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Abstract

Social media advertising offers a platform for
fossil fuel value chain companies and their
agents to reinforce their narratives, often em-
phasizing economic, labor market, and energy
security benefits to promote oil and gas policy
and products. Whether such narratives can be
detected automatically and the extent to which
the cost of human annotation can be reduced
is our research question. We introduce a task
of classifying narratives into seven categories,
based on existing definitions and data. Ex-
periments showed that RoBERTa-large outper-
forms other methods, while GPT-4 Turbo can
serve as a viable annotator for the task, thereby
reducing human annotation costs. Our find-
ings and insights provide guidance to automate
climate-related ad analysis and lead to more
scalable ad scrutiny.

1 Introduction

Advertising has allowed firms to construct narra-
tives that align with their commercial interests and
sway public discourse. This is true in the context
of climate change, where strategies akin to tobacco
industry propaganda are employed to shape public
perception by redirecting responsibility away from
corporations (Supran and Oreskes, 2021).

In the domain of social media, entities, includ-
ing fossil fuel corporations, utilize the platform
to bolster existing beliefs about the significance
of fossil fuels (Holder et al., 2023). For exam-
ple, some advertisements (or ads) claim the indis-
pensability of fossil fuels for jobs and the econ-
omy, and promote the idea that they are “clean.”
We refer to such narratives that obstruct progress
against climate change as climate obstructive nar-
ratives. The scale of the public relations effort
and advertising of climate obstructive narratives

*Equal contribution
†This work was done as a Visiting Scholar at Stanford

University.

Figure 1: Example of an ad labeled ‘Patriotic energy
mix’ (see Table 1). Entity information is blacked out.

is extensive, necessitating comprehensive analysis.
Potentially disinformative ads must be identified
and their messaging contrasted against climate sci-
ence described by the Intergovernmental Panel on
Climate Change, International Energy Agency, and
other bodies mandated to provide objective anal-
ysis of climate change and its optimal solutions
(InfluenceMap, 2021).

Identifying ads that contain climate obstructive
narratives poses significant challenges in terms of
efficiency and scale. This task usually relies on
human expertise from academics or non-profit or-
ganizations (NPOs), due to the unique nature of
the domain and the nuanced presentation of the
ads. For instance, to accurately label about 1,500
ads, an NPO required the expertise of five subject
matter experts (Holder et al., 2023), resulting in an
estimated total of 120 hours spent. In this context,
natural language processing (NLP) may potentially
offer a viable alternative.

This paper proposes a multi-label classification
task with seven classes to identify climate obstruc-
tive narratives. Our dataset was constructed based
on the definitions and annotations of Holder et al.
(2023), which includes Facebook ads by fossil fuel
entities. An example of the ‘Patriotic energy mix’
type is shown in Figure 1, where this type suggests
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Super-category Label Description

Community & Resilience CA Helps national/local economies/communities, including through phil-
anthropic efforts

CB Creates or sustains jobs
Green Innovation and Climate Solutions GA Emissions reductions and transitioning the energy mix

GC ‘Clean’ gas as a climate solution
Pragmatism / Pragmatic Energy mix (Power
systems and manufactured goods)

PA Oil & gas as energy sources are a pragmatic choice and critical for
maintaining functioning or optimal power systems

PB Oil & gas are needed as raw materials for alternative (non-power
related) uses and manufactured goods

Patriotic Energy mix SA The production of domestic oil and gas reserves benefits the US, in-
cluding through energy independence or energy leadership

Table 1: The labels included in the climate obstruction data. The categories, labels, and descriptions are taken
directly from Holder et al. (2023).

that the production of domestic oil and gas reserves
benefits the country. We utilize pre-trained lan-
guage models, such as BERT (Devlin et al., 2019),
and large language models (LLMs), such as GPT-4
Turbo (OpenAI et al., 2023) in our experiments.
A comparable study on this task can be found in
the work of Islam et al. (2023), while our approach
differs in several ways. We utilize a high-quality
annotated and relatively large dataset, benchmark
various baseline models on it, and provide insights
toward scalable ad scrutiny.

The experimental results show that RoBERTa-
large (Liu et al., 2019) yields the best F-score,
while GPT-4 Turbo performs close to RoBERTa-
base. We also found that when GPT-4 Turbo is used
to annotate training data for fine-tuning, only about
30 annotation examples are required to outperform
RoBERTa-large. Given the need for experts to cre-
ate the training data, the GPT-4 Turbo utilization
is attractive even when considering the tradeoff
between prediction cost and performance.

Given that recent research indicates that so-
cial media platforms are not adequately address-
ing the dissemination of misleading information
(Holder et al., 2023), it is important to scale
scrutiny of social media ads efficiently. Our
study suggests that even with limited human re-
sources, LLMs can be used to assist in moni-
toring climate obstructive ads. We release the
code on GitHub (https://github.com/climate-
nlp/climate-obstruction-narratives).

2 Background

Interdisciplinary study of climate change and NLP
has gained attention in recent years. Major attempts
have been made in this area to detect claims re-
lated to climate change. For example, datasets and
models have been proposed to detect environment

claims (Stammbach et al., 2023) or net-zero claims
(Schimanski et al., 2023).

Islam et al. (2023) address theme classification
of Facebook ads from fossil fuel entities. There are
similarities to our study, although their work uses a
smaller human-annotated dataset and does not use
multi-label classification. The labels ‘Patriotism’,
‘Pragmatism’, ‘Economy_pro’, and ‘ClimateSolu-
tion’ found within the work align with some labels
identified by Holder et al. (2023), though it appears
that the respective studies were conducted indepen-
dently. Some labels proposed in the work of Holder
et al. (2023) are more fine-grained, and the results
described in this paper provide a more detailed dis-
cussion. Technically, our study differs from the
work of Islam et al. (2023) in that we benchmark
various baseline models and few-shot learning on
larger datasets based on high-quality annotations.
Islam et al. (2023) use Sentence-BERT (Reimers
and Gurevych, 2019) to classify ads and achieved
an accuracy of 38.4%. We include different fine-
tuned models and LLMs in our experiments and
best models achieve F-scores around 70%. We
also use our experimental results to discuss guide-
lines for automated ad scrutiny. In summary, our
study provides more reliable and detailed discus-
sions compared to the work of Islam et al. (2023).

From the view of technical classification of NLP,
our work could be contextualized within climate
change debate analysis (Stede and Patz, 2021), ar-
gument mining (Lawrence and Reed, 2019), dis-
course analysis, and persuasion and propaganda
technique analysis. Luo et al. (2020) analyzed
the global warming controversy using BERT, and
there is similarity with our study in that it examines
stances on climate change issues. In the propa-
ganda typology (Martino et al., 2020; Da San Mar-
tino et al., 2019), ‘Flag-waving’ is somewhat sim-
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ilar to ‘Patriotic energy mix’ in our dataset. Our
focus is, however, on the specific domain of the oil
and gas sector.

Although the oil and gas sector may seem lim-
iting, it is important to recognise that the domain
is deceptively large, extending well beyond the pri-
mary operations of oil and gas companies to an
extensive value chain. This value chain comprises
refiners, pipeline operators, and manufacturers of
secondary products (Olson and Lenzmann, 2016),
all of which play integral roles in the industrial
overall impact on both the economy and the en-
vironment. Furthermore, the industrial efforts to
shape public discourse and policy are amplified
through a network of agents, including Political
Action Committees (PACs), trade associations, and
lobbyists (Brulle, 2018). Our study is focused on
ads that are affected by these value chains.

Research in other domains, such as health and
politics, has also utilized NLP methods to detect
misinformation (Schlicht et al., 2024; Raza, 2021).
For instance, NLP methods have been applied to
identify false statements and health-related misin-
formation (Sarrouti et al., 2021), demonstrating the
versatility of these techniques across different ar-
eas of study and highlighting the critical role of
accurate information in maintaining public trust
and safety (Hirlekar and Kumar, 2020).

3 The Climate Obstruction Data

We built a dataset tailored for text classification
based on the original data of Holder et al. (2023).
The original dataset was compiled to include ads re-
lated to climate change that were run in the United
States between January 1, 2020, and January 1,
2021 by utilizing the Facebook Ad Library API.
The restriction to a limited timeframe in our study
serves an important purpose, allowing us to target
and analyze specific patterns in climate disinfor-
mation during a defined period. Given the rapid
evolution of trends within this sphere, label defini-
tions may need to be reconsidered as the dataset is
expanded to a broader timeframe. The dataset pri-
marily focused on the top ten fossil fuel companies,
the top five industry associations representing the
oil and gas sector, and ten advocacy groups with
significant spending and connections to the fossil
fuel industry.
Typology: Table 1 shows the labels and their
brief descriptions provided by Holder et al. (2023).
There is a super-category such as ‘Community

& Resilience’ and subcategories for each super-
category. For reference, we provide feature words
analysis in Appendix Table 5. CA and CB em-
phasize the economy and include many job-related
words. GA and GC have the potential to project
a clean image to consumers by using words such
as “clean”. PA and PB emphasize the pragmatism
of oil and gas by using words such as “affordable,”
“sanitizer,” and “reliable.”
Annotation: Holder et al. (2023) followed a rig-
orous coding scheme inspired by Miller and Lellis
(2016), initially encompassing 25 subcategories
under four broad themes: ‘Community & Econ-
omy,’ ‘Climate Solutions,’ ‘Pragmatic Energy Mix,’
and ‘Patriotic Energy Mix.’ However, to refine the
process, the team performed three rounds of inter-
coder reliability testing. This iterative process led
to a more streamlined typology, eventually consist-
ing of the four broad themes, each with three sub-
categories. Holder et al. (2023) chose to report the
four broad category labels (‘super-category’ labels
in this study) rather than each subcategory label,
while we mainly focus on the subcategories. After
three rounds of inter-coder reliability testing, the
team achieved a Fleiss-Kappa score (Fleiss, 1971)
of 0.78 (Holder et al., 2023). This indicates a high
level of consistency in the annotation.
Data split: Since the original data were not de-
signed for NLP tasks, we built the dataset by split-
ting the data into training, development, and test
sets based on the entity name. We also removed any
duplicate ad texts. Our dataset has imbalanced la-
bel distributions, and there are a reasonable number
of samples with no labels (see Appendix Table 4).
These reflect practical settings of real ads and pro-
vide challenging tasks for NLP methods.

4 Experiments

Because each ad can be associated with multiple
labels, we define our task as multi-label classifica-
tion for the text included in the ads. Conceptually,
given input ad text X , the output is a set of la-
bels Y ⊂ {CA,CB,GA,GC,PA, PB, SA}. An
empty set is allowed for text that does not corre-
spond to any of the labels. Although ads can con-
tain images and videos, this study does not con-
sider them. We use standard F-scores to evaluate
the classification performance.
Models: We are motivated to compare different
models that are simple and well-known, but strong
baselines. To this end, we use a conventional
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CA CB GA GC PA PB SA All

BERT-base 71.4±1.4 72.3±7.6 58.6±3.9 9.6±8.0 75.1±0.5 16.7±28.9 19.7±17.1 61.1±1.3

RoBERTa-base 73.1±2.2 75.6±2.2 59.7±3.8 44.6±7.1 84.7±0.4 16.7±28.9 35.9±1.3 69.5±1.9

RoBERTa-large 76.1±0.9 78.5±3.0 64.7±4.1 43.9±7.9 84.7±0.8 33.9±5.8 57.8±5.5 71.4±0.6

Mistral7B-Inst 45.2 53.7 55.8 31.2 65.7 0.0 32.5 50.5
GPT3.5-trb 65.1 70.0 67.5 54.3 70.1 46.1 19.1 58.1
GPT3.5-trb (CoT) 56.8 57.1 49.9 40.5 55.3 66.6 47.3 52.2
GPT4-trb 69.6 89.6 72.2 37.8 73.6 74.9 38.7 66.9

Table 2: Subcategory level classification F-scores (avg. from three random seeds for BERT and RoBERTa). Mistral
and GPTs are prompted with zeroshot.

approach using pre-trained language model fine-
tuning and LLMs with prompting. BERT (Devlin
et al., 2019) and RoBERTa (Liu et al., 2019) are
simple yet strong baselines. Mistral-7B-Instruct-
v0.1 (Mistral7B-Inst; Jiang et al. (2023)), GPT-3.5
Turbo (GPT3.5-trb), and GPT-4 Turbo (GPT4-
trb; OpenAI et al. (2023)) are used to investigate
the capabilities of zeroshot learning with prompt-
ing. We also explore Chain-of-Thought (CoT; Wei
et al. (2022)) prompting (GPT3.5-trb (CoT)). We
use DSPy (Khattab et al., 2023) and vLLM (Kwon
et al., 2023) to implement the LLM experiments.

We also investigate conventional automated
training data labeling with LLMs (Wang et al.,
2021). We use GPT4-trb to label our training data,
resulting in ‘silver’ training data. Then, we fine-
tune RoBERTa-large on this data, referring to this
model as RoBERTa-GPT4-trb-Label (RoGL). We
investigate a low-resource scenario by fine-tuning
RoGL on sampled human labeled training data. For
implementation and hyperparameter details, refer
to Appendix A.2.

4.1 Results

Overall Scores: Table 2 shows the subcategory
level overall results. RoBERTa-large outperforms
other models. The overall F-score of RoBERTa-
large is over 70%, which is a notable result given
the size of the training data. However, for low-
frequency labels such as PB and SA, we have lower
F-scores. This could be remedied by up-sampling
and up-weighting for low-resource labels or by
refining the prompting. Even though GPT4-trb is
a zero-shot method, it outperforms the BERT-base
model. Interestingly, GPT3.5-trb (CoT) does not
outperform GPT3.5-trb. This may be because the
rationale for each label gets diluted by the extra
info in the prompt. For reference, we also examine
the F-scores at the super-category level as shown
in Appendix Table 6.

Figure 2: Results of the low-resource experiments (with
narrow error bands just visible). We show zeroshot
performance of GPT4-trb for reference.

Low-resource Scenario: Given the human costs
associated with training data annotation, it is desir-
able to develop models with as little training data
as possible. In particular, climate change policies
and measures change frequently, which may re-
quire categorisation with new labels. New label
definitions will also need to be created for sectors
beyond oil and gas. Here, we experiment with a
low-resource scenario where we change the size
of training data (by random sampling) and inves-
tigate the trade-off between training data size and
classification performance.

Figure 2 shows that RoBERTa struggles to out-
put correct labels at the training sample scale of 23,
while RoGL significantly outperforms RoBERTa,
albeit with a slightly lower F-score than GPT4-trb.
At the training sample scale of 25 = 32, RoGL out-
performs GPT4-trb and appears to almost saturate
in classification performance. This result indicates
that utilizing silver labels generated by LLMs is
effective to reduce human annotation costs in the
domain of climate obstructive narratives.
Error Analysis: We analyzed errors in the output
from RoBERTa and GPT4-trb, as shown in Table 3,
to understand the limitation of the methods. Note
that ‘No label’ indicates that the model did not
output a label.1

1Our task is multi-label classification and there are samples
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No. Text Gold RoBERTa-large GPT4-trb

1 Thanks to increased natural gas production, U.S. CO2 emissions are the
lowest since 1985.

GC GC GA

2 From backpacks to binders to calculators, #natgas helps fuel the produc-
tion of the essential supplies that students need, whether they are starting
out the school year at home or at school! #<Anonymized>

PB No label PB

3 From the <Anonymized> to yours, Happy Independence Day! CB, GC, PA, SA No label No label

Table 3: Example output errors.

In the No.1 example, RoBERTa produced the cor-
rect answer but GPT4-trb did not. This could be
due to different interpretations of the text: GPT4-
trb seems to have focused on the fact that emissions
have lowered and labeled it GA, while RoBERTa
may have focused on the “clean” image of this ad.
This suggests that the subtle difference in nuance
is acquired in the fine-tuning process.
In the No.2 example, RoBERTa produced incorrect
output. We found that the training data contains
a word ‘backpack,’ and the ads were annotated as
unlabeled. Certain words in the training data could
have biased the test output.
In the No.3 example, we found both RoBERTa and
GPT4-trb produced errors. Looking at the text,
‘No label’ appears to be correct. However, upon
checking the actual website of the ad, we found that
there was a video embedded in the ad. The video
did indeed contain content corresponding to CB,
GC, PA, and SA. This indicates a limitation of this
study, which deals only with text-based content.

More case studies can be found in Table 7.

5 Discussion

Which method is reliable in replicating the nu-
anced understanding of the ads? As we showed,
fine-tuned RoBERTa-large performed best. There
is no simple way to compare; however, given the
inter-annotator agreement score of the dataset is
0.78, we can see that the classification performance
of RoBERTa-large is close to expert performance.
However, we found that RoBERTa runs the risk
of overfitting the training data; GPT4-trb can pro-
duce more intuitive output but our prompts cannot
reproduce the subtle nuances contained in the bi-
ases of the annotation. If the test data domain does
not change significantly, RoBERTa seems to be the

with no associated labels. We refer to such cases as ‘No label’;
RoBERTa is trained with binary cross-entropy loss and assigns
‘No label’ only if the output probability of all labels are less
than 0.5. GPT-4 trb is also supported to output ‘X’ (the same
as ‘No label’) if there is no label to assign.

right choice, while GPT4-trb seems to be appropri-
ate if one allows for looser annotation strictness.
Which method is better for practical applica-
tions? Our methods are useful for identifying
trends in corporate advertising and detecting their
stance on climate policy. On the other hand, the
appropriate method can be selected depending on
the use case. If there is sufficient training data,
RoBERTa is effective, otherwise GPT4-trb can be
used. GPT4-trb would be better suited for small-
scale analyses because of throughput and cost is-
sues, making it difficult to process the analysis effi-
ciently. If one can provide training data of about 30
samples, RoGL is accurate with higher throughput.
We believe that RoGL is sufficiently practical for
ad analysis.

6 Conclusion

Research indicates that social media platforms are
not adequately addressing the dissemination of mis-
leading information (Holder et al., 2023). While we
acknowledge the limitations, our study introduced
methods that are both time-efficient and scalable
for analyzing social media ads, offering a valuable
way for NPOs and academic researchers aiming
to undertake extensive evaluations. Importantly,
the applicability of this approach extends beyond
the environmental sector, holding promise for other
areas impacted by disinformation, including nat-
ural ecosystems, biodiversity, and food security.
In future studies, we will assess the accuracy of
these methods against more recent ads which may
display new climate narrative trends.
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7 Ethical Consideration

This section discusses ethical considerations. This
section is partly based on the guidelines of ACL
Rolling Review (https://aclrollingreview.
org/responsibleNLPresearch/) and NeurIPS
Code of Ethics (https://nips.cc/public/
EthicsGuidelines).
Privacy: The dataset we used comprises ads in-
tended to have a broad reach. Therefore, we believe
that privacy concerns are low. On the other hand,
the ads may contain the names of specific individu-
als. Named entities have been left unanonymized;
however, researchers should consider the potential
impact on individuals when publishing their work.
Consent: The dataset comprises ads intended for
broad dissemination, and the Facebook Ad Library
API permits researchers to use related data in pub-
lications, mitigating consent concerns.
Copyright and Fair Use: See Appendix A.6.
Representative Evaluation Practice: See Sec-
tion 8.
Safety: We do not propose technologies that di-
rectly harm humans.
Security: Our models could analyze advertising,
like detecting potential greenwashing. However,
model outputs are not infallible, with risks of false
positives and negatives. Therefore, any analysis
that relies on erroneous outputs may lead to er-
roneous conclusions. This could potentially and
unfairly affect an entity’s reputation. Additionally,
an entity could use our model to make their ads less
detectable by models. We encourage researchers to
be aware of these limitations.
Discrimination: At a high level, our models deter-
mines the narrative strategy within ads. This causes
us to label the ads for a particular entity. Further-
more, associating an individual’s name with an ad
could lead to discrimination against that person.
Researchers should analyze entities from multiple
perspectives, not solely based on model outputs,
to prevent unwarranted conclusions. Caution is
advised in publishing to prevent disadvantaging
certain individuals.
Surveillance: N/A.
Deception & Harassment: We believe that the
proposed models are unlikely to lead to hate speech
or harassment issues. However, as noted above,
the risk of labeling certain entities or individuals
should be considered.
Environment: We acknowledge that, when our
models are used to analyze advertising, energy con-

sumption occurs. Our study focuses on few-shot
learning and minimal fine-tuning of existing lan-
guage models, thus reducing the energy consumed.
We propose a new method, RoGL, which reduces
energy consumption in comparison to LLM usage.
Human Rights: N/A.
Bias and Fairness: The dataset used in this study
includes specific regions and individuals’ names,
potentially introducing bias into the model. For
example, in our training data, if an entity labeled
PA is located in California, it may increase the
likelihood that other entities in California will also
be labeled PA. The dataset size constraints make it
challenging to fully eliminate these biases.

8 Limitations

We acknowledge limitations of the dataset used
in this study. Our dataset is a small subset of the
available ads. We only evaluate English ads from
oil and gas entities in the United States. This limits
the reliability of the task for other sectors, regions,
and languages. Also, it cannot be guaranteed that
the results achieved in this study will be replicated
on more recent corporate ads.

In the low-resource scenario, the experiment was
conducted with a set of fixed sample data points;
thus, experiments outside these samples have not
been validated. Also, because the dataset is small,
variations in results due to the split of training and
test are expected, but this study does not account
for them. Some labels have very small samples in
the test data. This limits the benchmarking capa-
bility of those labels. Note that our contribution is
the empirical analysis, and we cannot generalize
our experimental results or case studies given the
limitations above.
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A Appendix

A.1 Dataset Detail

The origin data from Holder et al. (2023) contained
30,116 ad samples. After processing to build the
NLP dataset, we obtained 913 training ads, 162
development ads, and 255 test ads. The label distri-
bution can be found in Table 4.

The feature word analysis is shown in Table 5.
We used tf-idf (Sammut and Webb, 2010), exclud-
ing stop words. Scikit-learn (Pedregosa et al., 2011)
was used to implement tf-idf.

CA oil, gas, economy, energy, new, industry, alaska, natu-
ral, jobs, economic

CB jobs, oil, gas, energy, economy, alaska, local, ballot,
industry, natural

GA energy, emissions, wind, gas, tci, carbon, rural, natu-
ral, learn, initiative

GC gas, energy, natural, emissions, clean, future, carbon,
<Anonymized>, reliable, climate

PA energy, gas, natural, oil, pipelines, affordable, reli-
able, learn, americans, pipeline

PB hand, sanitizer, energy, grade, distributing, lines, gas,
<Anonymized>, refineries, oil

SA energy, oil, gas, natural, production, texas, america,
foreign, security, world

Table 5: Top feature words for each label by tf-idf ex-
cluding stop words.

A.2 Implementation and Hyperparameter
Details

For fine-tuning, we used 1K training steps, a learn-
ing rate of 1e-5, and a batch size of 8. The opti-
mizer used is Adam (Kingma and Ba, 2015). We
used PyTorch 2.0.0 (Paszke et al., 2019) and Hug-
gingFace transformers 4.28.1 (Wolf et al., 2020)
for the model fine-tuning and predictions. We did
not use the development data for validation. We
experimented with fine-tuning using three different
random seeds for each method and reported the
average F-score.

We used V100 GPUs for BERT and RoBERTa,
and A100 GPUs for Mistral7B-Inst. The param-
eter size of BERT-base is 110M. The parameter
size of RoBERTa-large is 355M. The parameter
size of Mistral7B-Inst is 7.3B. The parameter sizes
of GPT3.5-trb and GPT4-trb are unknown. The
exact GPU usage time, including preliminary ex-
periments, is unknown; however, due to the small
size of the dataset, fine-tuning RoBERTa-large only
takes a few minutes.

For prompting, brief task and label descriptions
were provided as shown in Figure 3. Figure 4
shows the variant for CoT prompting. We used
DSPy 2.1.1 and vLLM 0.3.0 to implement the
above, employing ‘gpt-4-1106-preview’ for GPT4-
trb and ‘gpt-3.5-turbo-1106’ for GPT3.5-trb. The
default temperature (i.e., zero) setting of DSPy was
used. F-scores are reported based on a single run.

A.3 Super-category Level Results

Table 6 shows the F-scores in super-category level.
GPT4-trb showed a similar F-score to RoBERTa-
large.
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Please label the following advert according to the described typology. Many adverts will not be relevant so please label them as X. We are looking 
for narratives specifically from the oil and gas sector.

Community & Resilience
CA: Emphasizes how the oil and gas sector contributes to local and national economies through tax revenues, charitable efforts, and support for 

local businesses.
CB: Focuses on the creation and sustainability of jobs by the oil and gas industry.

Green Innovation and Climate Solutions
GA: Highlights efforts to reduce greenhouse gas emissions through internal targets, policy support, voluntary initiatives, and emissions reduction 

technologies.
GC: Promotes "clean" or "green" fossil fuels as part of climate solutions.

Pragmatism/Pragmatic Energy mix (Power systems and manufactured goods)
PA: Portrays oil and gas as essential, reliable, affordable, and safe energy sources critical for maintaining power systems.
PB: Emphasizes the importance of oil and gas as raw materials for various non-power-related uses and manufactured goods.

Patriotic Energy mix
SA: Stresses how domestic oil and gas production benefits the nation, including energy independence, energy leadership, and the idea of 

supporting American energy.

X. No relevant typology detected.

This task is a multi-label classification and can have up to four labels amongst CA, CB, GA, GC, PA, PB, and SA.
If X is labeled, no other labels are allowed.
For example, a label containing GA and GC should be answered ["GA", "GC"].

Figure 3: The basic prompt for DSPy.

Please label the following advert according to the described typology. Many adverts will not be relevant so please label them as X. We are looking 
for narratives specifically from the oil and gas sector.

Community & Resilience
CA: Emphasizes how the oil and gas sector contributes to local and national economies through tax revenues, charitable efforts, and support for 

local businesses.
CB: Focuses on the creation and sustainability of jobs by the oil and gas industry.

Green Innovation and Climate Solutions
GA: Highlights efforts to reduce greenhouse gas emissions through internal targets, policy support, voluntary initiatives, and emissions reduction 

technologies.
GC: Promotes "clean" or "green" fossil fuels as part of climate solutions.

Pragmatism/Pragmatic Energy mix (Power systems and manufactured goods)
PA: Portrays oil and gas as essential, reliable, affordable, and safe energy sources critical for maintaining power systems.
PB: Emphasizes the importance of oil and gas as raw materials for various non-power-related uses and manufactured goods.

Patriotic Energy mix
SA: Stresses how domestic oil and gas production benefits the nation, including energy independence, energy leadership, and the idea of 

supporting American energy.

X. No relevant typology detected.

This task is a multi-label classification and can have up to four labels amongst CA, CB, GA, GC, PA, PB, and SA.
If X is labeled, no other labels are allowed.
For example, a label containing GA and GC should be answered ["GA", "GC"].

Reasoning process for analysis:
First, read the advert text to understand its main message.
Next, identify the key themes presented in the advert. This includes looking for mentions of economic impact, job creation, environmental efforts, 

or patriotic messaging.
Then, match these themes to the typologies listed above. Determine which of the typologies the themes of the advert align with.
If the advert contains elements from multiple categories, determine the primary focus of the advert and choose the most fitting category.
Finally, label the advert according to the most appropriate typology.

Figure 4: The CoT prompt for DSPy.
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C G P S All

BERT-base 73.2±1.0 60.6±5.1 75.3±0.5 19.7±17.1 69.0±2.1

RoBERTa-base 78.5±1.6 67.2±6.1 83.9±0.5 35.9±1.3 75.9±2.0

RoBERTa-large 81.1±0.7 72.7±2.0 84.4±0.8 57.8±5.5 78.8±0.8

Mistral7B-Inst 63.4 75.3 66.0 32.5 65.4
GPT3.5-trb 69.1 83.2 75.0 19.1 66.1
GPT3.5-trb (CoT) 59.0 69.1 60.8 47.3 61.7
GPT4-trb 79.9 86.7 75.9 38.7 77.9

Table 6: Super-category level classification F-scores. C, G, P, and S correspond to CA&CB, GA&GC, PA&PB, and
SA.

Figure 5: The in-context learning result

A.4 Effect of In-context Learning

We investigated the effect of in-context learning
by providing few-shot examples with the prompts.
This was also implemented with DSPy, and we
tried 8 and 32 few-shot samples. The few-shot
samples were the same as in the low-resource ex-
periment. Figure 5 shows the result. GPT3.5-trb
and Mistral7B-Inst appear to have improved its per-
formance through few-shot learning, but GPT4-trb
did not necessarily do so. Appropriate selection of
the few-shot samples may improve performance.
Development data can be used in this context.

A.5 More Predicted Examples

We show additional error output examples in Ta-
ble 7.

A.6 Dataset Availability and License

The original data of our dataset can be obtained
upon a reasonable request to the original data
provider (Holder et al., 2023). Our dataset is sub-
ject to the terms of the work of Holder et al. (2023);
however, we were unable to find the license for
the original data. The copyright of the ads may
belong to the owning entities or the Facebook Ad
Library. Our code, including data preprocessing,
model, and evaluation implementations, will be
distributed under Apache 2.0 License. Please note
that the dataset is intended to be used for research

purposes. In particular, commercial purposes, for
instance, may fall outside the scope of fair use.

A.7 Disclosure of the Use of LLMs
We used OpenAI ChatGPT and DeepL Write in
parts of our paper to translate, correct grammar, and
improve the writing. We declare that the original
text is our own.
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No. Text Gold RoBERTa-large GPT4-trb

1 Americans deserve a reliable, abundant energy source. See how the
abundant supply of natural gas in America plays a critical role in energy
security, strengthening the economy, creating jobs and more:

CA, CB, PA CA, CB, PA CA, CB, PA, SA

2 A proposed clean energy bill in PA aims to support natural gas, electric
and hydrogen vehicles by developing transportation infrastructure. Nat-
ural gas is part of #<Anonymized>’s clean energy future. Learn more:
<URL>

GC GA GC

3 Climate Commitment Announcement: Learn how #<Anonymized> will
achieve its commitment to reduce emissions by 56% in ten years while
on the path to net zero emissions by 2050.

GA, GC, PA GA GA

Table 7: Additional examples of output errors.
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