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Abstract

This paper addresses the challenge of train-
short-test-long (TSTL) scenarios in Large Lan-
guage Models (LLMs) equipped with Rotary
Position Embedding (RoPE), where models
pre-trained on shorter sequences face difficulty
with out-of-distribution (OOD) token positions
in longer sequences. We introduce RESO-
NANCE ROPE, a novel approach designed to
narrow the generalization gap in TSTL scenar-
ios by refining the interpolation of RoPE fea-
tures for OOD positions, significantly improv-
ing the model performance without additional
online computational costs. Furthermore, we
present POSGEN, a new synthetic benchmark
specifically designed for fine-grained behav-
ior analysis in TSTL scenarios, aiming to iso-
late the constantly increasing difficulty of to-
ken generation on long contexts from the chal-
lenges of recognizing new token positions. Our
experiments on synthetic tasks show that after
applying RESONANCE ROPE, Transformers
recognize OOD position better and more ro-
bustly. Our extensive LLM experiments also
show superior performance after applying RES-
ONANCE ROPE to the current state-of-the-art
RoPE scaling method, YaRN, on both upstream
language modeling tasks and a variety of down-
stream long-text applications.1

1 Introduction

Recent advancements in Large Language Models
(LLMs) have demonstrated their potential across a
wide spectrum of natural language processing tasks,
showcasing their ability to handle complex interac-
tions, document analyses, professional writing, and
advanced reasoning with a unified approach (Ope-
nAI, 2023; Touvron et al., 2023a,b; Jiang et al.,
2024). As these models are increasingly adapted
for complex applications, challenges arise in sce-
narios requiring the comprehension or generation

1https://github.com/sheryc/resonance_rope.
†Canada CIFAR AI Chair. Corresponding author.

of long texts. Specifically, the train-short-test-long
(TSTL) scenario (Press et al., 2022) highlights a
limitation where LLMs, pre-trained on shorter se-
quences, struggle with out-of-distribution (OOD)
token positions in longer sequences, impacting
their performance in real-world applications (Zhao
et al., 2023).

Recent efforts to enhance TSTL performance
have focused on LLMs equipped with Rotary Posi-
tion Embedding (RoPE) (Su et al., 2024), such
as LLaMA (Touvron et al., 2023a,b) and Mis-
tral (Jiang et al., 2023), owing to their excep-
tional capabilities and widespread adoption. These
initiatives aim to refine the test-time computa-
tion of RoPE position embedding by introducing
a scaling factor to either the position index of
each token (Chen et al., 2023) or RoPE’s base
value (Xiong et al., 2023; Liu et al., 2024; Peng
et al., 2024). These methods ensure that the po-
sition embeddings for out-of-distribution (OOD)
positions remain within the range experienced dur-
ing pre-training. This minimizes the need for the
model to adapt to new position embedding value
ranges, a task that is inherently difficult.

In this paper, we introduce RESONANCE ROPE,
a novel technique designed to further narrow the
generalization gap on position embeddings in
TSTL scenarios. Recognizing that RoPE’s position
embedding is governed by a complex, non-linear
function, we posit that minimizing extrapolation on
OOD positions, while crucial, is insufficient. We
argue that it is equally vital to address the inter-
polation of RoPE features at the OOD positions.
By implementing RESONANCE ROPE, we slightly
scale each RoPE feature to correspond to an inte-
ger wavelength. This adjustment aligns each RoPE
feature’s wavelength with a specific token span
length, enabling it to "resonate" with a particular
local context length. This simple modification ef-
fectively reduces the generalization gap for over
half of the position embedding features in LLaMA
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and LLaMA2 under TSTL scenarios. Furthermore,
our approach is compatible with RoPE and any
RoPE-based scaling techniques, enhancing their
performance in TSTL situations without the need
for additional computational resources during train-
ing or inference.

Additionally, to facilitate further research on
position embeddings, we present a new syn-
thetic benchmark tailored for TSTL scenarios,
named POSGEN. Improving position embeddings
for TSTL requires a detailed analysis of the cause
of failures in handling longer contexts. However,
current benchmarks, such as those measuring per-
plexity in long context (Rae et al., 2020; Huang
et al., 2021; Wu et al., 2022) and most synthetic
TSTL tasks (Liu et al., 2023; Kazemnejad et al.,
2023) face a common issue: the difficulty of gener-
ating the next token increases with context length.
This makes it difficult to determine whether a
model’s failure is due to its inability to generate
more complex tokens or its failure to recognize
out-of-distribution (OOD) positions. POSGEN ad-
dresses this limitation by standardizing the diffi-
culty level of token generation across all positions.
This ensures that any observed shortcomings are
directly related to the model’s inability to identify
and handle new token positions effectively.

Our contributions in this study are threefold:

1. We propose RESONANCE ROPE, an innova-
tive modification to RoPE based on an in-
depth analysis of the wavelengths of RoPE
features, aiming to narrow the generalization
gap in TSTL scenarios across RoPE and sim-
ilar RoPE-based scaling techniques, without
necessitating extra computational resources
during runtime.

2. We present POSGEN, a newly developed syn-
thetic benchmark tailored for TSTL scenarios.
This benchmark is specifically designed to
disentangle the complexities associated with
generating tokens in longer contexts from the
challenges posed by recognizing new posi-
tions or position embedding values.

3. Through rigorous testing of RESONANCE

ROPE on both RoPE and YaRN within
the POSGEN benchmark, we demonstrate
its ability to enhance performance on out-
of-distribution (OOD) positions, surpassing
existing methods that do not include RESO-
NANCE ROPE. Moreover, when applied to

YaRN, RESONANCE ROPE further improves
LLM’s length extrapolation ability, as evi-
denced by lower perplexity in upstream TSTL
language modeling and enhanced outcomes in
downstream tasks involving lengthy contexts.

2 Related Work

2.1 Scaling of RoPE Position Encoding

Recent efforts in extending LLMs’ context window
focus on manipulating position embedding (PE),
particularly RoPE (Su et al., 2024), which is used
in LLMs like LLaMA (Touvron et al., 2023a,b) and
Mistral (Jiang et al., 2023). Main strategies include
embedding scaling (Chen et al., 2023; Liu et al.,
2024; Peng et al., 2024) and randomizing token
positions (Ruoss et al., 2023; Zhu et al., 2024). Our
emphasis is on the embedding scaling strategies.

Existing embedding scaling strategies adjust po-
sition embedding for longer sequences to match
the pre-training range, avoiding feature extrapola-
tion. For instance, Chen et al. (2023) compresses
position indices to fit the pre-training range, ex-
tending LLaMA’s (Touvron et al., 2023a) context
to 16K with 1,000 steps of fine-tuning. Alterna-
tively, Liu et al. (2024); Rozière et al. (2023);
Xiong et al. (2023) modify RoPE’s rotary base
and employ fine-tuning on extended sequences,
termed Adjusted Base Frequency (ABF) or "NTK-
aware" scaling. Code LLaMA (Rozière et al., 2023)
achieved 16K context length with this method af-
ter 10,000 fine-tuning steps. YaRN (Peng et al.,
2024) improved NTK-aware scaling by segment-
ing RoPE features and applying tailored extrapo-
lation strategies, achieving 64K context length for
LLaMA2 (Touvron et al., 2023b) with 400 fine-
tuning steps. Distinguishingly, our RESONANCE

ROPE focus on reducing feature interpolation on
OOD positions, which we argue is another impor-
tant factor in improving the length extrapolation
capability of Transformer.

2.2 Long Context Evaluations

Evaluations of Transformer-based LLMs’ long-
context capabilities are twofold: synthetic task as-
sessments for length extrapolation strategies and
real-world task evaluations at the LLM scale. Syn-
thetic evaluations target simple tasks such as long
sequence classification (Tay et al., 2021) and arith-
metic language modeling (Liu et al., 2023; Kazem-
nejad et al., 2023). LLM scale evaluations mea-
sure metrics such as perplexity (PPL) in extensive
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text corpora (e.g., PG19 (Rae et al., 2020), GovRe-
port (Huang et al., 2021), GitHub (Wu et al., 2022))
and complex tasks including summarization, ques-
tion answering, and mathematical reasoning (An
et al., 2023; Bai et al., 2023; Shaham et al., 2023).

3 Background

3.1 Rotary Position Embedding (RoPE)
In Transformers (Vaswani et al., 2017), the self-
attention scores are softmax-normalized scaled at-
tention logits q⊤k:

am,n = Softmax
(
qm

⊤kn√
d

)

Suppose the input to a single attention head
is x1,x2, . . . ,xl ∈ Rd, where l is the sequence
length and d is the dimension of an attention head.
RoPE injects the position information of each token
into the q and k vectors by the following equations
in the complex space:

qm,[2j:2j+1] = Wqxmeimθj

km,[2j:2j+1] = Wkxmeimθj

θj = b
−2j
d , (1)

where Wq,Wk are trainable parameters, and b
is a constant called the rotary base, which is set
to 10, 000 (Su et al., 2024) or other integers or
fractions (Xiong et al., 2023; Peng et al., 2024).
This form makes the dot product between the m-th
query qm and n-th key kn only depend on the input
xm,xn and their relative distance (m− n):

⟨qm,[2j:2j+1],kn,[2j:2j+1]⟩
=ℜ

[
q∗m,[2j:2j+1]kn,[2j:2j+1]

]

=ℜ
[
(Wqxm)∗ (Wkxn) e

i(m−n)θj
]

=g(xm,xn,m− n).

RoPE’s real-number implementation divides the d-
dimension space into multiple 2-dimensional sub-
spaces and applies real rotation matrix to each of
them. Formally, define a d × d block-diagonal
matrix:

Rd
Θ,m =




Rθ0,m · · · · · · 0
0 Rθ1,m · · · 0
...

...
. . .

...
0 0 · · · Rθ d

2−1
,m




,

(2)

where Θ = {θ0, θ1, · · · , θ d
2
−1}, and each Rθj ,m is

a 2× 2 rotation matrix:

Rθj ,m =

(
cosmθj − sinmθj
sinmθj cosmθj

)
. (3)

RoPE computes the attention logit q⊤k as follows:

qm = Rd
Θ,mWqxm (4)

kn = Rd
Θ,nWkxn (5)

q⊤mkn = x⊤
mWqR

d
Θ,n−mWkxn (6)

For each two dimensions [2j : 2j + 1] of q and
k, its corresponding θj reflects a temporal wave-
length λj . This wavelength describes the token
length for the corresponding RoPE features to en-
counter approximately the same rotary angle mθj
in Equation 3:

λj =
2π

θj
= 2πb

2j
d (7)

As an example, the wavelengths of LLaMA /
LLaMA2’s RoPE features range from 2π ≈ 6.28
for θ0 to 2 ∗ 10000126/128π ≈ 54410.14 for θ d

2
−1.

3.2 Critical Dimensions of RoPE
In a TSTL scenario (Press et al., 2022), one takes
a model trained on texts with lengths up to L, and
tests it on a task with input lengths up to L′ = sL,
with the scaling factor s > 1. Recently, Liu et al.
(2024) discovered that there may exist two “crit-
ical dimensions” in RoPE features, which corre-
spond to the dimensions [2c : 2c + 1] that satis-
fies λc ≥ L and λc−1 < L. The dimensions of
RoPE features above and below the critical dimen-
sion (which we denote as “post-critical dimensions”
and “pre-critical dimensions”, respectively) have
different behaviors in TSTL: for post-critical di-
mensions (i.e., j > c), since their wavelengths sat-
isfy λj > L, the training corpus does not cover all
possible rotary angles mθj on a unit circle. Thus,
these dimensions will encounter OOD value range
on longer sequences. This is not an issue for pre-
critical dimensions due to their shorter temporal
wavelengths.

The concept of RoPE’s critical dimensions im-
plicitly guides the development of RoPE scaling
methods. For example, previous RoPE scaling
methods (Chen et al., 2023; Xiong et al., 2023;
Peng et al., 2024) mainly focus on reducing or
avoiding value extrapolation on post-critical dimen-
sions, and minimize post-training modifications to
the pre-critical dimensions.
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3.3 Yet another RoPE extensioN (YaRN)
YaRN (Peng et al., 2024) is the current state-of-the-
art RoPE scaling method for TSTL. It introduces
the “NTK-by-parts” scaling for RoPE, which ap-
plies different scaling strategies to each RoPE fea-
ture according to its temporal wavelength.

In a TSTL scenario with scaling factor s, YaRN
scales the wavelength of the j-th RoPE feature λj

to λ̂j and further fine-tune the model:

λ̂j = (1− γj)sλj + γjλj ,

where γj is a piece-wise function depending on
its corresponding wavelength λj , and two hyperpa-
rameters α and β:

γj =





1, if λj < L/β

0, if λj > L/α

L/λj − α

β − α
, otherwise

Empirically, for the LLaMA family, Peng et al.
(2024) suggests using α = 1 and β = 32. This
setting avoids value range extrapolation on post-
critical dimensions, while reducing modifications
to the original pre-critical dimensions.

In addition to the “NTK-by-parts” RoPE scaling
strategy mentioned above, YaRN also comprises
a scaling strategy on the attention scores, which
reduces the change in the entropy of the attention
score on longer sequences. We maintain the com-
plete design of YaRN in our experiments, but our
analysis will focus on its RoPE scaling strategy.

4 Proposed Method: RESONANCE ROPE

In this section, we introduce RESONANCE ROPE, a
universal improvement for RoPE and RoPE-based
scaling methods to (further) improve their length
extrapolation performance.

Suppose we abstract RoPE’s Equation 4, 5: for
any x ∈ Rd, we define f(x,m) = Rd

Θ,mWx. In a
TSTL scenario where we generalize an LLM from
length L to length L′, let us denote a scaled RoPE
function by f̃ . To perform well on OOD positions it
should reduce the feature gap h(f̃) between token
features seen during training and token features
after scaling that we can define for each i-th feature
as:

hi(f̃) = max
x∈X

min
m∈{0,··· ,L−1}
n∈{L,··· ,L′−1}

|f̃(x,m)i− f̃(x, n)i|,

(8)

RoPE Features'
Rotation Angles

Resonance RoPE Features'
Rotation Angles

0 32 64 96 128
Token Position

Training Position Range OOD Position Range

Figure 1: An illustration of RoPE’s rotation angles mθ6
and RESONANCE ROPE’s rotation angles mθ̃6 in Eqn. 3
in a TSTL scenario with training max length 64 and test-
ing max length 128. RoPE’s non-integer feature wave-
lengths create a feature gap between the RoPE features
of the training and OOD testing positions, while RESO-
NANCE ROPE reduces this gap to 0.

where i = 0, . . . , d − 1 and X ⊂ Rd is the set of
feature vectors to which we apply a position embed-
ding. Note that the formulation of the feature gap
is similar to the “embedded vector distance” metric
proposed by Xiong et al. (2023). However, these
two metrics target totally different aspects of RoPE
scaling methods. A more detailed comparison can
be found in Appendix B.

Existing RoPE scaling methods (Xiong et al.,
2023; Peng et al., 2024) mainly focus on the post-
critical dimensions of RoPE, since the rotary angle
mθj on these dimensions extrapolates on OOD
positions, hence creating a feature gap. In this
section, we argue that reducing RoPE’s feature
interpolation on the pre-critical dimensions is also
beneficial for better length extrapolation.

Due to a non-linear relationship between RoPE
feature RΘ

m and the token position m in Equation 3,
the interpolation on RoPE features is potentially
hard for the model to generalize to. We found
that such potentially hard interpolation appears on
the pre-critical dimensions [0 : 2c − 1], which
have wavelengths λj shorter than the pre-trained
sequence length L. By default, the rotary base b
of RoPE features is an integer or a fraction, which
makes their wavelength λj = 2πb

2j
d not an integer.

As the position index m ∈ N increases, a phase
shift of ∆ϕ occurs for the rotary angle mθj after
each full rotation. This could potentially result in a
large distribution gap between the RoPE features
on positions seen during training and the OOD po-
sitions. This phenomenon is illustrated in Figure 1.
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Algorithm 1 Pseudocode of RESONANCE ROPE.
Require: θ0, θ1, · · · , θ d

2
−1 ∈ Θ

for i ∈ {0, 1, · · · , d2 − 1} do
λi = 2π/θi
λ̃i = round(λi) ▷ Round to integer wavelength

θ̃i = 2π/λ̃i

end for
Θ̃ = {θ̃0, θ̃1, · · · , θ̃ d

2
−1}

Compute Rd
Θ̃

by Equation 2
Compute q, k by Equation 4, 5

We tackle this issue by developing a synergistic
modification to the conventional RoPE embedding,
referred to as RESONANCE ROPE. It aims to iden-
tify the optimal angular frequency that minimizes
the interpolation gap, which ensures the corre-
sponding wavelength closely matches the original
one while imposing alignment of the wavelength
to an integer. More specifically, for a given angular
frequency set of RoPE Θ =

{
θ1, θ2, . . . , θd/2

}
, we

round their wavelengths to their nearest integer to
eliminate new rotary angles on each feature. We
provide a pseudocode for RESONANCE ROPE in
Algorithm 1.

After applying this technique, each RoPE feature
repeats after λ̃i tokens, and therefore “resonates”
with a specific span length and eliminates the in-
terpolation gap between pre-trained and OOD po-
sitions on pre-critical dimensions. We illustrate
the effect of RESONANCE ROPE on RoPE’s fea-
ture gap on one of the pre-critical dimensions in
Figure 1. Moreover, we can prove the feature gap
reducing ability of our method. As for above, we
formalize RESONANCE ROPE’s computation rule
as f̃(x,m) = Rd

Θ̃,m
Wx.

Theorem 1. For a RoPE-equipped model with con-
text window L, RESONANCE ROPE f̃ reduces the
feature gap on pre-critical dimensions to 0. Specifi-
cally, ∀x ∈ X, ∀n ∈ N\{0, · · · , L− 1}, we have:

min
m∈{0,··· ,L−1}

|f̃(x,m)i − f̃(x, n)i| = 0

for all i = 0, . . . , 2c− 1.

See the proof in Appendix A. Note that although
each pre-critical RoPE feature Rθ̃j ,m

repeats, the
combination of all {Rθ̃j ,m

}j<c only repeats af-
ter the least common multiple (LCM) of all pre-
critical dimensions’s wavelengths. For LLaMA2,
this LCM value is greater than 7× 1051.

Because of its simplicity, RESONANCE

ROPE can be applied on top of RoPE and all
RoPE-based scaling methods to reduce their
feature gap in TSTL and further improve their
performance. Meanwhile, this method only
involves an offline computation of the scaled θ,
thus introducing no online computation overhead.

5 Evaluating Position Embeddings
with POSGEN

In this section, we propose our new position em-
bedding evaluation suite: POSGEN, based on an
analysis of common failure patterns on existing
position embedding evaluation methods.

We consider a next token prediction task, where
we expect the model to generate the token xl given
the input sequence {x0, · · · , xl−1}. In TSTL sce-
narios, when a model succeeds in correctly generat-
ing a token up to position L but fails systematically
afterwards, we observe two failure patterns:

• Failure due to harder algorithmic difficulty
on generating later tokens. The rule of gen-
erating a new token xl may vary with the se-
quence length l. Generally, tokens placed
later in the sequence depend on more con-
text tokens, which incurs a more complex de-
pendency pattern. During training on shorter
sequences, the model only learns the token
dependency rules involving up to L tokens,
and might fail on longer sequences because it
has never been exposed to the more complex
dependency rules.

• Failure due to unrecognized new token po-
sitions. The difference between training and
testing lengths in the TSTL setting creates
a feature gap between the position indices
or position embeddings in training and infer-
ence. This feature gap makes it difficult for the
model to generalize to new positions due to
unrecognized features. RoPE scaling methods
mainly focus on reducing this type of length
extrapolation failure.

Currently, neither perplexity-based evalua-
tions (Rae et al., 2020; Huang et al., 2021; Wu et al.,
2022) nor synthetic TSTL evaluations (Kazemne-
jad et al., 2023; Liu et al., 2023) can effectively
distinguish these two failure patterns, since the
token generation difficulty tends to increase with
respect to the sequence length in these tasks. To fa-
cilitate research on better position representations,
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Figure 2: An example of the three subtasks of POSGEN. This figure shows the process of generating the 12th token
shown in the red boxes for each subtask. In this example, h is a modular addition task with the modulus m = 7 and
the difficulty-controlling parameters j = 1, k = 3. The output token depends on: (1) only the local j + k tokens in
the recursive task; (2) k local tokens and the beginning j tokens in the CoT task; and (3) k local tokens and j tokens
with a varied dependency distance in the semi-recursive task.

we design POSGEN, which controls the difficulty
in generating tokens throughout the sequence to be
identical, which effectively distinguishes the two
types of TSTL failures. Failures in this benchmark
are only due to the inability to recognize new token
positions in TSTL scenarios.

Our POSGEN framework comprises three sub-
tasks, with each extracting the general token de-
pendency pattern of a different type of reason-
ing task. Suppose that we define a fixed function
h : Vj+k → V, where V is the model’s vocabu-
lary and j, k are predefined constants controlling
the task’s difficulty. The three subtasks of POS-
GEN are as follows:

1. Recursive. This task simulates the token de-
pendency pattern of generating a Fibonacci-
style sequence, where new tokens depend
on j + k neighboring tokens only: xl =
h(xl−(j+k)), · · · , xl−1) when l ≥ j + k.

2. Chain-of-Thought (CoT). This task simu-
lates the token dependency pattern of CoT rea-
soning (Wei et al., 2022), where new tokens
depend on k neighboring tokens (simulating
the previous reasoning step) and j tokens in
the front (simulating the original question):
xl = h(x0, · · · , xj−1, xl−k, · · · , xl−1) when
l ≥ j + k.

3. Semi-recursive. This task simulates the to-
ken dependency pattern of the last-letter con-
catenation task (Zhou et al., 2023), where
new tokens depend on both k neighboring to-
kens (simulating the current progress) and j
tokens with varied distances according to a
specific rule (simulating the word sequence):
xl = h(x⌊l−(j+k)/2⌋−j , · · · , x⌊l−(j+k)/2⌋−1,
xl−k, · · · , xl−1) when l ≥ j + k.

Based on the equation for each subtask, when
given the first j + k tokens, one can generate a
sequence with unlimited length as the ground truth
sequence. We show an example of POSGEN in Fig-
ure 2. As a TSTL benchmark, we train a model on
a subtask with sequence length up to L, and evalu-
ate the model’s accuracy on a longer sequence with
length L′ > L generated by the same rule on the
unseen positions L < m ≤ L′, which we refer to
as the “OOD Accuracy” (OOD Acc). This met-
ric measures how well a model can recognize the
OOD positions and continue following the genera-
tion rule learned during training. As a benchmark
for position embeddings, a standard usage of this
benchmark is to train a small Transformer (e.g., a
2-layer Transformer as used in our experiments)
with different position embeddings on its training
set with only short sequences, and test its OOD
Accuracy on the test set with longer sequences.
We provide our experiment setting for POSGEN in
more details in Section 6.1.1 and Appendix C.1.

6 Experiments

We evaluate RESONANCE ROPE on three different
TSTL tasks: a small-scale evaluation on our pro-
posed POSGEN task, and LLM-scale evaluations
with LLaMA2-Chat (Touvron et al., 2023b) on both
language modeling perplexity and real-world long
context applications.

6.1 Synthetic Task Evaluation

6.1.1 Experiment Setup
We first apply RESONANCE ROPE on RoPE and
YaRN, assessing the model’s performance on POS-
GEN for unseen position recognition. We test on
a modular addition task, which was proved to be
learnable by a one-layer Transformer (Nanda et al.,
2023). We configured j = 1, k = 3, and defined
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Figure 3: The validation loss curves of Transformers using RoPE and YaRN PEs with and without our RESONANCE
scaling on the three subtasks of POSGEN.

Setting Recursive CoT Semi-Rec.

RoPE 65.29±0.43 69.56±0.33 17.96±0.03

Res. RoPE (Ours) 62.64±0.15 75.25±0.10 29.78±0.07

YaRN 95.93±0.04 98.71±0.00 33.70±0.04

Res. YaRN (Ours) 98.30±0.00 99.58±0.00 48.46±0.03

Table 1: The accuracy on OOD Positions (OOD Acc.)
on POSGEN’s test set. All results are in percentage (%).
We report both the mean and variance across five runs
with different random seeds. We compare the same
RoPE-based PE with or without our RESONANCE scal-
ing. The best performance for each pair of settings on
each subtask is marked in Bold.

h(x0, x1, x2, x3) =
∑3

i=0 xi mod 17 with vocab-
ulary V = {0, . . . , 16}.

Our experiments involved training a two-layer
Transformer. Each layer follows T5-Small’s config-
urations (Raffel et al., 2020) except for the position
embeddings. In this model, each attention head has
64 dimensions. We apply different RoPE-based em-
beddings with the rotary base equal to 10, 000. The
models are trained on sequences of length L = 64,
and evaluating on lengths of L′ = 256 for OOD
Accuracy. In this experiment setting, each head has
32 RoPE features, out of which the first 17 are pre-
critical dimensions with a wavelength less than the
maximum training length. We generated 10,000
training sequences, and 1,000 each for validation
and testing, and ensured that the first j + k = 4
tokens in each sequence do not overlap to testify
whether the model learns the correct generation
mechanism. We averaged results over 5 seeds. A
more detailed setting is provided in Appendix C.1.

6.1.2 Results and Analysis
Table 1 displays the comparison of the OOD accu-
racy. In most cases, RESONANCE ROPE and RES-
ONANCE YARN outperform their counterparts
lacking the Resonance technique, showcasing sig-
nificantly better performance and reduced variance

in OOD scenarios. This improvement indicates a
superior adaptation to OOD position embeddings
through minimized Positional Encoding (PE) in-
terpolation. An exception is observed when apply-
ing RESONANCE ROPE to the Recursive subtask,
likely due to the dominance of extrapolated post-
critical dimensions in OOD positions. This issue
can be mitigated by employing a RoPE scaling tech-
nique such as YaRN, which effectively counters the
extrapolation of post-critical dimensions. Among
all configurations, RESONANCE YARN exhibits
the highest OOD performance, demonstrating the
synergy between RoPE scaling methods and the
Resonance technique.

Figure 3 plots validation losses against training
epochs for different PEs, illustrating the training
dynamics. The introduction of the Resonance tech-
nique leads to a reduction in the lowest validation
loss for both RoPE and YaRN, with RESONANCE

ROPE achieving even lower validation losses than
YaRN in the Semi-Recursive subtask. Furthermore,
the validation loss trajectories for RESONANCE

ROPE and RESONANCE YARN remain lower than
those of their counterparts in all subtasks, further
demonstrating the enhanced OOD generalization
capability of our approach.

6.2 LLM Fine-tuning Evaluation

6.2.1 Experiment Setup
In this section, we apply our proposed RESO-
NANCE ROPE to the current state-of-the-art RoPE
scaling method, YaRN (Peng et al., 2024). More
specifically, we replace the original position em-
beddings of LLaMA2 7B and 13B (Touvron et al.,
2023b) with a series of scaled position embeddings,
including the NTK-Aware scaling (bloc97, 2023;
Xiong et al., 2023; Liu et al., 2024), Dynamic NTK-
Aware Scaling (Peng et al., 2024; Rozière et al.,
2023), and YaRN (Peng et al., 2024).
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Setting Ctx Len. Coursera GSM QuALITY TOEFL CodeU SFiction Avg.
LLaMA2-Chat 7B

Dynamic NTK-Aware (no FT) 32K 31.98 32.00 34.65 59.11 1.11 36.72 32.59
NTK-Aware (s = 8, no FT) 32K 36.77 3.00 26.73 34.2 1.11 50.78 25.43

YaRN (s = 8, FT@32K, 50 epcs.) 32K 36.05 19.00 33.17 50.56 4.44 56.25 33.24
Resonance YaRN (s = 8, FT@32K, 50 epcs.) 32K 36.48 22.00 34.16 55.76 0.00 57.03 34.24

YaRN (s = 8, FT@4K, 400 epcs.) 32K 35.03 24.00 37.62 57.62 4.44 60.94 36.61
Resonance YaRN (s = 8, FT@4K, 400 epcs.) 32K 36.34 27.00 40.59 56.51 3.33 61.72 37.58

LLaMA2-Chat 13B
Dynamic NTK-Aware (no FT) 16K 29.22 39.00 40.59 63.94 1.11 39.84 35.62

NTK-Aware (s = 4, no FT) 16K 40.26 21.00 38.12 65.43 1.11 46.88 35.47
YaRN (s = 4, FT@16K, 100 epcs.) 16K 38.08 39.00 43.07 65.43 0.00 63.28 41.48

Resonance YaRN (s = 4, FT@16K, 100 epcs.) 16K 38.66 39.00 43.56 65.06 1.11 62.50 41.65
YaRN (s = 4, FT@4K, 400 epcs.) 16K 41.72 34.00 41.09 66.91 2.22 48.44 39.06

Resonance YaRN (s = 4, FT@4K, 400 epcs.) 16K 41.86 35.00 42.57 65.80 5.56 48.44 39.87

Table 2: Long text evaluations on some closed-ended tasks in L-Eval. “Ctx Len” means the target context length of
the model after scaling its PE. “FT@32K, 50 epcs” means the model is fine-tuned on 32K sequence length for 50
epochs. The settings with “no FT” are not fine-tuned after modifying its position embedding. We highlight the best
and second-best performance for each base model in Bold and Underline, respectively.
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Figure 4: The perplexity of LLaMA-Chat 7B with differ-
ent position embeddings on GovReport and Proofpile.

For YaRN and RESONANCE YARN, We use a
scaling factor of 8 and 4 for LLaMA2 7B and 13B
to extend their context window from 4K to 32K
and 16K, respectively. For the configurations that
require fine-tuning, we fine-tune the LLM with the
scaled position embedding on the training set of
PG19 (Rae et al., 2020) with the fine-tuning set-
ting and hyperparameters adopted directly from
YaRN (Peng et al., 2024), with the only difference
being that we control the total training token count
to be approximately 100M. A more detailed fine-
tuning setting can be found in Appendix C.2. We
test the model’s performance on two TSTL sce-
narios: language modeling evaluation on long-text
sequences and long-text downstream application
performance.

6.2.2 Perplexity on Long Sequence
We evaluate the model’s language modeling per-
formance on GovReport (Huang et al., 2021) and
Proofpile (Azerbayev, 2022). We randomly select
50 samples from each dataset and report the final
perplexity in text fragments of gradually increased

length. We report the results in Figure 4. Of the
tested methods, RESONANCE YARN achieves the
lowest perplexity across all context lengths. Espe-
cially, RESONANCE YARN achieves a lower per-
plexity compared to YaRN with the same set of
hyperparameters optimized for YaRN, demonstrat-
ing the benefit of applying the Resonance technique
to existing RoPE scaling methods.

6.2.3 Real-world Task Evaluation

Lastly, we test the real-world task performance of
LLaMA2-Chat 7B and 13B’s performance with dif-
ferent RoPE scaling strategies on L-Eval (An et al.,
2023)’s close ended task suite, a long-text LLM
benchmark covering a wide range of domains such
as school lectures, long conversations and novels.
We fine-tune the model with different RoPE scaling
strategies using two different strategies: training on
shorter sequences (4K length) for more epochs, and
training on longer sequences (32K or 16K length)
for less epochs. All settings requiring fine-tuning
keep the training token count to be approximately
100M. The results are listed in Table 2.

Although no single setting in the experiment
achieves the best result on all subtasks, we observe
that applying RESONANCE YARN achieves better
average performance in different training settings
and model sizes compared to its counterpart YaRN
setting. This further proves the compatibility of the
Resonance technique and RoPE scaling methods,
and the better length extrapolation performance
brought by our proposed method.
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7 Conclusion

We introduce RESONANCE ROPE, a novel en-
hancement of RoPE that focuses on minimizing
the interpolation of RoPE features for OOD posi-
tions, thereby reducing the generalization gap and
improving LLM’s performance on train-short-test-
long (TSTL) scenarios. Additionally, we present
a novel synthetic benchmark, POSGEN, which
provides a fine-grained analysis of the model’s
TSTL performance regarding various token de-
pendency patterns. Extensive experiments on our
proposed POSGEN and two LLM-based evalua-
tions demonstrate RESONANCE ROPE’s efficacy
in identifying OOD positions and its compatibil-
ity with current RoPE scaling strategies. Future
work includes exploring RESONANCE ROPE’s per-
formance on other foundational models, and the
identification of more optimal wavelength combi-
nations for RoPE features.

Limitations

Our proposed RESONANCE ROPE focus on reduc-
ing the interpolation of only RoPE’s pre-critical
dimensions on OOD positions. However, this
method does not solve the extrapolation issue on
RoPE’s post-critical dimensions, which has been
shown to be also detrimental to LLM’s length
extrapolation performance. Thus, the technique
of RESONANCE ROPE needs to be combined with
another RoPE scaling method that can reduce ex-
trapolation on RoPE’s post-critical dimensions,
e.g., YaRN, to achieve the full potential of LLM in
TSTL scenarios. Such combination has been our
focus in Section 6.2.

Secondly, applying LLMs to long text sequences
requires considerations of both performance and
efficiency due to the super-linear complexity of
Transformers w.r.t input length. As an improve-
ment of the position embeddings, we focus only
on improving Transformers’ performance in TSTL
scenarios. An interesting future direction would
be to apply RESONANCE ROPE to efficient Trans-
formers for both performance and efficiency en-
hancements.

Lastly, benchmarking LLMs is still an open ques-
tion, as there is currently no benchmark to thor-
oughly test the performance of LLMs, especially
on long-sequence tasks. We expect that a more
comprehensive long-text benchmark would further
improve the validity of the experiment results.
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A Proof of Theorem 1

Proof. All we need is to prove that for each x ∈
Rd, each n ∈ N\{0, · · · , L − 1} and each i =
0, . . . , 2c − 1 we can find m ∈ {0, · · · , L − 1} ,
such that f̃(x,m)i = f̃(x, n)i. By definition, it is
equivalent to solving the equations:

(Rd
Θ̃,m

Wx)i = (Rd
Θ̃,n

Wx)i

for m, given i, n, and x.
The RoPE feature matrix Rd

Θ,m is defined as
block-diagonal with 2 × 2 blocks given by Equa-
tion 3. Hence, given i, x and n, the equation re-
duces to equality of a linear combination of trigono-
metric functions:

a cosmθ̃i + b sinmθ̃i = a cosnθ̃i + b sinnθ̃i

for a, b ∈ R, depending on x and i. This equality
clearly holds if mθ̃i − nθ̃i is a multiple of 2π:

(m− n)θ̃i = 2πk,

for some k ∈ Z. By our construction, 2π
θ̃i

is a
natural number. Hence, to finish the proof that we
can solve our initial equation for m, we need to
show that we can find integer k to satisfy:

(
n− 2π

θ̃i
k

)
∈ {0, · · · , L− 1}

for n ∈ N\{0, · · · , L − 1}. This is where we
use the pre-critical dimension condition: for i =
0, . . . , 2c − 1, by definition of c, we have the in-
equality 0 ≤ 2π

θ̃i
< L. Taking k = ⌊nθi2π ⌋ will give

us the required range for m and hence finish the
proof.

B Comparison Between Feature Gap and
Embedded Vector Distance

Our proposed feature gap metric, as defined in
Equation 8, shares similarities with the “embed-
ded vector distance” metric introduced by Xiong
et al. (2023):

d(f, f̂) = max
x∈X

min
k∈{0,··· ,N−1}
j∈{0,··· ,N̂−1}

dist[f(x, k), f̂(x, j)]

(9)
where X ⊂ Rd represents the set of vectors re-
quiring positional embedding. This equation as-
sesses the discrepancy in Rotary Position Embed-
ding (RoPE) before and after a scaling operation.

The distance calculation specifically compares the
original RoPE, f(·, ·), to the scaled RoPE, f̂(·, ·),
with token positions beginning at zero. It aims to
quantify the alterations in position embedding due
to the scaling process.

In contrast, our feature gap metric is tailored
for a more practical and common scenario, where
models are trained or fine-tuned on short sequences
using the already scaled RoPE embeddings. This
setting emphasizes the generalization gap of the
RoPE features between training and testing posi-
tion ranges. The core hypothesis is that a smaller
discrepancy in the RoPE features of new token po-
sitions relative to those encountered during training
correlates with enhanced model generalization to
novel token positions. Our metric diverges from
the “embedded vector distance” in two significant
aspects to better align with our use-case:

• The distance computation shifts to compare
scaled RoPE across different token positions,
reflecting the operational context where train-
ing involves short sequences (train-short) and
testing involves longer sequences (test-long).

• We modify the token position ranges, k and j,
to represent token positions observed during
training (in-distribution) and testing (out-of-
distribution), respectively, to directly measure
the generalization gap.

This adaptation of the metric allows for a more
targeted evaluation of the model’s ability to gener-
alize across different token positional distributions,
which is critical in scenarios where sequence length
varies significantly between training and deploy-
ment.

C Detailed Experiment Settings

In this section, we provide the detailed experi-
ment settings for both our synthetic task evalua-
tion on POSGEN and LLM-based evaluations on
both upstream language modeling evaluation and
downstream real-world application evaluations.

C.1 Synthetic Task Evaluation on POSGEN

For the synthetic task experiments in Section 6.1.1,
we train a two-layer Transformer on each of the
subtasks, with each layer following the configu-
ration of a T5-Small model (Raffel et al., 2020).
For each subtask, we train the model with different
position embeddings on a training set with 10,000
sequence samples of length 64. The validation and
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test sets each contains 1,000 sequence samples with
length 256. The sequences in the training, valida-
tion and test sets do not overlap in the first j + k
tokens. For all YaRN and RESONANCE YARN set-
tings, we train the model with YaRN and RESO-
NANCE YARN applied to the model with a scal-
ing factor s = 4, which corresponds to the TSTL
setting of our evaluation. Each model is trained
on each subtask for 150 epochs with a language
modeling-style cross-entropy loss. Training was
done with AdamW optimizer (Loshchilov and Hut-
ter, 2019), using learning rate 2× 10−4 and weight
decay 1 × 10−2. We use a batch size of 128 for
all experiments. All hyperparameters were tuned
to maximize YaRN’s validation set performance
on the Semi-Recurrent subtask. All synthetic task
evaluations were performed on a single NVIDIA
V100 32G GPU.

C.2 LLM Evaluations

For the LLM-based evaluations in Section 6.2,
we fine-tune LLaMA2-Chat 7B or LLaMA2-Chat
13B (Touvron et al., 2023b) after replacing its orig-
inal RoPE position embedding with RoPE scaled
with different strategies:

• NTK-Aware Scaling (bloc97, 2023; Xiong
et al., 2023; Liu et al., 2024), which scales the
base b in Equation 1 to s · b, where s is the
scaling factor. We evaluate the performance
without fine-tuning as used in bloc97 (2023).

• Dynamic NTK-Aware Scaling (Peng et al.,
2024; Rozière et al., 2023). This method dy-
namically computes the scaling factor consid-
ering the current sequence length Lc and the
original context window length L: s = Lc

L .
Due to the high cost of frequently recomput-
ing RoPE features, we evaluated its perfor-
mance without fine-tuning.

• YaRN (Peng et al., 2024). We evaluate its
performance after fine-tuning.

For NTK-Aware scaling and Dynamic NTK-
Aware scaling settings, we replace the original
RoPE position embeddings in the model with the
scaled ones and test their performance without fine-
tuning following (bloc97, 2023; Peng et al., 2024).
For YaRN and RESONANCE YARN settings, we
fine-tune the model for approximately 100M to-
kens on PG19’s training set (Rae et al., 2020). Our
target scaled length for the 7B and 13B models is

32K and 16K, respectively, which corresponds to
a scaling factor s = 8 and s = 4 for the position
embeddings of the two models.

For both the long-sequence perplexity evalua-
tion in Section 6.2.2 and real-world task evalua-
tions in Section 6.2.3, the hyperparameters for the
LLM experiments follow the configurations pro-
vided in Peng et al. (2024)2, with the only modifica-
tion that we fine-tune the model on approximately
100M tokens. More specifically, we use α = 1
and β = 32 for YaRN and RESONANCE YARNas
suggested by Peng et al. (2024). The model was
trained with a language modeling-style cross en-
tropy loss. Training was done with the AdamW op-
timizer (Loshchilov and Hutter, 2019) using learn-
ing rate 2× 10−5 and weight decay 1× 10−2. We
use a batch size of 1 on each of the GPUs. The
learning rate warm-up is applied to the first 5% of
the total training steps. Models were fine-tuned
with BF16 precision, FlashAttention 2 (Dao, 2023)
and DeepSpeed ZeRO-3 Offload (Ren et al., 2021)
on four NVIDIA A100 40G GPUs.

For the real-world task evaluations in Sec-
tion 6.2.3, we further compare two different fine-
tuning strategies:

1. Fine-tuning on long sequences for less
epochs. We directly fine-tune the model on
the target sequence lengths after applying the
scaled position embeddings. For LLaMA2-
Chat 7B and 13B, we fine-tune the model on
sequences with length 32,768 for 50 steps and
sequences with length 16,384 for 100 steps,
respectively.

2. Finetuning on short sequences for more
epochs. We fine-tune the model on the origi-
nal pre-training sequence length after apply-
ing the scaled position embeddings. For both
LLaMA2-Chat 7B and 13B, we fine-tune the
model on sequences with length 4,096 for 400
steps.

2https://github.com/jquesnelle/yarn.
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