
("{text}" Which is the best summary of this article? World, Sports, Business, or Technology?", "{answer}"),

5283



("{text}" What is this text about? World, Sports, Business, or Technology?", "{answer}"),
("{text}" What best summarizes the content of the above article? World, Sports, Business, or Technology?",

"{answer}"),
("Which is this about? "{text}" World, Sports, Business, or Technology?", "{answer}"),
("Which is an appropriate title for this article? "{text}" World, Sports, Business, or Technology?", "{answer}"),
("Select the topic that this about: "{text}" World, Sports, Business, or Technology?", "{answer}"),

Task: Gigaword
Prompt Templates:

("Write a short summary for this text: {text}", "{summary}"),
("Briefly summarize this sentence: {text}", "{summary}"),
("Generate a short summary this sentence: {text}", "{summary}"),
("What is a shorter version of this: {text}", "{summary}"),
("{text} Write a brief summary in a sentence or less", "{summary}"),
("{text} What is a very short summary of the above text?", "{summary}"),
("{text} Summarize the aforementioned text in a single phrase.", "{summary}"),
("{text} Can you generate a short summary of the above paragraph?", "{summary}"),

Task: AESLC
Prompt Templates:

("What is the subject line for this email? {body}", "{subject}"),
("Write a subject line for this message: {body}", "{subject}"),
("{body} Write a subject line for this email.", "{subject}"),
("Here is an email: {body} What is a potential subject line for this email?", "{subject}"),
("{body} Propose a subject line for this email?", "{subject}"),
("This is the content of an email: {body} What was the subject line for this email?", "{subject}"),
("This is an email {body} What is the subject of this email?", "{subject}"),
("{body} Generate a subject line for this email.", "{subject}"),

Table 11: The prompt templates of tasks.
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