@inproceedings{mascarell-etal-2024-information,
title = "Which Information Matters? Dissecting Human-written Multi-document Summaries with Partial Information Decomposition",
author = "Mascarell, Laura and
LHomme, Yan and
El Helou, Majed",
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2024",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-acl.316/",
doi = "10.18653/v1/2024.findings-acl.316",
pages = "5333--5338",
abstract = "Understanding the nature of high-quality summaries is crucial to further improve the performance of multi-document summarization. We propose an approach to characterize human-written summaries using partial information decomposition, which decomposes the mutual information provided by all source documents into union, redundancy, synergy, and unique information. Our empirical analysis on different MDS datasets shows that there is a direct dependency between the number of sources and their contribution to the summary."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mascarell-etal-2024-information">
<titleInfo>
<title>Which Information Matters? Dissecting Human-written Multi-document Summaries with Partial Information Decomposition</title>
</titleInfo>
<name type="personal">
<namePart type="given">Laura</namePart>
<namePart type="family">Mascarell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yan</namePart>
<namePart type="family">LHomme</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Majed</namePart>
<namePart type="family">El Helou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Understanding the nature of high-quality summaries is crucial to further improve the performance of multi-document summarization. We propose an approach to characterize human-written summaries using partial information decomposition, which decomposes the mutual information provided by all source documents into union, redundancy, synergy, and unique information. Our empirical analysis on different MDS datasets shows that there is a direct dependency between the number of sources and their contribution to the summary.</abstract>
<identifier type="citekey">mascarell-etal-2024-information</identifier>
<identifier type="doi">10.18653/v1/2024.findings-acl.316</identifier>
<location>
<url>https://aclanthology.org/2024.findings-acl.316/</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>5333</start>
<end>5338</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Which Information Matters? Dissecting Human-written Multi-document Summaries with Partial Information Decomposition
%A Mascarell, Laura
%A LHomme, Yan
%A El Helou, Majed
%Y Ku, Lun-Wei
%Y Martins, Andre
%Y Srikumar, Vivek
%S Findings of the Association for Computational Linguistics: ACL 2024
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F mascarell-etal-2024-information
%X Understanding the nature of high-quality summaries is crucial to further improve the performance of multi-document summarization. We propose an approach to characterize human-written summaries using partial information decomposition, which decomposes the mutual information provided by all source documents into union, redundancy, synergy, and unique information. Our empirical analysis on different MDS datasets shows that there is a direct dependency between the number of sources and their contribution to the summary.
%R 10.18653/v1/2024.findings-acl.316
%U https://aclanthology.org/2024.findings-acl.316/
%U https://doi.org/10.18653/v1/2024.findings-acl.316
%P 5333-5338
Markdown (Informal)
[Which Information Matters? Dissecting Human-written Multi-document Summaries with Partial Information Decomposition](https://aclanthology.org/2024.findings-acl.316/) (Mascarell et al., Findings 2024)
ACL