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Abstract

Reinforcement learning (RL) has been widely
used in training large language models (LLMs)
for preventing unexpected outputs, e.g., reduc-
ing harmfulness and errors. However, exist-
ing RL methods mainly adopt instance-level
reward, which cannot provide fine-grained su-
pervision for complex reasoning tasks. As a
result, the RL training cannot be fully aware
of the specific part or step that actually leads
to the incorrectness in model response. To ad-
dress it, we propose a new RL method named
RLMEC that incorporates a generative model
as the reward model, which is trained by the er-
roneous solution rewriting task under the min-
imum editing constraint, which can produce
token-level supervision for RL training. Based
on the generative reward model, we design the
token-level RL objective for training and an
imitation-based regularization for stabilizing
RL process. And these two objectives focus on
the revision of the key tokens for the erroneous
solution, reducing the effect of other unimpor-
tant tokens. Experiment results on 8 tasks have
demonstrated the effectiveness of our approach.
Our code and data will be publicly released.

1 Introduction

Owing to unsupervised pre-training on large-scale
text corpora, large language models (LLMs) have
shown remarkable performance on various text gen-
eration tasks (Zhao et al., 2023a; Google, 2023),
such as question answering, summarization and
translation (OpenAI, 2023). To further improve the
task solving capacity, researchers (Touvron et al.,
2023; Bai et al., 2023) have proposed supervised
fine-tuning (SFT) and reinforcement learning (RL)
methods, which can better adapt LLMs to specific
domains or downstream tasks after pre-training.
Typically, SFT methods (Ouyang et al., 2022; Long-
pre et al., 2023) incorporate annotated input-output
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Figure 1: The comparison of our generative reward
model and the traditional discriminative one in PPO.
Red and green background colors denote negative and

positive rewards, respectively.

pairs (e.g., question and solution, instruction and re-
sponse) to train the LLM for learning the sequence-
to-sequence pattern; RL methods (Schulman et al.,
2017; Christiano et al., 2017) adopt a reward model
to measure the quality of the generated outputs
from the LLM, and then guide its training for max-
imizing and minimizing the expectation of generat-
ing high-quality and low-quality ones, respectively.

As RL methods are capable of directly reducing
the probability of LLMs for producing unexpected
outputs, they have been widely used in optimizing
LLMs towards better human alignment (e.g., reduc-
ing harmfulness) and stronger ability (e.g., reduc-
ing errors (Luo et al., 2023; Wang et al., 2023b)).
Generally, RL methods first train a discrimination
model for distinguishing desirable and undesirable
outputs. Then, the model is used to produce the
reward scores for the sampled outputs from the
LLM, and the LLM would be trained by encourag-
ing and punishing the generation of high-score and
low-score ones accordingly.

Despite the success, as existing RL methods
mostly utilize instance-level reward for each sam-
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pled output, it is often difficult to provide accu-
rate fine-grained supervision on complex reasoning
tasks (e.g., mathematical reasoning). Concretely,
given a complex task, the sampled outputs from
the LLM tend to be highly similar in surface ex-
pression, only with key differences in few specific
words or steps (Yuan et al., 2023) that determine
the correctness. We argue that instance-level RL
approaches (Ouyang et al., 2022; Christiano et al.,
2017; Zheng et al., 2023b) have two major limi-
tations. First, as the unimportant parts would of-
ten occupy a large amount of supervision signals,
instance-level rewards can not accurately empha-
size the more important evidence related to correct-
ness, leading to inefficient or redundant supervision.
Second, the paired correct and incorrect outputs
may share the overlapping content but receive op-
posite optimization goals, which may lead to the
optimization conflict issue on such overlapped con-
tent, making it still infeasible to provide accurate
fine-grained supervisions.

To address these issues, in this paper, we propose
a novel method, Reinforcement Learning with Min-
imum Editing Constraint (RLMEC), to improve
the training of LLMs by fine-grained supervision
signals. Our approach is inspired by the home-
work correction process of professional teachers,
in which she/he first identifies the incorrect parts
and then provides necessary revisions or comments
accordingly. Following such an idea, we train a
generative reward model by an erroneous solution
rewriting task under the constraint of minimum
editing distance. The reward model plays a similar
role to teachers by producing fine-grained super-
vision, i.e., token-level quality assessment scores.
Instead of using a new demonstration as positive,
our reward model tries to correct the output with
minimum edits. Specially, we utilize the specially
trained reward model to produce the token proba-
bilities for computing the token-level rewards, and
optimize the LLM using the proximal policy opti-
mization method (PPO) (Schulman et al., 2017). In
this way, by contrasting the original and corrected
outputs, the LLM would be instructed more infor-
matively, thus becoming aware of the correct way
to generate the response. Figure 1 illustrates the
comparison of the Vanilla PPO and our proposed
RLMEC approach.

The major novelty of this paper lies in the incor-
poration of a generative reward models with mini-
mum editing constraint for RL training of LLMs.

Table 1 presents the major differences between our
method and previous work. To evaluate the effec-
tiveness of our methods, we conduct the experiment
on two types of complex reasoning tasks, i.e., ques-
tion answering (Aggarwal et al., 2021; Mihaylov
et al., 2018a) and mathematical reasoning (Cobbe
et al., 2021; Hendrycks et al., 2021c). In these
evaluation tasks, our RLMEC mostly outperforms
other competitive SFT and RL methods, based on
7B and 13B LLMs. Moreover, our analysis experi-
ments also show that our method is able to stabilize
the RL training process and reduce the erroneous
steps in the sampled outputs of LLMs.

2 Related Work

Reinforcement Learning for LLMs. With the
development of the LLMs, reinforcement learn-
ing (RL) (Christiano et al., 2017; Ziegler et al.,
2019) is widely utilized to further improve the
ability of LLMs. Proximal Policy Optimization
(PPO) (Schulman et al., 2017) is the traditional
algorithm to employ RL. To provide fine-grained
supervision signals, previous work (Mnih et al.,
2016; Zheng et al., 2023b) utilizes the critic model
to calculate the reward of the current stage. Be-
cause of the instability of the training procedure of
reinforcement learning, recent work (Rafailov et al.,
2023; Liu et al., 2023a; Lu et al., 2022; Zhao et al.,
2023c) has utilized supervised-finetuning (SFT) to
simulate the RL procedure. These methods fuse
the quality of the responses into the supervision
signals. Moreover, existing work (Uesato et al.,
2022; Luo et al., 2023; Wang et al., 2023b,a; Yang
et al., 2023) has found that process-supervision sig-
nals can better guide the training process of LLMs.
Besides, other methods (Swamy et al., 2024; Chen
et al., 2024) improve the ability of LLMs during
self-play procedure. In this work, we proposed a
new RL framework with generative reward model
to directly provide the fine-grained supervisions,
which enable to focus on few key tokens.

LLMs for Reasoning. Previous work utilizes two
types of methods (i.e., prompting and training) to
enhance the reasoning ability of LLMs. For the
prompting methods, Chain-of-Thought (CoT) (Wei
et al., 2022; Kojima et al., 2022) guides LLMs
to generate the intermediate reasoning steps be-
fore generating the final answer. Based on CoT,
previous work decomposes the problem into sev-
eral simple sub-problems (Dua et al., 2022), uti-
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lizes the external tools to help LLMs (Gao et al.,
2022; Yao et al., 2022; Schick et al., 2023; Chen
et al., 2023), designs the specific agents to perform
reasoning (Yin et al., 2023; Du et al., 2023), or
post-process the generated response (Madaan et al.,
2023; Wang et al., 2022). Besides, existing work
also guides LLMs to perform reasoning in the spe-
cific structure, e.g., tree (Yao et al., 2023; Ding
et al., 2023) or graph (Besta et al., 2023). For the
training methods, previous work (Lewkowycz et al.,
2022; Zhao et al., 2022) has leveraged domain-
specific data to fine-tune the LLMs. Because of the
limitation of the training data, the data generated by
teacher model (e.g., GPT-4) is utilized to augment
the training data (Yue et al., 2023; Yu et al., 2023;
Gou et al., 2023; Zhao et al., 2023b; Zhou et al.,
2024). In this work, we aim to train the LLMs via
fine-grained RL to improve their reasoning ability.

3 Preliminary

In this work, we focus on improving the perfor-
mance of LLMs on complex reasoning tasks with
reinforcement learning (RL) algorithm. Typically,
complex reasoning tasks require LLMs to perform
step-by-step reasoning (e.g., chain-of-thought (Wei
et al., 2022; Kojima et al., 2022)) for each question,
where LLMs progressively generate the solution
for reaching the answer. In this process, LLMs are
prone to make mistakes at the intermediate steps,
which likely lead to totally wrong answer (Bang
et al., 2023; Zhang et al., 2023). Our goal is to
optimize a pre-trained LLM using RL algorithm, to
reduce its errors and improve the task performance.

Formally, we are given a collection of question-
solution pairs, denoted asD = {⟨𝑞𝑖 , 𝑠𝑖⟩}𝑛𝑖=1, where
each question and solution are both composed by a
sequence of tokens, denoted as {𝑡0, · · · , 𝑡𝑚}. Then,
we follow the proximal policy optimization (PPO)
framework (Schulman et al., 2017) for RL, and
make improvements about reward model and train-
ing loss. In PPO, the LLM to be optimized is the
policy model, and its original parameters would be
copied to compose the reference model. During
training, the reference model outputs the sampled
solutions for the given question, denoted as 𝑠, and
then the policy model would learn from the feed-
back from a reward model, which produces the
reward 𝑅𝑠 for the sampled output 𝑠. Based on it,
the parameters of the policy model will be opti-
mized to maximize the reward expectation of all

the sampled outputs, and the target function is:

J (𝜃) =
𝑛∑︁
𝑖=1

𝑟 (𝑞𝑖 , 𝑠𝑖) × 𝑅𝑠𝑖 , 𝑟 (𝑞𝑖 , 𝑠𝑖) =
𝑃𝜃 (𝑠𝑖 |𝑞𝑖)
𝑃𝜃 ′ (𝑠𝑖 |𝑞𝑖)

, (1)

where 𝑟 (𝑞𝑖 , 𝑠𝑖) is the coefficient of importance sam-
pling, 𝜃 and 𝜃′ are the parameters of policy model
and reference model, respectively.

4 Approach

In this section, we present our proposed RLMEC, a
new RL approach for improving LLMs on complex
reasoning tasks. In RLMEC, we train a generative
reward model to produce token-level reward scores
for the sampled outputs from the policy model (i.e.,
the LLM), then optimize the policy model via RL
based on the fine-grained rewards. Figure 2 illus-
trates the overall framework of our RLMEC.

4.1 Generative Reward Model Training
To provide fine-grained supervision for RL, we
train a generative model based on the sequence-to-
sequence loss as the reward model. For a given
task, the reward model aims to offer estimations
for all the output tokens about their correctness.
To achieve this, we design an erroneous solution
rewriting task with the constraint of minimum edit-
ing distance to train the reward model, enabling
it to focus on the key tokens that lead to the final
wrong answer for punishing.

Erroneous Solution Rewriting. This task aims
to correct the error tokens in the LLM generated
solutions with minimum edits. Formally, given
the question 𝑞, ground-truth solution 𝑠, and the
generated solution 𝑠, we rewrite 𝑠 into a correct
solution 𝑠. Specifically, we decompose it into two
sub-tasks, i.e., error locating and solution rewriting.
For error locating, the model requires to locate the
first erroneous reasoning step in 𝑠, which would
mislead the following steps into erroneous ones.
Concretely, we split 𝑠 into a sequence of reasoning
steps according to the full stop or question mark:
𝑠 = {𝑟0, 𝑟1, . . . , 𝑟𝑛}. Then, the reward model needs
to find the first undesired reasoning step 𝑟𝑡 based
on the given question and ground-truth solution:

𝑅𝑀 (𝑝𝐿 , 𝑞, 𝑠, 𝑠) → 𝑟𝑡 , (2)

where 𝑝𝐿 is the prompt to guide the model. Then,
for solution rewriting, we leverage another prompt
𝑝𝑅 to guide the reward model that rewrites the
erroneous steps after 𝑟𝑡 in 𝑠 into the correct 𝑠:

𝑅𝑀 (𝑝𝑅 , 𝑞, 𝑠, 𝑠, 𝑟𝑡 ) → 𝑠. (3)
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Rewritten Solution �
... 48 clips in April ...

Prompt ��
Find first error ...

Rewritten Solution �
... 48 clips in April ...

Undesired Steps �
The first error is step [2].

Rewritten Solution �: ... sold 48 clips in April ...
Undesired Steps �: The first error is step [2].

  

Solution Rewriting

Generative Reward Model Training

RL with Fine-grained Supervision

Problem �: Natalia sold clips to 48 of her friends in 
April, and then she sold half as many clips in May ... ...

Generative Reward Model Generative Reward Model

Token-Level Rewards
Producing Rewards

Error Locating

Distillation

Imitation-based Regularization
Rewriting Solution

Generate

Generative Reward Model Generative Reward Model

/

Gen Solution �: Natalia sold 48/2 = 24 clips in May. 
Natalia sold 24/2 = 12 clips in April ... ...

Gen Solution �
... 24/2=12 clips ... 

Gen Solution �: Natalia sold 48/2 = 24 clips in May. 
Natalia sold 24/2 = 12 clips in April ... ...

Ground Truth �
... 48 clips in ... 

Prompt ��
Refine the ...

Gen Solution �
... 24/2=12 clips ... 

Ground Truth �
... 48 clips in ... 

Prompt ��
Refine the ...

Gen Solution �
... 24/2=12 clips ... 

Ground Truth �
... 48 clips in ... 

Prompt ��
Refine the ...

Gen Solution �
... 24/2=12 clips ... 

Ground Truth �
... 48 clips in ... 

Gen Solution �
... 24/2=12 clips ... 

  

Rewards ��,��

... -0.1, -0.1, 0, 0 ...

Figure 2: The overview of our RLMEC. Based on the sampled LLM solutions that contain errors, we train the
generative reward model using the erroneous solution rewriting task and the distilled data with minimum editing
constraint from the teacher model. Then, we perform RL training on the policy model (i.e., our LLM) with
fine-grained supervision using the token-level RL objective and the imitation-based regularization.

By training on the two tasks, the generative reward
model would be able to rewrite erroneous solutions
with the minimum editing constraint.

Distillation with Minimum Editing Constraint.
To train the reward model for fulfilling the above
two subtasks, we collect the data from a powerful
teacher LLM (i.e., Claude 2 (Anthropic, 2023)) to
distill the task knowledge for our reward model,
while other models (e.g., GPT-4) or human anno-
tators can be also applied. Concretely, we first
sample the generated solutions from our LLM, and
select the wrong ones to compose the erroneous
solution set {𝑠}. Then, we feed the given question
𝑞, ground-truth solution 𝑠, and the generated er-
roneous solution 𝑠 into the teacher LLM, and add
several annotated exemplars into the prompt, to
guide the generation of the first error step 𝑟𝑡 and
the correct rewritten solution 𝑠. Here, in-context ex-
emplars are human-crafted high-quality instances,
and the ones for solution rewriting strictly satisfy
the minimum editing constraint with only very few
revised tokens. Therefore, we can obtain high-
quality synthetic distilled data for the two subtasks.
Finally, following Eq. (2) and Eq. (3), we prepare
the inputs and outputs for the two subtasks, and
merge them for training our reward model.

4.2 RL with Fine-grained Supervision

After training the generative reward model, we can
leverage it to produce fine-grained supervision for
the RL training of the policy model (i.e., our LLM).
We obtain the token-level rewards based on the gen-
erated probabilities from the reward model, and de-
sign the token-level RL objective with the imitation-
based regularization for training our LLM.

Token-level Reward Generation. After distilla-
tion, the generative reward model can rewrite the
original solution to provide the correct one. Ow-
ing to the minimum editing constraint, the error
tokens would receive lower probabilities because
they should be replaced by other tokens, and the
correct tokens would obtain higher probabilities.
Therefore, we can utilize the token probabilities
from the reward model to assign the token-level re-
wards. This is quite distinct from the conventional
reward model (Ouyang et al., 2022) which only
produces instance-level reward scores. Concretely,
given the prompt 𝑝𝑅, question 𝑞, ground-truth so-
lution 𝑠, and the sampled solution 𝑠 from our LLM,
the token rewritten probabilities from the genera-
tive reward model are used as the reward scores for
the tokens in 𝑠. To better indicate the token qual-
ity, we normalize the reward scores by subtracting
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them from the median value of the probability (i.e.,
0.5) and then clip the extreme values as:

𝑅𝑠,𝑡 𝑗 = CLIP(𝑃𝑅𝑀
(
𝑡 𝑗 |𝑝𝑅 , 𝑞, 𝑠, 𝑠, 𝑡< 𝑗 ) − 0.5, 𝛼, 𝛽

)
, (4)

where 𝑃𝑅𝑀 (𝑡 𝑗 |𝑝𝑅, 𝑞, 𝑠, 𝑠, 𝑡< 𝑗) is the predicted
probability of the correct token from the reward
model for the 𝑗-th token in 𝑠, and 𝛼 and 𝛽 de-
note the minimum and maximum thresholds for
the reward value. For implementation, we employ
𝛼 = −0.1 and 𝛽 = 0 for the negative samples while
adopt 𝛼 = 0 and 𝛽 = 0.5 for the positive samples.
In this way, for negative samples, the upper thresh-
old 𝛽 = 0 would lead to zero reward scores for all
the non-error tokens, making the policy model only
focus on punishing the error tokens. Otherwise, for
positive samples, the lower threshold 𝛼 = 0 would
assign zero reward score to error tokens, enabling
the policy to focus on learning the correct tokens.

Token-level RL Objective. Given the token-level
reward scores, we perform RL training on the pol-
icy model to correct its behaviors to avoid making
errors. As mentioned in Section 3, we incorpo-
rate the PPO framework for RL, and revise its loss
function to incorporate token-level reward scores.
Concretely, we aim to maximize the expectation
that generates the desired correct tokens in the so-
lution. Thus, the gradients to optimize the policy
model is given as:

∇J𝑅𝐿 (𝜃) =
𝑛∑︁
𝑖=1

∑︁
𝑡 𝑗 ∈𝑠𝑖

𝑟 (𝑞𝑖 , 𝑡 𝑗 )×𝑅𝑠𝑖 ,𝑡 𝑗 ×∇ log 𝑃𝜃 (𝑡 𝑗 |𝑞𝑖 , 𝑡< 𝑗 ),

(5)

where 𝜃 is the parameters of the policy model,
𝑃𝜃 (𝑡 𝑗 |𝑞𝑖 , 𝑡< 𝑗) is the predicted probability of the
𝑗-th token by the policy model, and 𝑟 (𝑞𝑖 , 𝑡 𝑗) is the
coefficient of the importance sampling in PPO as:

𝑟 (𝑞𝑖 , 𝑡 𝑗 ) =
𝑃𝜃 (𝑡 𝑗 |𝑞𝑖 , 𝑡< 𝑗 )
𝑃𝜃 ′ (𝑡 𝑗 |𝑞𝑖 , 𝑡< 𝑗 )

. (6)

Moreover, inspired by existing work (Schulman
et al., 2017; Chen et al., 2019) that clips the gradi-
ents of RL, we design a simplified way that clips
the coefficient of the gradient to reduce the vari-
ance of the reward and prevent the large difference
between the policy and reference model:

min
(
𝑟 (𝑞𝑖 , 𝑡 𝑗 ) × 𝑅𝑠𝑖 ,𝑡 𝑗 , CLIP(𝑟 (𝑞𝑖 , 𝑡 𝑗 ), 1 − 𝜀, 1 + 𝜀) × 𝑅𝑠𝑖 , 𝑗

)
,

(7)

where 𝜀 is a hyperparameter that controls the upper
and lower bounds for positive and negative reward
scores, respectively.

Methods NS RL TLS RM

SFT (Ouyang et al., 2022) ✗ ✗ ✗ -
RFT (Yuan et al., 2023) ✗ ✗ ✗ DIS

CoH (Liu et al., 2023a) ✔ ✗ ✗ -
DPO (Rafailov et al., 2023) ✔ ✗ ✗ -
FIGA (Guo et al., 2023) ✔ ✗ ✔ DIS
PPO (Schulman et al., 2017) ✔ ✔ ✗ DIS

ToRA (Gou et al., 2023) ✔ ✗ ✗ -
Shep. (Wang et al., 2023b) ✔ ✔ ✗ DIS
WMath (Luo et al., 2023) ✔ ✔ ✗ DIS

RLMEC ✔ ✔ ✔ GEN

Table 1: The difference between RLMEC and previous
related work. NS, RL, and TLS denote the usage of
negative samples, reinforcement learning, and token-
level supervision. RM denotes the type of the reward
model. DIS and GEN denote the discriminative reward
model and generative reward model, respectively.

Imitation-based Regularization. As the RL train-
ing process is prone to be unstable, we further de-
sign a regularization loss based on imitation learn-
ing. The policy model is trained to imitate the
generation of the rewritten solution 𝑠𝑖, only based
on the question 𝑞𝑖. To compute the regularization
term, we sample the generated wrong outputs 𝑠
from the policy model, and utilize our generative
reward model to rewrite it into a correct one 𝑠 for
learning. As discussed before, the original solution
𝑠𝑖 may contain only few error tokens that lead to
the wrong solution. Therefore, we consider focus-
ing on these error tokens in 𝑠, and identify them for
targeted learning. Specifically, we leverage the Lev-
enshtein Distance algorithm (Levenshtein, 1965),
an effective method to find the revised tokens in 𝑠,
and employ the token-level weights to emphasize
them. The Levenshtein Distance algorithm utilizes
dynamic programming (DP) to calculate the edit
distance between 𝑠 and 𝑠, and the replaced and
added tokens are selected into the error token set
T . Then, the token-level weight is computed as:

𝑤 𝑗 =

{
𝛾, 𝑡 𝑗 ∈ T
𝜙 × 𝛾, 𝑡 𝑗 ∉ T , (8)

where 𝛾 denotes the weight for emphasized tokens
in T , and 𝜙 is the penalty coefficient for unimpor-
tant tokens. By incorporating term-level weights,
the gradients of the imitation regularization are:

∇L𝐼𝑅 (𝜃) = −
𝑛∑︁
𝑖=1

∑︁
𝑡 𝑗 ∈𝑠𝑖
∇ log 𝑃𝜃 (𝑡 𝑗 |𝑞𝑖 , 𝑡< 𝑗 ) × 𝑤 𝑗 . (9)

Finally, the policy model is optimized by both the
RL objective and imitation-based regularization.
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4.3 Summary and Discussion

Here, we present the summary of our approach and
discuss its difference with existing methods.

Summary. We present the pseudo-code of
RLMEC in Algorithm 1 to better demonstrate
our approach. The procedure of RLMEC can
be divided into two parts, i.e., generative reward
model training and reinforcement learning with
fine-grained supervision. For generative reward
model training, we leverage a teacher model (i.e.,
Claude 2) to synthesize the examples for the error
locating and solution rewriting subtasks, to com-
pose the dataset for distilling our generative reward
model the capability of erroneous solution rewrit-
ing. Then, for RL training, we first generate the
rewards for all the tokens in the sampled solutions
from the policy model using Eq. 4, where we set
suitable thresholds 𝛼 and 𝛽 to control our model
to focus on important tokens in the generated solu-
tions. Based on the token-level reward, we perform
RL training using the PPO framework with the
optimization function Eq. (5), and we design the re-
ward clip strategy using Eq. (7) to prevent extreme
rewards and stabilize the training process. Besides,
we also add the imitation-based regularization us-
ing Eq. (9), to further help our policy model focus
on learning key tokens.

Discussion. In Tabel 1, we present the differ-
ence between RLMEC and the existing work. Pre-
vious work mostly adopts the instance-level re-
ward model, and only FIGA employs the token-
level supervision but does not utilize RL. Besides,
there are several methods (e.g., WizardMath, Math-
Shepherd) that leverage step-level reward to per-
form RL. As a comparison, our proposed RLMEC
enables token-level supervision in the RL frame-
work, and thus can benefit from more fine-grained
supervision and focus on punishing error tokens
during training procedure. A major novelty of our
implementation is that we design the generative
reward model trained by the erroneous solution
rewriting task, to replace the conventional discrimi-
native reward model, which can produce a rewritten
probability of each token that can be naturally used
as token-level supervision. Besides, by comparing
with supervised fine-tuning methods (e.g., SFT and
RFT), our approach can utilize the negative sam-
ples that will not be used by them, which extends
the understanding of failed examples and fully uti-
lizes the data.

Task Train/Test Dataset Num. Data

Math

Train MathInst 118088

Test

GSM8k 1319
MATH 5000
SVAMP 1000

MM 974

QA

Train ECQA 7598
QASC 8134

Test

ECQA 2194
QASC 926
OBQA 500
ARC 2376

Table 2: Statistics of the used datasets. MathInst and
MM denote MathInstruct and the mathematical task in
MMLU, respectively.

5 Experiment

5.1 Experimental Settings

We simply introduce the experimental settings in
this part. More details are shown in Appendix A.2.

Datasets. We employ mathematical tasks and
question-answering tasks for evaluation. The
specifics of each dataset are delineated in Ta-
ble 2. Mathematical tasks include GSM8k (Cobbe
et al., 2021), MATH (Hendrycks et al., 2021c),
SVAMP (Patel et al., 2021) and the mathemati-
cal problems in MMLU (MM) (Hendrycks et al.,
2021b,a). We adopt MathInstruct (Yue et al., 2023)
as the training set and eliminate the code sam-
ples. Question-answering tasks contain ECQA (Ag-
garwal et al., 2021), QASC (Khot et al., 2020),
OpenbookQA (Mihaylov et al., 2018b) and ARC-
Easy (Clark et al., 2018). We merge the training
set of ECQA and QASC, and adopt the mixture as
the training set in the experiment.

Baselines. For a more comprehensive assessment,
we incorporate three categories of methods as base-
line approaches. We conduct the SFT (Ouyang
et al., 2022) and the Rejection sampling Fine-
Tuning (RFT) (Liu et al., 2023b; Yuan et al., 2023)
as the baseline methods of supervised fine-tuning.
To conduct more persuasive experiment, we also
evaluate the variants of RFT, including adding the
ground truth solution, rewritten solution from the
teacher model, and rewritten solution from the gen-
erative reward model, named RFT w/ GT, RFT w/
TD, and RFT w/ RD, respectively. Besides, the
representative methods of alignment without re-
inforcement learning, e.g., DPO (Rafailov et al.,
2023), CoH (Liu et al., 2023a), and FIGA (Guo
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Methods
Question-Answering Tasks Mathematical Tasks

ECQA QASC OBQA ARC Avg. GSM8k MATH SVAMP MM Avg.

7B Parameters LLMs
LLaMA 2 55.97 39.74 48.40 52.48 49.15 11.22 4.80 29.70 28.44 18.54
Vicuna 49.82 32.18 46.40 51.52 44.98 12.20 4.26 24.30 26.08 16.71
WizardLM 36.28 18.68 27.80 46.59 32.34 14.48 3.34 34.80 27.10 19.93
SFT LLM 71.88 55.40 52.00 56.27 58.89 51.02 10.48 47.80 38.50 36.95
+ SFT 70.65 55.94 51.60 56.99 58.80 50.34 11.04 47.20 38.40 36.75
+ RFT 72.24 58.64 55.20 57.15 60.81 49.66 10.80 48.30 39.01 36.94
+ RFT w/ GT 72.47 58.53 53.60 57.11 60.43 49.89 11.26 46.70 38.91 36.69
+ RFT w/ TD 73.11 58.21 54.20 57.53 60.76 51.86 11.04 49.40 38.19 37.62
+ RFT w/ RD 72.47 59.29 54.60 57.03 60.85 51.78 11.24 48.70 40.76 38.12
+ CoH 71.06 54.86 51.40 56.61 58.48 50.11 10.94 48.60 38.50 37.04
+ DPO 72.47 58.53 55.40 55.26 60.42 34.19 5.38 25.80 32.58 24.49
+ FIGA 69.83 52.48 51.00 46.21 54.88 - - - - -
+ Vanilla PPO 72.88 50.22 43.40 56.27 55.69 48.97 10.64 44.90 38.60 35.78
+ PPO A2C 70.83 55.08 52.40 56.02 58.58 50.94 9.38 46.60 38.50 36.36
+ RLMEC 73.66 59.50 56.80 58.50 62.12 51.18 11.16 49.60 40.97 38.23

13B Parameters LLMs
LLaMA 2 61.53 45.46 57.90 64.31 57.30 21.23 6.58 34.40 34.39 24.15
Vicuna 50.14 39.96 48.40 53.70 48.05 24.10 4.74 33.80 29.98 23.16
WizardLM 52.60 40.93 52.30 58.96 51.20 31.01 3.18 52.00 21.36 26.89
SFT LLM 76.12 59.40 60.80 62.46 64.70 56.63 12.74 53.50 41.27 41.04
+ SFT 75.89 57.87 63.40 62.50 64.92 55.88 13.62 58.00 41.27 42.19
+ RFT 75.71 60.48 61.00 64.06 65.31 55.80 13.62 54.10 41.68 41.30
+ RFT w/ GT 76.66 60.37 63.40 63.17 65.90 57.32 13.74 56.70 43.94 42.93
+ RFT w/ TD 76.71 61.56 61.80 64.14 66.05 58.15 13.98 58.80 41.58 43.13
+ RFT w/ RD 76.62 62.20 63.20 63.17 66.30 57.39 14.34 56.20 42.81 42.96
+ CoH 76.62 60.37 59.80 63.93 65.18 57.31 13.10 54.00 42.30 41.68
+ DPO 78.26 61.45 62.20 63.80 66.43 44.20 4.38 39.70 32.14 30.11
+ FIGA 61.21 60.26 52.80 46.34 55.15 - - - - -
+ Vanilla PPO 76.34 57.99 61.80 62.29 64.61 53.45 11.76 55.10 43.12 40.86
+ RLMEC 79.49 64.15 65.60 65.19 68.61 58.15 14.00 60.00 45.07 44.31

Table 3: Experimental results on question answering tasks and mathematical tasks. Avg. is the average accuracy of
all sub-tasks. GT, TD, and RD denote ground truth, the data generated by the teacher model, and the data generated
by the generative reward model. The best are denoted in bold and the second-best are underlined.

et al., 2023) are conducted as the baseline. More-
over, We conduct the vanilla PPO (Schulman
et al., 2017) and Actor-Critic version of PPO (PPO
A2C) (Zheng et al., 2023b) as the baseline of RL
methods. Additionally, we also report the perfor-
mance of base LLMs, including LLaMA 2 (Tou-
vron et al., 2023), Vicuna (Zheng et al., 2023a),
and WizardLM (Xu et al., 2023).

5.2 Main Results
The evaluation results of RLMEC and the baseline
methods are presented in Table 3.

First, RLMEC outperforms other baselines on
the average accuracy of both scenarios. RLMEC
demonstrates a strong capacity to further enhance
the specific ability (e.g., reasoning ability) of LLMs.
With the limited training data, compared with the
previous methods (e.g., RFT, PPO), RLMEC lever-
ages both positive and negative samples to provide
fine-grained supervision signals, guiding LLMs to
focus on the mistakes and correct them.

Second, RLMEC can prevent overfitting during
domain adaption. Previous methods (e.g., SFT)
utilize the data from the training set or gener-
ated by LLMs to fine-tune the LLMs which might
cause overfitting. We can observe that the perfor-
mance decreases after SFT on the unseen tasks
(e.g., OBQA and SVAMP) of the 7B LLM. In con-
trast, the performance of LLMs on all of the unseen
tasks is improved after RLMEC. The reason is that
RLMEC makes LLMs focus on mistakes rather
than correct components and utilize the clip mech-
anism to avoid overfitting.

Third, RLMEC can better leverage the gener-
ated response containing undesired components
than other methods. Comparing the performance of
RLMEC and DPO, we can observe that RLMEC en-
hance the reasoning ability of LLMs in both scenar-
ios, but DPO only works on question-answer tasks.
That is because RLMEC utilizes soft rewards to
indicate positive or negative responses, while DPO
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Methods ECQA ARC GSM8k MM

TLS RL IR Acc. Acc. Acc. Acc.

✔ ✔ ✔ 79.49 65.19 58.15 45.07
✗ ✔ ✔ 78.81 64.52 58.38 44.45
✗ ✗ ✔ 77.85 64.18 58.56 43.84
✔ ✔ ✗ 74.34 61.32 7.35 20.12

Table 4: The results of ablation study on 13B LLMs.
TLS, RL, and IR denote token-level supervision, rein-
forcement learning, and imitation-based regularization.

collects the positive-negative response pairs to train
LLMs which can be regarded as utilizing the hard
labels to identify the quality of generated responses.
Given the quality of generated responses is diffi-
cult to assess, it is hard to collect response pairs
in the challenge tasks (e.g., mathematical tasks).
On mathematical tasks, the performance of DPO is
even worse than the backbone LLM because of the
low quality of the training data.

Finally, token-level supervision signals can fur-
ther improve the performance of the policy model.
The results of vanilla PPO, PPO A2C, and RLMEC
present the importance of fine-grained supervision
signals. Vanilla PPO utilizes instance-level signals
to train the LLMs, which do not conform to real-
ity because the generated response might contain
both desired and undesired components. PPO A2C
trains the critic model to provide fine-grained super-
vision signals which will increase the requirement
of the computation resources. In RLMEC, the gen-
erative reward model is competent to implement
the functionality of the reward model and the critic
model in the PPO A2C at the same time.

5.3 Detailed Analysis

To further verify the effectiveness of RLMEC, we
conduct the ablation study and analyze the model
performance during the training process. Besides,
we analyze the scaling of the generative reward
model and present the case study of supervision
signals and the model outputs in Appendix B and C.

Ablation Study. We evaluate the effectiveness
of token-level supervision, reinforcement learning,
and imitation-based regularization. Results are pre-
sented in Table 4. Given the results of the QA tasks
(i.e., ECQA and ARC), we can observe that remov-
ing any of the modules will hurt the performance
of the LLMs. In the mathematical tasks, without
token-level supervision and reinforcement learn-
ing, LLMs overfit the training set, which brings

RLMEC
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Figure 3: The performance of 7B LLMs on question-
answering tasks during different training strategies. To
better present the difference, we smooth out the lines.

the improvement on the seen task (i.e., GSM8k)
and hurts the performance on the unseen task (i.e.,
MM). The evaluation results demonstrate the abil-
ity of RLMEC to prevent overfitting and achieve
the balance between seen tasks and unseen tasks.
Besides, imitation-based regularization is also an
important module in RLMEC. Without regulariza-
tion, LLMs learn to generate correct responses only
through token-level rewards. Because of the large
search space, it is very difficult for LLMs to find
the correct behavior in the challenge tasks. In the
setting of removing imitation-based regularization,
the decreasing performance on all of the tasks can
verify our analysis.

Performance During Training Process. To com-
prehensively assess the performance of RLMEC,
we conduct experiments on the accuracy of the
training set during the training process. In Figure 3,
we can observe that RLMEC can fit the training set
more effectively and rapidly than other methods
(i.e., RFT and DPO). Around 120 training steps,
the policy model almost fits the training set through
RLMEC. That is because our methods focus on the
mistakes in the generated response and guide LLMs
to correct these errors, which is more efficient. In
contrast, RFT optimizes the whole tokens in the
correct solution which might include many unim-
portant tokens, and DPO is overemphasized about
the negative samples. These futures will decrease
the speed of optimization and hurt the performance.

6 Conclusion

In this paper, we proposed RLMEC, a new rein-
forcement learning framework with minimum edit-
ing constraint, to leverage fine-grained supervision
signals to further improve the ability of LLMs. In
our RLMEC, we first trained the generative reward
model via the erroneous solution rewriting task un-
der the minimum editing constraint, with the help
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of a teacher LLM. Then, we leveraged it to produce
token-level rewards, and devised the token-level RL
objective and an imitation-based regularization for
training our LLM, which both focus on the revision
of the key tokens leading to errors in the solution.
Experimental results on mathematical tasks and
question-answering tasks have demonstrated the
effectiveness of RLMEC.

As future work, we will consider implementing
our RL method on more advanced LLMs to further
improve their performance on complex reasoning
tasks. Besides, we will also evaluate the capacity
of our approach on enhancing human alignment
and reducing hallucination.

Limitations

In this section, we discuss the limitations of our
work. First, in this work, we focus on the complex
reasoning tasks and only conduct experiments on
the QA tasks and mathematical tasks. However,
RLMEC can also be employed in other scenarios,
e.g., human alignment and reducing hallucination,
which has not been verified in this work. We leave
it as the future work. Second, due to the limitation
of computing resources, we only assess the perfor-
mance of RLMEC on 7B and 13B LLMs, without
the experiments on larger LLMs. Actually, by com-
paring the performance of baseline methods and
RLMEC on 7B and 13B LLMs, we can observe
the effectiveness of RLMEC. Third, our approach
mainly focuses on enhancing LLMs on complex
reasoning tasks, and does not consider the possi-
ble bias and ethic risks when using LLMs. It is
also a promising direction that our RLMEC can be
applied to, and we will investigate it in the future.
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(a) Edit distance between refined responses and predictions.

(b) Accuracy of the refined response.

Figure 4: The comparison of the rewriting performance
of teacher model and generative reward model. TM
and GRM denote the response refined by the teacher
model and the generative reward model, respectively.
GT denotes the ground truth solution of the problems.

A Details for RLMEC

A.1 Prompts for Generative Reward Model
Training

We present the template of the prompt for teacher
model distillation, and generative reward model
training and inference in Table 5 and Table 6, re-
spectively. In practice, the information (i.e., ques-
tion 𝑞, Ground-Truth Solution 𝑠 and Generated
Erroneous Solution 𝑠) should be filled into the cor-
responding curly brackets. For error locating task,
to better guide teacher model and generative reward
model to figure out the first undesired step, we uti-
lize the index to format the ground-truth solution.
The formatted solution is as follows,

[0] The First Reasoning Step 𝑟0
[1] The Second Reasoning Step 𝑟1
· · ·
[𝑛] The Last Reasoning Step 𝑟𝑛
For the generative reward model, the training

instruction and inference prompt are similar. The
target output of the training procedure (i.e., the
bold sentence in the table) will be removed during
inference.

A.2 Implementation Details for Experiments

Datasets. We employ mathematical tasks and
question-answering tasks for evaluation. Success-

Figure 5: The position of the first error in the generated
solution. The X-axis denotes how many reasoning steps
between the first error and the final answer, and the Y-
axis is the ratio of the corresponding problems in these
problems.

fully solving these tasks necessitates LLMs to pos-
sess domain-specific knowledge and engage in sys-
tematic, step-by-step reasoning to reach the ulti-
mate answer. The specifics of each dataset are
delineated in Table 2.
• Mathematical tasks include GSM8k (Cobbe

et al., 2021), MATH (Hendrycks et al., 2021c),
SVAMP (Patel et al., 2021) and the mathemati-
cal problems in MMLU (MM) (Hendrycks et al.,
2021b,a). We adopt MathInstruct (Yue et al., 2023)
as the training set and eliminate the code samples.
Given MathInstruct contains the training set of
GSM8k and MATH, they are seen tasks for LLMs,
while SVAMP and MM are unseen tasks.
• Question-answering tasks contain ECQA (Ag-

garwal et al., 2021), QASC (Khot et al., 2020),
OpenbookQA (Mihaylov et al., 2018b) and ARC-
Easy (Clark et al., 2018). We merge the training set
of ECQA and QASC, and adopt the mixture as the
training set in the experiment, Therefore, ECQA
and QASC are seen tasks for LLMs, while Open-
bookQA and ARC are unseen tasks for LLMs.

Baselines. For a more comprehensive assessment,
we incorporate three categories of methods as base-
line approaches. including supervised fine-tuning,
alignment without reinforcement learning, and re-
inforcement learning.
• Supervised Fine-tuning trains LLMs to imi-

tate the human desired behavior. We conduct the
SFT (Ouyang et al., 2022) and the Rejection sam-
pling Fine-Tuning (RFT) (Liu et al., 2023b; Yuan
et al., 2023) as the baseline methods.
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Error
Locating

Given the problem, correct solution and the prediction from language models. The method in prediction
might be different with correct solution, but it is also correct. You need to identify which step of the
prediction is the first wrong step, and write down the label of the first wrong step.

Problem: {Problem 𝑞}

Correct solution: {Formatted Ground-Truth Solution 𝑠}

Prediction: {Generated Erroneous Solution 𝑠}

Which step of prediction is error? Only write down the label of the first wrong step. If the prediction is
correct, you need to write down correct. You should not write down any other words.

Solution
Rewriting

Given the problem and the correct solution, you need to correct the mistakes in prediction to get the
correct answer. You should make minimal modifications.

Problem: {Problem 𝑞}

Correct solution: {Generated Erroneous Solution 𝑠}

Prediction: {Generated Erroneous Solution 𝑠}

Correct prediction:

Table 5: The prompt for the teacher model distillation.

• Alignment without Reinforcement Learning is
the method to align LLMs to human preference
and prevent instability in reinforcement learning.
Representative methods, e.g., DPO (Rafailov et al.,
2023), CoH (Liu et al., 2023a), and FIGA (Guo
et al., 2023) are conducted as the baseline.
• Reinforcement Learning is the traditional

method to guide LLMs to explore the world and
learn from external feedback. PPO (Schulman
et al., 2017) is the classical algorithm to employ
reinforcement learning. We conduct the vanilla
PPO (Schulman et al., 2017) and Actor-Critic ver-
sion of PPO (PPO A2C) (Zheng et al., 2023b) in
the experiment.

Moreover, we also report the performance of
base LLMs, including LLaMA 2 (Touvron et al.,
2023), Vicuna (Zheng et al., 2023a), and Wiz-
ardLM (Xu et al., 2023).

Hyper-Parameters Setting. In the experiment, we
adopt Claude 2 (Anthropic, 2023) as the teacher
model. For backbone LLMs, we utilize the mixture
dataset of ECQA and QASC to fine-tune LLaMA
2 (Touvron et al., 2023) to obtain the domain-
adapted SFT backbone model in QA tasks, and
adopt MAmmoTH (Yue et al., 2023) as the back-
bone model for mathematical tasks. The backbone
LLMs of the policy model and the generative re-
ward model are the same SFT LLMs. In the train-
ing procedure, we employ 5 × 10−6 as the learning
rate for all tasks and train LLMs for 1 epoch. Be-
sides, we set 128 and 768 as the batch size for

QA tasks and mathematical tasks. For the value
of 𝜀, we leverage 0.3 and 0.4 for 7B model and
13B model, respectively. Because the LLMs have
adapted to the corresponding domain after training,
we adopt the 0-shot setting during evaluation.

B Performance Analysis of RLMEC

B.1 Analysis of Generative Reward Model.

The effectiveness of the generative reward model
will influence the quality of the token-level rewards
and the refined response. Thus, we present the
comparison of the teacher model and the genera-
tive reward model on QA tasks in Figure 4. We
can observe that both the teacher model and the
generative reward model can significantly reduce
the edit distance and even perform slightly better
than the teacher model. That is because we uti-
lize the two-stage prompting strategy to distillate
knowledge from the teacher model and conduct the
high-quality data to fine-tune the generative reward
model. Through fine-tuning, it can adapt to the
erroneous solution rewriting task well. Moreover,
the teacher model and the generative reward model
have shown similar performance on the accuracy
of the refined responses, which verifies that the
rewriting task can be easily learned by the LLMs
with smaller parameters. Besides, given the perfor-
mance of RFT w/ TD and RFT w/ RD in Table 3,
we can observe that the higher accuracy of the re-
fined responses will lead to higher performance in
downstream tasks through simply supervised fine-
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Error
Locating

Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
Given the problem, correct solution and the prediction from language models. The method in prediction
might be different with correct solution, but it is also correct. You need to identify which step of the
prediction is the first wrong step, and write down the label of the first wrong step.

### Input:
Problem: {Question 𝑞}
Correct solution: {Formatted Ground-Truth Solution 𝑠}
Prediction: {Generated Erroneous Solution 𝑠}

### Response:
The first error step is [{First Undesired Reasoning Step 𝑟𝑡 }]

Solution
Rewriting

Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
Given the problem and the correct solution, you need to correct the mistakes in prediction to get the
correct answer. You should make minimal modifications.

### Input:
Problem: {Question 𝑞}
Correct solution: {Ground-Truth Solution 𝑠}
Prediction: {Generated Erroneous Solution 𝑠}

### Response:
Correct prediction:{refined solution 𝑠}

Table 6: The instruction for the generative reward model training. The bold sentence will be utilized to optimize
the generative reward model in cross entropy loss. The prompt for inference is the same as the training instruction
without the bold part.

GRM
PM 7B PM 13B PM

QA Math QA Math

7B GRM 62.12 38.23 66.40 43.74
13B GRM 61.32 37.46 68.61 44.31

Table 7: The comparison of the different scaling of
the generative reward model. GRM and PM denote the
generative reward model and policy model, respectively.

tuning.

B.2 Scaling Analysis of Reward Model.

To explore the influence of the scale of the genera-
tive reward model, we conduct the experiment and
present the results in Table 7. For both 7B and 13B
LLMs, the rewriting model trained from the same
backbone LLMs with the policy model performs
better. The potential reason might be that the pol-
icy model and the rewriting model with the same
backbone model will have a similar distribution.
In this situation, the rewriting model can provide
appropriate supervision signals and better guide the
training process.

B.3 Position of the First Error

We conduct experiments about the position of the
first error in the generated response after training.

The results are shown in Figure 5, respectively.
Rhe experiment on the position of the first error
can verify the effectiveness of RLMEC. Compared
with the backbone LLMs, the first error appears
later after RLMEC. For example, after RLMEC,
the number of problems where the first error occurs
before the final answer 7 steps (i.e., the third col-
umn on the right) has increased, while the number
of problems where the first error occurs more than
7 steps has decreased. The reason is that LLMs
focus on the mistakes and learn to correct the early
errors during RLMEC. In the ideal situation, all
of the mistakes will be corrected through further
training. In contrast, after training through other
methods, the position of the first error is irregular,
which means that these methods do not consider
the mistakes in the generated response and guide
LLMs to learn to generate the correct solution with-
out purposiveness.

C Case Study

C.1 Analysis of the Supervision Signals

We present the case study about the reward from
different methods in Table 8. To better express the
difference, we do not employ the clip mechanism
in the case study. From the results, we can observe
that the reasoning step of the generated solution is
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Algorithm 1: The RLMEC algorithm.
Input :Training set D = {⟨𝑞𝑖 , 𝑠𝑖⟩}𝑛𝑖=1, the teacher

model (Claude 2), and the parameters of
SFT model 𝜃𝑆𝐹𝑇 .

Output :A well trained policy model.

Initialize the parameters of the generative reward
model: 𝜃𝐺𝑅𝑀 ← 𝜃𝑆𝐹𝑇 ;

Initialize the parameters of the policy model:
𝜃 ← 𝜃𝑆𝐹𝑇 ;

// Generative Reward Model Training
for each instance ⟨𝑞𝑖 , 𝑠𝑖⟩ in D do

The policy model generates 𝑠𝑖 based on 𝑞𝑖 ;
if the data is sampled then

The teacher model locals the first error at 𝑟𝑖
using Eq. 2;

The teacher model rewrites 𝑠𝑖 to obtain 𝑠𝑖
using Eq. 3;

Use 𝑞𝑖 , 𝑠𝑖 , 𝑠𝑖 , 𝑟𝑖 , and 𝑠𝑖 to construct D′;
Leverage D′ to supervised-finetune the generative

reward model through Seq2Seq training paradigm;

// RL with Fine-grained Supervision
for each instance ⟨𝑞𝑖 , 𝑠𝑖 , 𝑠𝑖 , 𝑟𝑖 , 𝑠𝑖⟩ in D′ do

Generate the token-level rewards using Eq. 4;
Compute the reward J𝑅𝐿 (𝜃) using Eq. 5;
Use Levenshtein Distance algorithm to compute

the token-level weight;
Compute the loss of imitation-based

regularization L𝐼𝑅 (𝜃);
Update 𝜃 through J𝑅𝐿 (𝜃) and L𝐼𝑅 (𝜃);

correct but the final answer is error. In PPO A2C,
the reward will be calculated by the reward model
and the critic model. The tokens generated earlier
will receive a lower reward, which is contradictory
to reality. That is because PPO A2C has assumed
that the previous token will influence the last token.
In this case, once the generated solution contains
the wrong answer, the rewards of the previous to-
kens are likely lower than the last tokens. In con-
trast, we leverage the generative reward model to
generate the reward in RLMEC. The reward of the
current token is calculated based on the previous
tokens. Therefore, the rewriting model in RLMEC
can better indicate whether the token is correct and
provide high-quality token-level supervision sig-
nals. Besides, for the outcome-supervised method
(i.e., Vanilla PPO), the reward of each token is
equivalent and is based on whether the generated
solution is correct. This method cannot describe the
correctness of the tokens in the generated response.

C.2 Analysis of the Generated Responses

To further demonstrate the effectiveness of
RLMEC, we present the case study about the per-
formance of the LLMs trained by different methods
in Table 9 and Table 10. In both cases, our proposed

RLMEC can help the LLMs to focus on the previ-
ous errors and correct the errors in the next time
generation. Concretely, in the question-answering
tasks, the keywords of the problem are “even if they
get it”. After being trained through RLMEC, the
LLMs can understand the meaning of the problem,
figure the key point, and reach the correct answer.
However, through other methods, the LLM is still
unable to grasp the key works in the problem and
generate the answer about the emotion of losing the
job. Moreover, for mathematical problem, the LLM
have made the mistake in calculating “12−15”. The
LLM trained by baseline methods still make simi-
lar mistakes. This case has shown that it is difficult
for the previous methods to generate the supervised
signals which can directly indicate the mistakes in
the generated content and guide the LLMs to cor-
rect the errors. In contrast, RLMEC leverages the
generative reward model to provide the token-level
supervised signals and guide the LLMs to focus
on the mistakes. Therefore, through RLMEC, the
LLMs can correct the previous errors and obtain
the correct answer.
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Problem Look at this series: 1.25, 7.5, ____, 270, 1620, ... What number should fill the blank?
Answer Choices: (A) 50 (B) 65 (C) 45 (D) 55 (E) 40

Ground Truth
Solution

Let’s think about the multi-choice question.
This is a simple multiplication series. Each number is 6 times greater than the previous number.
The answer is C

Generated So-
lution

Let’s think about the multi-choice question step by step.
This is a simple multiplication series. Each number is 6 times greater than the previous number.
The answer is B

Rewards from
RLMEC

Let’s think about the multi-choice question step by step .
This is a simple multiplication series. Each number is 6 times greater than the previous number .
The answer is B

Rewards from
PPO A2C

Let’s think about the multi-choice question step by step .
This is a simple multiplication series . Each number is 6 times greater than the previous number .
The answer is B

Rewards from
Vanilla PPO

Let’s think about the multi-choice question step by step .
This is a simple multiplication series .Each number is 6 times greater than the previous number .
The answer is B

Table 8: The comparison of the reward of the generated solution from different methods. We use different
background colors to indicate the reward. The color changing from red to green denotes the reward changing from
negative to positive .

Problem

Below is an instruction that describes a task. Write a response that appropriately completes the request.

### Instruction:
Applying for a job can make someone feel what sort of emotion, even if they get it?
Options:
working hard
frustration
rejection
defeat
stress

### Response: Let’s think step by step.

Ground-
Truth
Solution

Stress is a feeling of tension about uncertainty.
Applying for a job has an uncertain outcome.
The answer is stress

Generated
Solution
Before
Training

Applying for a job is followed by attending an interview.
Attending an interview gives rejection or acceptance.
Rejection is an emotion.
The answer is rejection

Generated
Solution Af-
ter RLMEC

Applying for a job can make someone feel stress even if they get it.
Stress is an emotion.
The answer is stress

Generated
Solution
After RFT

Applying for a job is followed by attending an interview.
Attending an interview gives rejection or acceptance.
Rejection is an emotion.
The answer is rejection

Generated
Solution
After DPO

Frustration is the feeling of being upset or annoyed as a result of being unable to change or achieve
something.
Applying for a job can make someone feel frustration even if they get it.
The answer is frustration

Generated
Solution
After PPO
A2C

Applying for a job is followed by attending an interview.
Attending an interview gives an opportunity to sell one’s skills and abilities to the employer.
Employer decides the suitability of the candidate based on his skills and abilities.
If the employer rejects the candidate, he feels frustrated.
The answer is frustration

Table 9: The case study for question-answering tasks.
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Problem

Below is an instruction that describes a task. Write a response that appropriately completes the request.

### Instruction:
A waiter had 12 customers. While 15 customers left he got 14 new customers. How many customers
does he still have?

### Response: Let’s think step by step.

Generated
Solution
Before
Training

The waiter has 12-15=3 customers left.
He got 14+3=17 customers.
The answer is 17

Generated
Solution Af-
ter RLMEC

The waiter had 12 customers + 14 customers = 26 customers.
But since 15 customers left, he now has 26 customers - 15 customers = 11 customers.
The answer is 11

Generated
Solution
After RFT

The waiter has 12-15=3 customers left.
He has 14+3=17 customers now.
The answer is 17

Generated
Solution
After PPO
A2C

The waiter has 12-15=3 customers left.
He got 14+3=17 customers.
The answer is 17

Table 10: The case study for mathematical tasks.
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