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Abstract

In this paper, we introduce COCONUT to ef-
fectively guide the contextualization of struc-
tured commonsense knowledge based on large
language models. COCONUT employs a con-
textualized knowledge prompting scheme to
gather high-quality contextualization examples
from a large language model. These examples
are subsequently distilled into small language
models to enhance their contextualization ca-
pability. Extensive evaluations show that CO-
CONUT considerably improves commonsense
reasoning performance across diverse bench-
marks, models, and settings, exhibiting its flex-
ibility and universality in generating contex-
tualized commonsense knowledge. Notably,
COCONUT consistently outperforms the state-
of-the-art technique by an average of 5.8%1.

1 Introduction

Commonsense reasoning constitutes a signifi-
cant challenge within natural language processing.
While scaling language models using considerably
more data and parameters has led to significant
improvements in commonsense reasoning tasks
(Brown et al., 2020), several studies have demon-
strated that pre-trained language models possess
a limited understanding of commonsense knowl-
edge (Sakaguchi et al., 2020; Talmor et al., 2022).
These have triggered approaches to integrate exter-
nal knowledge into language models to improve
their commonsense reasoning abilities.

To enhance the commonsense capability of lan-
guage models, typical approaches draw common-
sense knowledge from symbolic commonsense
knowledge graphs (CSKGs) (Speer et al., 2017;
Hwang et al., 2020), which are repositories en-
capsulating hand-crafted commonsense knowledge
about objects, concepts, and events. These ap-
proaches augment language model representations

1The code is available at https://github.com/
irishev/Coconut
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Figure 1: Illustration of COCONUT. COCONUT learns
to contextualize structured knowledge within common-
sense questions via contextualized knowledge prompt-
ing. During inference, COCONUT generates contextual-
ized knowledge, which can be readily integrated by the
concatenation with given questions.

with the structural and relational information in
CSKGs (Lin et al., 2019; Zhang et al., 2022). Even
though there exists an open question regarding
whether pre-trained language models already en-
code the knowledge in CSKGs, substantial research
has indicated that these approaches (Zhou et al.,
2021; Lourie et al., 2021; Yasunaga et al., 2021;
Zhang et al., 2022) facilitate language models to
utilize the knowledge, leading to improvements on
commonsense reasoning performance.

These approaches essentially involve contextu-
alization, which refers to the interpretation and
application of knowledge tuples within the specific
context provided by a commonsense reasoning ex-
ample. Contextualization is a crucial but difficult
step due to the diversity and obscurity of the un-
derlying commonsense knowledge that grounds
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Q. What do people use to absorb extra ink from a fountain pen?
(A) shirt pocket  (B) calligrapher’s hand  (C) inkwell  (D) desk drawer  (E) blotter
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Figure 2: Illustration of contextualized knowledge prompting. Considering the given context, a large language
model selectively links and retrieves relevant knowledge from CSKGs (§2.2), and then elaborates on the retrieved
knowledge (§2.3). We generate the examples of these two contextualization processes, and subsequently distill the
generated examples into COCONUT models.

the reasoning process (Liu et al., 2022a). Since
most CSKGs provide simple, abstract descriptions
of commonsense knowledge without specifying
where and how the knowledge can be applied, ex-
isting methods largely lean on language models for
contextualization. However, considering the lim-
ited commonsense capabilities of language mod-
els, this could lead to spurious contextualization,
potentially degrading the commonsense reasoning
performance. Particularly, small language models,
known to have poor knowledge and reasoning abil-
ity to fill empty contexts, are expected to be more
vulnerable to spurious contextualization.

In this paper, we propose a novel framework,
called COCONUT (COntextualized COmmonseNse
Unified Transformers), which augments language
models with contextualized commonsense knowl-
edge. COCONUT contextualizes the structured
knowledge in CSKGs for specific commonsense
questions, trained by explicit, direct guidance from
large language models. To overcome the lack of
data and costly human annotations, we present
a contextualized knowledge prompting scheme,
where humans construct a few contextualization ex-
amples and then large language models extend the
human-curated data into a million-scale via prompt-
ing. Following the scheme, we generate examples
to guide the contextualization, and subsequently
train COCONUT models on the generated data via
symbolic knowledge distillation (West et al., 2022).

We extensively evaluate and analyze COCONUT

with popular QA models on diverse commonsense
reasoning benchmarks. Experimental results show
that COCONUT delivers significant performance
improvements on commonsense reasoning in both
zero-shot and fine-tuned settings, demonstrating
the efficacy of the proposed framework. Notably,

COCONUT consistently outperforms state-of-the-
art knowledge augmentation methods by an aver-
age of 5.8%. The main contributions of this work
are summarized as follows:

• We propose COCONUT, a novel framework
that augments models with contextualized
commonsense knowledge from structured
knowledge in CSKGs.

• We present a novel contextualized knowledge
prompting scheme to generate contextualiza-
tion examples from commonsense questions
and CSKGs using a large language model.

• We demonstrate the efficacy of providing con-
textualized knowledge through extensive ex-
periments.

2 Contextualized Knowledge Prompting

In this section, we present a contextualized knowl-
edge prompting scheme, which generates contextu-
alization examples using commonsense questions
and CSKGs. Specifically, we prompt language
models to generate examples of context-aware link
and knowledge contextualization, as illustrated in
Figure 2.

2.1 Notation

We first define ConceptNet, utilized as a CSKG
in this work, as G = (V, E), where V is the set
of nodes and E is the set of edges. Its knowledge
tuple {s, r, o} ∈ E consists of a source concept
s ∈ V , a relation type r, and a target concept
o ∈ V . For example, given a knowledge tuple
{food, LocatedAt, refrigerator}, the source concept
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Figure 3: Illustration of generating contextualized knowledge using COCONUT linker and generator.

“food” is related to the target concept “refrigera-
tor” by the relation “LocatedAt”, which represents
that food is typically located at a refrigerator. In
addition, a multiple-choice commonsense question-
answering task requires predicting the answer a
given a question qi and a finite set of candidates
Ci = {c0i , c1i , ...cNi }, where N is the number of
candidates and a ∈ Ci. For example, a Common-
senseQA example consists of the question “The
accountant used a calculator regularly, he kept one
at home and one at the what?”, the set of candidates
{“desk drawer”, “desktop”, “office”, “wristwatch”,
“city hall”}, and the answer “office”.

2.2 Generating Context-aware Link Examples
via Prompting

Typical knowledge integration methods (Yasunaga
et al., 2021, 2022) retrieve the knowledge by link-
ing entities in a question and its candidates with
the matching nodes in CSKGs and then selecting
the knowledge tuples that connect an entity in the
question with an entity in the candidates. However,
numerous irrelevant entities may be linked during
the process, resulting in excessive and redundant
knowledge tuples to be retrieved.

To address the issue, we present a context-aware
knowledge retrieval method to link entities highly
relevant to the context. We first identify all en-
tities that appear in a question qi and each of its
candidates cji as follows:

Zqi = {z|z ∈ ngram(qi), z ∈ V }
Z
cji

= {z|z ∈ ngram(cji ), z ∈ V }, (1)

where ngram(·) is a function that extracts word
n-grams from an input text. Then, we manually
select relevant and helpful entities in qi. Following
this process, we craft ten examples per common-
sense question-answering task, and write a prompt
template as follows:

Find words or phrases relevant to the question. 
Examples:

Question: How does getting paid feel?
Keywords: paid, feel                

…

Question: Where can meat last a long time?
Keywords:

where the blue, green, and orange texts denote an
instruction, a demonstration, and a new example,
respectively. Given this prompt template filled with
a new question, a large language model generates
relevant entities for every question in a common-
sense question-answering dataset as follows:

tl ∼ Plm(t|T (qi)) (2)

where Plm is the probability distribution of the
language model prediction and T (·) is a function
that fills the prompt template using a given input.
The generated result tl is a textual sequence of
relevant entities “x1qi , x

2
qi , ...” separated by comma.

By using the set of generated entities Xqi , we can
extract relevant knowledge tuples as follows:

Kj
i =

⋃

x∈Xqi

⋃

y∈Z
c
j
i

path(x, y, E)
(3)

where path(s, t, E) is a function that finds the set
of knowledge tuples connecting s to t in the set of
edges E. It is noteworthy that we generate link ex-
amples only for commonsense questions involving
more than four words.

2.3 Generating Knowledge Contextualization
Examples via Prompting

We generate contextualized knowledge statements
from retrieved knowledge tuples using a large lan-
guage model. We first construct few-shot examples
and design templates to prompt effective contextu-
alized knowledge. Our primary goal is to provide
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more detailed information about how a knowledge
statement from CSKGs can be connected to a given
situation. To achieve this, we first verbalize the re-
trieved knowledge tuples using our templates and
craft ten demonstration examples per task, each of
which provides a description that contextualizes
the knowledge. We utilize two prompt formats
considering two possible commonsense generation
scenarios: (1) commonsense fact generation and
(2) contrastive commonsense generation.

Commonsense fact generation addresses rea-
soning over common facts such as “Birds have
two wings.” or “Winning lottery tickets give a
lot of money.”. Humans write contextualization
examples from a question, its answer, and the re-
trieved knowledge. We convert the Winogrande
(Sakaguchi et al., 2020), CommonsenseQA 2.0
(Talmor et al., 2022), Com2sense (Singh et al.,
2021), ComVE (Wang et al., 2020), and Gener-
icsKB (Bhakthavatsalam et al., 2020) datasets into
the true or false examples and then utilize them
as the seeds. An example prompt template used
in commonsense fact generation is as follows:

Write new knowledge based on the given 
knowledge to explain the correctness of a 
question. Examples:

Question: The letter that Joel has written …
Answer: True              
Given Knowledge: writer is related to write …      
New Knowledge: Joel being the writer of the 
letter is supported by the statement that …

…

Question: Sarah Jane’s watch smashed when …
Answer: False
Given Knowledge: smash is related to activity …
New Knowledge:

Since the knowledge tuple extraction using the can-
didates of converted examples (true or false) may
not provide meaningful relational knowledge, we
consider the generated question entities Xqi as the
candidate entities and then extract knowledge tu-
ples Ki. Given the prompt template filled with a
new question qi, its answer a, and the set of rele-
vant knowledge tuples Ki, a large language model
generates contextualized knowledge as follows:

tc ∼ Plm(t|T (qi, a,Ki)) (4)

The generated result tc is a contextualized knowl-
edge statement.

Contrastive commonsense generation ad-
dresses reasoning by comparing the plausibilities

of multiple candidates, such as “A rose garden
provides a vast and continuous source of nectar to
bees, while a bouquet of flowers is not a natural
environment for bees”. Humans write a reason
why the answer candidate is more plausible than
the other candidate based on the context and
retrieved knowledge. We utilize the Common-
senseQA (Talmor et al., 2019), PhysicalIQA
(Bisk et al., 2020), SocialIQA (Sap et al., 2019),
OpenBookQA (Mihaylov et al., 2018), QASC
(Khot et al., 2020), ARC (Bhakthavatsalam et al.,
2021), and SyntheticQA (Wang et al., 2023)
datasets. An example prompt template used in
contrastive commonsense generation is as follows:

Write new knowledge based on the given 
knowledge to explain the correct and wrong 
options for a question. Examples:

Question: How does getting paid feel?     
Correct Option: satisfaction              
Wrong Option: bill collectors to happy
Given Knowledge: pride is related to 
satisfaction. …      
New Knowledge: Getting paid is intrinsically 
linked to the feeling of satisfaction, …

…

Question: Where can meat last a long time?
Correct Option: freezer
Wrong Option: butcher shop
Given Knowledge: meat is located at freezer. …
New Knowledge:

Given this prompt template filled with a new
question qi, its answer cmi , one of its wrong candi-
date cni , and the set of relevant knowledge tuples
J = Km

i ∪Kn
i , a large language model generates

contextualized knowledge as follows:

tc ∼ Plm(t|T (qi, cmi , cni , J)) (5)

Note that the answer information is only used in the
prompting stage to generate more accurate contex-
tualization examples, and completely excluded in
the training and inference with COCONUT models.

3 COCONUT

In this section, we introduce COCONUT, a frame-
work designed to augment language models with
contextualized commonsense knowledge. We
present two COCONUT models: (1) COCONUT

linker and (2) COCONUT generator. These two
models generate contextualized knowledge from
commonsense reasoning examples, as described
in Figure 3. Then, we describe the integration of
the contextualized knowledge generated by the CO-
CONUT models.
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3.1 COCONUT Linker
We train a COCONUT linker on the generated
context-aware link examples in §2.2. Given a ques-
tion qi, the objective function for training can be
formulated as:

Llink = Etl∼Plm(t|T (·))[−
|tl|∑

j=1

logPl(t
j
l |qi, t

<j
l )],

(6)
where Pl is the probability distribution of the
COCONUT linker prediction. Using a trained
COCONUT linker, we can generate relevant enti-
ties from a new question qh without task-specific
prompt templates:

t̂l ∼ Pl(t|qh) (7)

From the set of relevant entities X̂qh in t̂l, we can
extract relevant knowledge tuples as follows:

K̂j
h =

⋃

x∈X̂qh

⋃

y∈Z
c
j
h

path(x, y, E)
(8)

3.2 COCONUT Generator
We train a COCONUT generator on the gener-
ated knowledge contextualization examples in §2.3.
Given a question qi, its candidates Ci, and its rele-
vant knowledge tuples Ki, the objective function
for training can be formulated as:

Lgen =Etc∼Plm(t|T (·))

[−
|tc|∑

j=1

logPg(t
j
c|qi, Ci,Ki, t

<j
c )],

(9)

where Pg is the probability distribution of the CO-
CONUT generator prediction. Using a trained CO-
CONUT generator, we can generate contextualized
knowledge from a new question qh, its candidates
Ch, its set of relevant knowledge tuples Kh:

t̂c ∼ Pg(t|qh, Ch,Kh) (10)

3.3 Contextualized Knowledge Integration
We prompt an inference model, i.e., a language
model or a question-answering model, by concate-
nating each generated knowledge statement kmi to
the question qi and candidates Ci. We concate-
nate a question and its generated knowledge state-
ment by following the default question-answering
prompt format of the inference model. For exam-
ple, UnifiedQA (Khashabi et al., 2020) uses a for-
mat that involves context, question, and candidate

fields with symbols in order, while using “\n” as
a delimiter. Therefore, the concatenation process
qi ◦ Ci ◦ kmi = “{qi} \n {kmi} \n (A) {c0i} ...”.

Following the pre-defined format, we calculate
the probability of each candidate for each concate-
nated knowledge statement and average the proba-
bilities to aggregate the scores. Given the generated
knowledge set K̂i = {k̂0i , k̂1i , ..., k̂Mi }, the score of
a candidate cni is calculated as follows:

score(qi, cni ,Ki) =

∑M
j pinf (c

n
i |qi, kji )

M
. (11)

where pinf denotes an inference model. The final
prediction ĉi is the candidate that maximizes the
score as follows:

ĉi = argmaxx∈Ci
score(qi, x,Ki). (12)

4 Experiments

COCONUT establishes new state-of-the-art results
on our evaluation benchmarks, significantly im-
proving the commonsense reasoning performance
of diverse inference models.

4.1 Experimental Setup
Datasets. Consistent with Liu et al. (2022a),
we first evaluate the commonsense reasoning per-
formance on eight seen datasets: OpenBookQA
(Mihaylov et al., 2018), ARC easy/hard (Bhak-
thavatsalam et al., 2021), CommonsenseQA (Tal-
mor et al., 2019), QASC (Khot et al., 2020),
PhysicalIQA (Bisk et al., 2020), SocialIQA (Sap
et al., 2019), and Winogrande (Sakaguchi et al.,
2020). In addition, we evaluate the performance
on four unseen commonsense reasoning datasets:
NumerSense (Lin et al., 2020), RiddleSense (Lin
et al., 2021), QuaRTz (Tafjord et al., 2019), and
HellaSwag (Zellers et al., 2019). The official train,
dev, and test splits of these benchmarks are em-
ployed for training and evaluation purposes.

Models. For prompting, we use LLaMA-65B
(Touvron et al., 2023). We evaluate two combi-
nations of the COCONUT linker and generator: Us-
ing T5-large and T5-3B as the generators, which
are denoted as COCONUT-large and COCONUT-
3B, respectively, while fixing the T5-small-based
linker. For inference models, we mainly use Uni-
fiedQA (Khashabi et al., 2020) and UnifiedQAv2
(Khashabi et al., 2022)). Note that we do not fine-
tune inference models on downstream tasks unless
mentioned otherwise.
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Method #Params OBQA ARCe ARCh CSQA QASC PIQA SIQA WNGR Avg.

UnifiedQA-large 0.77B 69.8 68.1 55.2 61.4 43.1 63.4 52.9 53.3 58.7
+ Self-talk GPT-3 Curie + 13B - - - 63.3 49.8 65.2 51.8 52.9 -
+ DREAM + 11B - - - 64.5 49.4 64.7 51.5 56.1 -
+ GKP GPT-3 Curie + 13B 68.8 71.1 56.5 66.3 53.2 64.2 58.2 55.5 61.7
+ Rainier-large + 0.77B 69.6 67.7 55.2 67.2 54.9 65.6 57.0 56.9 61.8
+ Rainier-large + Vera + 6B 73.4 71.1 57.2 68.3 55.5 67.5 57.0 57.7 63.5
+ COCONUT-large (ours) + 0.83B 75.2 75.8 61.5 74.8 67.0 74.6 67.3 57.9 69.3

+ GKP GPT-3 Davinci + 175B 74.6 75.4 64.6 70.2 63.8 67.7 58.7 56.6 66.5
+ GKP GPT-3 Davinci + Vera + 180B 77.6 80.0 67.6 71.9 66.2 70.4 59.4 57.2 68.8
+ LLaMA-65B + ConceptNet + 65B 75.4 81.6 65.6 69.2 62.7 75.6 59.0 56.5 68.2
+ COCONUT-3B (ours) + 3B 80.8 80.9 68.9 80.9 75.3 79.6 64.0 58.8 73.7

Table 1: Comparison with knowledge prompting methods using UnifiedQA-large on seen datasets. “#Params”
denotes the total number of parameters of used models and ‘+’ denotes adding knowledge models and their number
of parameters. We report the accuracy on the development set.

Method #Params NumerSense RiddleSense QuaRTz HellaSwag Avg.

UnifiedQA-large 0.77B 32.5 28.3 69.3 36.2 41.6
+ GKP GPT-3 Curie + 13B 38.0 35.7 69.0 37.3 45.0
+ Rainier-large + 0.77B 30.0 30.1 70.3 35.7 41.5
+ COCONUT-large (ours) + 0.83B 41.5 36.1 72.9 39.6 47.5

+ COCONUT-3B (ours) + 3B 42.0 40.9 74.2 42.0 49.8

Table 2: Comparison with knowledge prompting methods using UnifiedQA-large on unseen datasets. We report the
accuracy on the development set.

Method OBQA ARCh CSQA PIQA SIQA

KagNet - - 69.0 - -
CALM 60.9 - 71.3 75.7 69.2
Unicorn - - 72.6 82.2 75.5
FiD 67.8 - 74.1 - -
RACo 71.3 - 75.8 - -
QA-GNN 67.8 44.4 73.4 79.6 75.7
GreaseLM 66.9 44.7 74.2 79.6 75.5
Dragon 72.0 48.6 74.0 81.1 76.8
COCONUT (ours) 76.3 61.3 76.7 82.3 76.9

Table 3: Comparison with graph reasoning, common-
sense aware, and retrieval augmented models. We use
COCONUT-large as the knowledge model and fine-tuned
UnifiedQAv2-large as the inference model. We report
the accuracy on the development set.

Baselines. We compare COCONUT with diverse
knowledge augmentation methods, categorized as:

• Knowledge prompting methods involve gen-
erated knowledge prompting (GKP) with GPT-
3 (Liu et al., 2022b), Self-talk (Shwartz et al.,
2020), DREAM (Gu et al., 2022), Rainier
(Liu et al., 2022a), and Rainier with Vera (Liu
et al., 2023) where knowledge descriptions are
elicited from other language models. We fur-
ther use LLaMA-65B prompted with knowl-
edge tuples in ConceptNet as the baseline of
augmented prompting of knowledge.2

• Knowledge graph reasoning models incor-
porate external CSKGs to enhance the limited
information present in the input texts, such
as KagNet (Lin et al., 2019), QA-GNN (Ya-
sunaga et al., 2021), GreaseLM (Zhang et al.,
2022), and Dragon (Yasunaga et al., 2022).

• Commonsense aware language models are
trained using an external commonsense cor-
pus or datasets to embed knowledge into their
parameters, such as CALM (Zhou et al., 2021)
and Unicorn (Lourie et al., 2021).

• Retrieval augmented models focus on re-
trieving relevant knowledge from common-
sense corpora, such as RACo (Yu et al., 2022)
and FiD (Izacard and Grave, 2021).

4.2 Main Results
We first compare COCONUT with state-of-the-art
knowledge prompting methods using UnifiedQA-
large (Khashabi et al., 2020). As shown in Ta-
ble 1, COCONUT-large surpasses the best baseline,

2We use the input format consistent with that of
COCONUTGEN (i.e., Question + Options + Verbalized Con-
ceptNet Paths). We use contextualization demonstrations that
are used in contextualized knowledge prompting while ex-
cluding answer information. We use the exact-match-based
knowledge retrieval method.
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Figure 4: Human evaluation of generated knowledge. Left: Percentage of good knowledge statements along each
axis. Right: Agreement between human and machine on the helpfulness of selected knowledge.

Example A revolving door is convenient for two-direction travel, but it also serves as a security measure at a what?
(A) bank (B) library (C) department store (D) mall (E) new york

COCONUT-large Revolving doors provide security measures within banks, reducing the likelihood of theft or unauthorized
(ours) entry. They don’t serve as convenient for robbery prevention in libraries.

GPT-3-Davinci A revolving door serves as a barrier.

Example What do people aim to do at work?
(A) complete job (B) learn from each other (C) kill animals (D) wear hats (E) talk to each other

COCONUT-large People aim to complete jobs at work to fulfill their responsibilities and fulfill the demands of their jobs.
(ours) Killing animals would be considered criminal behavior.

GPT-3-Davinci People aim to do their job well.

Table 4: Comparison of knowledge generated by COCONUT-large and GPT-3 Davinci from Liu et al. (2022b).

Rainier-large + Vera, on seen datasets by an av-
erage of 5.8%. In addition, COCONUT-3B out-
performs GPT-3 Davinci + Vera using 60 times
more parameters by an average of 4.9%. We ob-
serve that directly prompting LLaMA-65B with
ConceptNet knowledge tuples during inference is
not ideal, since it shows performance worse than
that of COCONUT-large and COCONUT-3B, while
using significantly more parameters and computa-
tions. These results show COCONUT’s capability to
effectively and efficiently augment language mod-
els with commonsense knowledge by learning how
to contextualize structured knowledge.

Moreover, as shown in Table 2, COCONUT con-
sistently stands out on unseen datasets. Particularly,
COCONUT-large excels over GPT-3 Curie using
by an average of 2.5%, using significantly fewer
parameters. The superior performance on unseen
datasets shows the generalization capability of CO-
CONUT, rooted in CSKGs with the general, widely
applicable commonsense knowledge.

Our evaluation of COCONUT extends to Uni-
fiedQAv2 (Khashabi et al., 2022). As shown
in Table 3, COCONUT effectively augments Uni-

fiedQAv2 fine-tuned without knowledge, outper-
forming all the knowledge graph reasoning mod-
els, commonsense aware language models, and
retrieval augmented models. These results under-
score COCONUT’s advantage in providing contex-
tualized knowledge that is readily integrated by a
wide range of inference models.

4.3 Human Evaluation

We conduct a human evaluation on Common-
senseQA to study the quality of generated knowl-
edge and the interpretability of its impact on task
performance. We sample 1,200 knowledge state-
ments generated by COCONUT-large (100 knowl-
edge statements per each evaluation dataset) and
evaluate in terms of relevance, factuality, and help-
fulness. As shown in Figure 4, we can observe
that most generated knowledge is related, factu-
ally correct, and helpful for the model’s reasoning.
Specifically, COCONUT achieves 99.2% relevance,
71.7% factuality, and 64.2% helpfulness. Among
the rectifying knowledge, 89% are deemed helpful
by humans, and among the misleading knowledge,
81% are deemed harmful. These results show that
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Figure 5: Results of COCONUT-large varying sizes of inference models.

Method OBQA ARCe ARCh CSQA QASC PIQA SIQA WNGR Avg.

COCONUT-large 75.2 75.8 61.5 74.8 67.0 74.6 67.3 57.9 69.3
w/o COCONUTLINK

3 72.0 72.3 55.8 72.8 62.5 68.4 57.3 57.0 64.9
w/o COCONUTLINK & COCONUTGEN 69.8 68.1 55.2 61.4 43.1 63.4 52.9 53.3 58.7

Table 5: Ablation study on seen datasets.

Method NumerSense RiddleSense QuaRTz HellaSwag Avg.

COCONUT-large 41.5 36.1 72.9 39.6 47.5
w/o COCONUTLINK

3 36.3 33.2 70.3 36.7 44.1
w/o COCONUTLINK & COCONUTGEN 32.5 28.3 69.3 36.2 41.6

Table 6: Ablation study on unseen datasets.

COCONUT effectively helps the inference models
by generating relevant and accurate knowledge.

4.4 Analysis

Analysis on generated knowledge. Table 4 illus-
trates the knowledge descriptions generated by CO-
CONUT and GPT-3-Davinci from Liu et al. (2022b)
on examples from the CommonsenseQA validation
set. From the generation results, we can observe
that COCONUT generates more detailed knowledge
descriptions about objects and their interactions. In
contrast, GPT-3 leans towards providing descrip-
tions of broad and general knowledge. Since in-
ference models are possibly deficient in specific
knowledge or reasoning processes required to in-
fer answers from the provided knowledge, the lack
of detailed descriptions can result in spurious con-
textualization, thereby degrading performance. In-
deed, the UnifiedQA-large model finds the correct
answer with knowledge generated by COCONUT,
while failing with knowledge generated by GPT-3.

3We use the exact-match-based knowledge retrieval
method.

Scaling trends of the inference model. We com-
pare the commonsense reasoning performance of
knowledge prompting methods with varying sizes
of inference models. The results are presented in
Figure 5. We observe two dominant trends from
the results. Firstly, on both the seen and unseen
datasets, the performance improvements from CO-
CONUT-large are consistently better than the base-
line knowledge prompting methods with a similar
size. Secondly, when the inference models have a
significantly larger size than that of COCONUT, we
still observe performance improvements, showing
that COCONUT may handle the knowledge absent
in language models by integrating CSKGs.

Ablation Study. To better understand the con-
tributions to performance improvements, we ex-
ecute a series of ablation studies on COCONUT.
As shown in Tables 5 and 6, we observe that
both COCONUTGEN and COCONUTLINK contribute
to the performance improvement. Particularly,
COCONUTLINK achieves more significant improve-
ments on the commonsense benchmarks with rel-
atively long contexts, such as PIQA and SIQA,
possibly due to its selection of important concepts.
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5 Related Work

While large language models yield state-of-the-
art performance on many commonsense reasoning
tasks, their pre-training objectives do not explicitly
guide them to reason using commonsense knowl-
edge (Zhou et al., 2021), resulting in unsatisfactory
performance in many real-world scenarios (Tal-
mor et al., 2022; Zhu et al., 2023). To address the
limitation, existing work has explored augmented
language models to improve their commonsense
reasoning ability. A typical approach is incorpo-
rating external knowledge from CSKGs, thereby
supplementing the limited textual information (Lin
et al., 2019; Yasunaga et al., 2021; Zhang et al.,
2022; Yasunaga et al., 2022). Another approach in-
volves training a language model on commonsense
corpora (Lourie et al., 2021; Zhou et al., 2021).
Recently, a line of research (Shwartz et al., 2020;
Paranjape et al., 2021; Wei et al., 2022; Liu et al.,
2022b) has proposed to generate knowledge by
prompting language models due to the lack of scal-
ability in utilizing CSKGs. Some recent methods
have explored retrieving in-domain commonsense
documents from a task-relevant corpus to improve
commonsense reasoning capabilities (Wang et al.,
2021; Li et al., 2021; Yu et al., 2022).

COCONUT provides two distinct advantages
over existing commonsense augmentation methods.
First, COCONUT alleviates the inherent limitation
of CKSGs, the lack of coverage, by introducing lan-
guage models in contextualization. Since language
models have wide coverage and strong expressive
power, they can effectively complement the cover-
age of CSKGs. Second, COCONUT utilizes CSKGs
as pivots in knowledge generation, which facilitates
to generate a wide range of accurate knowledge and
achieves generalization on small language models.

6 Conclusion

In this paper, we have proposed COCONUT that
contextualizes structured knowledge from CSKGs,
guided by large language models. Our experimen-
tal results have verified that COCONUT outperforms
state-of-the-art knowledge augmentation methods
on diverse commonsense benchmarks. These show
that large language models can explicitly guide the
contextualization, leading to significant improve-
ments in commonsense reasoning. Furthermore,
our analyses suggest that prompting with struc-
tured knowledge may be a promising approach to
address hallucination in knowledge prompting.

Limitations

While we have demonstrated that COCONUT effec-
tively improves the commonsense reasoning per-
formance by integrating contextualized common-
sense knowledge from CSKGs, there are some lim-
itations that present promising avenues for future
research. First, COCONUT can generate unsafe
or nonfactual knowledge, inheriting the limitation
from language models. To address this, we plan
to investigate the alignment of COCONUT with so-
cial, culture-specific, and ethical values. In addi-
tion, ConceptNet utilized by COCONUT involves
limited types of knowledge, posing limitations in
addressing domain-specific, eventual, or factual
knowledge. Thus, we plan to extend the source of
structured knowledge by introducing more diverse
CSKGs, and to integrate retrieval augmentation
from large knowledge corpora.

Acknowledgements

This work was supported by the Basic Research
Program through the National Research Founda-
tion of Korea (NRF) grant funded by the Korea
government (MSIT) (2021R1A2C3010430) and
Institute of Information Communications Technol-
ogy Planning & Evaluation (IITP) grant funded
by the Korea government (MSIT) (No. RS-2019-
II190079, Artificial Intelligence Graduate School
Program (Korea University)).

References

Sumithra Bhakthavatsalam, Chloe Anastasiades, and
Peter Clark. 2020. Genericskb: A knowledge base of
generic statements. CoRR, abs/2005.00660.

Sumithra Bhakthavatsalam, Daniel Khashabi, Tushar
Khot, Bhavana Dalvi Mishra, Kyle Richardson,
Ashish Sabharwal, Carissa Schoenick, Oyvind
Tafjord, and Peter Clark. 2021. Think you have
solved direct-answer question answering? try arc-da,
the direct-answer AI2 reasoning challenge. CoRR,
abs/2102.03315.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng
Gao, and Yejin Choi. 2020. PIQA: reasoning about
physical commonsense in natural language. In The
Thirty-Fourth AAAI Conference on Artificial Intelli-
gence, AAAI 2020, The Thirty-Second Innovative Ap-
plications of Artificial Intelligence Conference, IAAI
2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New
York, NY, USA, February 7-12, 2020, pages 7432–
7439. AAAI Press.

5823

http://arxiv.org/abs/2005.00660
http://arxiv.org/abs/2005.00660
http://arxiv.org/abs/2102.03315
http://arxiv.org/abs/2102.03315
http://arxiv.org/abs/2102.03315
https://ojs.aaai.org/index.php/AAAI/article/view/6239
https://ojs.aaai.org/index.php/AAAI/article/view/6239


Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual.

Yuling Gu, Bhavana Dalvi, and Peter Clark. 2022.
DREAM: improving situational QA by first elab-
orating the situation. In Proceedings of the 2022
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, NAACL 2022, Seattle, WA,
United States, July 10-15, 2022, pages 1115–1127.
Association for Computational Linguistics.

Jena D. Hwang, Chandra Bhagavatula, Ronan Le Bras,
Jeff Da, Keisuke Sakaguchi, Antoine Bosselut, and
Yejin Choi. 2020. COMET-ATOMIC 2020: On sym-
bolic and neural commonsense knowledge graphs.
CoRR, abs/2010.05953.

Gautier Izacard and Edouard Grave. 2021. Leveraging
passage retrieval with generative models for open do-
main question answering. In Proceedings of the 16th
Conference of the European Chapter of the Associ-
ation for Computational Linguistics: Main Volume,
EACL 2021, Online, April 19 - 23, 2021, pages 874–
880. Association for Computational Linguistics.

Daniel Khashabi, Yeganeh Kordi, and Hannaneh Ha-
jishirzi. 2022. Unifiedqa-v2: Stronger general-
ization via broader cross-format training. CoRR,
abs/2202.12359.

Daniel Khashabi, Sewon Min, Tushar Khot, Ashish Sab-
harwal, Oyvind Tafjord, Peter Clark, and Hannaneh
Hajishirzi. 2020. Unifiedqa: Crossing format bound-
aries with a single QA system. In Findings of the
Association for Computational Linguistics: EMNLP
2020, Online Event, 16-20 November 2020, volume
EMNLP 2020 of Findings of ACL, pages 1896–1907.
Association for Computational Linguistics.

Tushar Khot, Peter Clark, Michal Guerquin, Peter
Jansen, and Ashish Sabharwal. 2020. QASC: A
dataset for question answering via sentence compo-
sition. In The Thirty-Fourth AAAI Conference on
Artificial Intelligence, AAAI 2020, The Thirty-Second
Innovative Applications of Artificial Intelligence Con-
ference, IAAI 2020, The Tenth AAAI Symposium on
Educational Advances in Artificial Intelligence, EAAI
2020, New York, NY, USA, February 7-12, 2020,
pages 8082–8090. AAAI Press.

Haonan Li, Yeyun Gong, Jian Jiao, Ruofei Zhang, Tim-
othy Baldwin, and Nan Duan. 2021. Kfcnet: Knowl-
edge filtering and contrastive learning for generative
commonsense reasoning. In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2021,
Virtual Event / Punta Cana, Dominican Republic, 16-
20 November, 2021, pages 2918–2928. Association
for Computational Linguistics.

Bill Yuchen Lin, Xinyue Chen, Jamin Chen, and Xiang
Ren. 2019. Kagnet: Knowledge-aware graph net-
works for commonsense reasoning. In Proceedings
of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing,
EMNLP-IJCNLP 2019, Hong Kong, China, Novem-
ber 3-7, 2019, pages 2829–2839. Association for
Computational Linguistics.

Bill Yuchen Lin, Seyeon Lee, Rahul Khanna, and Xi-
ang Ren. 2020. Birds have four legs?! numersense:
Probing numerical commonsense knowledge of pre-
trained language models. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2020, Online, November
16-20, 2020, pages 6862–6868. Association for Com-
putational Linguistics.

Bill Yuchen Lin, Ziyi Wu, Yichi Yang, Dong-Ho Lee,
and Xiang Ren. 2021. Riddlesense: Reasoning about
riddle questions featuring linguistic creativity and
commonsense knowledge. In Findings of the Associ-
ation for Computational Linguistics: ACL/IJCNLP
2021, Online Event, August 1-6, 2021, volume
ACL/IJCNLP 2021 of Findings of ACL, pages 1504–
1515. Association for Computational Linguistics.

Jiacheng Liu, Skyler Hallinan, Ximing Lu, Pengfei He,
Sean Welleck, Hannaneh Hajishirzi, and Yejin Choi.
2022a. Rainier: Reinforced knowledge introspector
for commonsense question answering. In Proceed-
ings of the 2022 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2022, Abu
Dhabi, United Arab Emirates, December 7-11, 2022,
pages 8938–8958. Association for Computational
Linguistics.

Jiacheng Liu, Alisa Liu, Ximing Lu, Sean Welleck, Pe-
ter West, Ronan Le Bras, Yejin Choi, and Hannaneh
Hajishirzi. 2022b. Generated knowledge prompting
for commonsense reasoning. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), ACL
2022, Dublin, Ireland, May 22-27, 2022, pages 3154–
3169. Association for Computational Linguistics.

Jiacheng Liu, Wenya Wang, Dianzhuo Wang, Noah A.
Smith, Yejin Choi, and Hannaneh Hajishirzi. 2023.
Vera: A general-purpose plausibility estimation
model for commonsense statements. In Proceedings
of the 2023 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP 2023, Singapore,
December 6-10, 2023, pages 1264–1287. Association
for Computational Linguistics.

5824

https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.18653/v1/2022.naacl-main.82
https://doi.org/10.18653/v1/2022.naacl-main.82
http://arxiv.org/abs/2010.05953
http://arxiv.org/abs/2010.05953
https://doi.org/10.18653/v1/2021.eacl-main.74
https://doi.org/10.18653/v1/2021.eacl-main.74
https://doi.org/10.18653/v1/2021.eacl-main.74
http://arxiv.org/abs/2202.12359
http://arxiv.org/abs/2202.12359
https://doi.org/10.18653/v1/2020.findings-emnlp.171
https://doi.org/10.18653/v1/2020.findings-emnlp.171
https://ojs.aaai.org/index.php/AAAI/article/view/6319
https://ojs.aaai.org/index.php/AAAI/article/view/6319
https://ojs.aaai.org/index.php/AAAI/article/view/6319
https://doi.org/10.18653/v1/2021.findings-emnlp.249
https://doi.org/10.18653/v1/2021.findings-emnlp.249
https://doi.org/10.18653/v1/2021.findings-emnlp.249
https://doi.org/10.18653/v1/D19-1282
https://doi.org/10.18653/v1/D19-1282
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.557
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.557
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.557
https://doi.org/10.18653/V1/2021.FINDINGS-ACL.131
https://doi.org/10.18653/V1/2021.FINDINGS-ACL.131
https://doi.org/10.18653/V1/2021.FINDINGS-ACL.131
https://aclanthology.org/2022.emnlp-main.611
https://aclanthology.org/2022.emnlp-main.611
https://doi.org/10.18653/v1/2022.acl-long.225
https://doi.org/10.18653/v1/2022.acl-long.225
https://aclanthology.org/2023.emnlp-main.81
https://aclanthology.org/2023.emnlp-main.81


Nicholas Lourie, Ronan Le Bras, Chandra Bhagavatula,
and Yejin Choi. 2021. UNICORN on RAINBOW: A
universal commonsense reasoning model on a new
multitask benchmark. In Thirty-Fifth AAAI Confer-
ence on Artificial Intelligence, AAAI 2021, Thirty-
Third Conference on Innovative Applications of Arti-
ficial Intelligence, IAAI 2021, The Eleventh Sympo-
sium on Educational Advances in Artificial Intelli-
gence, EAAI 2021, Virtual Event, February 2-9, 2021,
pages 13480–13488. AAAI Press.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? A new dataset for open book question an-
swering. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
Brussels, Belgium, October 31 - November 4, 2018,
pages 2381–2391. Association for Computational
Linguistics.

Bhargavi Paranjape, Julian Michael, Marjan
Ghazvininejad, Hannaneh Hajishirzi, and Luke
Zettlemoyer. 2021. Prompting contrastive explana-
tions for commonsense reasoning tasks. In Findings
of the Association for Computational Linguistics:
ACL/IJCNLP 2021, Online Event, August 1-6, 2021,
volume ACL/IJCNLP 2021 of Findings of ACL,
pages 4179–4192. Association for Computational
Linguistics.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch:
An imperative style, high-performance deep learning
library. In H. Wallach, H. Larochelle, A. Beygelz-
imer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems
32, pages 8024–8035. Curran Associates, Inc.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2020. Winogrande: An adver-
sarial winograd schema challenge at scale. In The
Thirty-Fourth AAAI Conference on Artificial Intelli-
gence, AAAI 2020, The Thirty-Second Innovative Ap-
plications of Artificial Intelligence Conference, IAAI
2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New
York, NY, USA, February 7-12, 2020, pages 8732–
8740. AAAI Press.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan Le
Bras, and Yejin Choi. 2019. Socialiqa: Common-
sense reasoning about social interactions. CoRR,
abs/1904.09728.

Vered Shwartz, Peter West, Ronan Le Bras, Chandra
Bhagavatula, and Yejin Choi. 2020. Unsupervised
commonsense question answering with self-talk. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2020, Online, November 16-20, 2020, pages 4615–
4629. Association for Computational Linguistics.

Shikhar Singh, Nuan Wen, Yu Hou, Pegah Alipoor-
molabashi, Te-Lin Wu, Xuezhe Ma, and Nanyun
Peng. 2021. COM2SENSE: A commonsense reason-
ing benchmark with complementary sentences. In
Findings of the Association for Computational Lin-
guistics: ACL/IJCNLP 2021, Online Event, August
1-6, 2021, volume ACL/IJCNLP 2021 of Findings of
ACL, pages 883–898. Association for Computational
Linguistics.

Robyn Speer, Joshua Chin, and Catherine Havasi. 2017.
Conceptnet 5.5: An open multilingual graph of gen-
eral knowledge. In Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence, February
4-9, 2017, San Francisco, California, USA, pages
4444–4451. AAAI Press.

Oyvind Tafjord, Matt Gardner, Kevin Lin, and Peter
Clark. 2019. Quartz: An open-domain dataset of
qualitative relationship questions. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing,
EMNLP-IJCNLP 2019, Hong Kong, China, Novem-
ber 3-7, 2019, pages 5940–5945. Association for
Computational Linguistics.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. Commonsenseqa: A question
answering challenge targeting commonsense knowl-
edge. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4149–4158. Association for Computational
Linguistics.

Alon Talmor, Ori Yoran, Ronan Le Bras, Chandra Bha-
gavatula, Yoav Goldberg, Yejin Choi, and Jonathan
Berant. 2022. Commonsenseqa 2.0: Exposing
the limits of AI through gamification. CoRR,
abs/2201.05320.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurélien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. CoRR,
abs/2302.13971.

Cunxiang Wang, Shuailong Liang, Yili Jin, Yilong
Wang, Xiaodan Zhu, and Yue Zhang. 2020. Semeval-
2020 task 4: Commonsense validation and explana-
tion. In Proceedings of the Fourteenth Workshop
on Semantic Evaluation, SemEval@COLING 2020,
Barcelona (online), December 12-13, 2020, pages
307–321. International Committee for Computational
Linguistics.

Han Wang, Yang Liu, Chenguang Zhu, Linjun Shou,
Ming Gong, Yichong Xu, and Michael Zeng. 2021.
Retrieval enhanced model for commonsense gener-
ation. In Findings of the Association for Computa-
tional Linguistics: ACL/IJCNLP 2021, Online Event,

5825

https://ojs.aaai.org/index.php/AAAI/article/view/17590
https://ojs.aaai.org/index.php/AAAI/article/view/17590
https://ojs.aaai.org/index.php/AAAI/article/view/17590
https://doi.org/10.18653/v1/d18-1260
https://doi.org/10.18653/v1/d18-1260
https://doi.org/10.18653/v1/d18-1260
https://doi.org/10.18653/v1/2021.findings-acl.366
https://doi.org/10.18653/v1/2021.findings-acl.366
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/6399
https://ojs.aaai.org/index.php/AAAI/article/view/6399
http://arxiv.org/abs/1904.09728
http://arxiv.org/abs/1904.09728
https://doi.org/10.18653/v1/2020.emnlp-main.373
https://doi.org/10.18653/v1/2020.emnlp-main.373
https://doi.org/10.18653/V1/2021.FINDINGS-ACL.78
https://doi.org/10.18653/V1/2021.FINDINGS-ACL.78
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14972
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14972
https://doi.org/10.18653/V1/D19-1608
https://doi.org/10.18653/V1/D19-1608
https://doi.org/10.18653/v1/n19-1421
https://doi.org/10.18653/v1/n19-1421
https://doi.org/10.18653/v1/n19-1421
http://arxiv.org/abs/2201.05320
http://arxiv.org/abs/2201.05320
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.18653/V1/2020.SEMEVAL-1.39
https://doi.org/10.18653/V1/2020.SEMEVAL-1.39
https://doi.org/10.18653/V1/2020.SEMEVAL-1.39
https://doi.org/10.18653/v1/2021.findings-acl.269
https://doi.org/10.18653/v1/2021.findings-acl.269


August 1-6, 2021, volume ACL/IJCNLP 2021 of
Findings of ACL, pages 3056–3062. Association for
Computational Linguistics.

Weiqi Wang, Tianqing Fang, Wenxuan Ding, Baixuan
Xu, Xin Liu, Yangqiu Song, and Antoine Bosselut.
2023. CAR: conceptualization-augmented reasoner
for zero-shot commonsense question answering. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2023, Singapore, December 6-10,
2023, pages 13520–13545. Association for Computa-
tional Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
NeurIPS.

Peter West, Chandra Bhagavatula, Jack Hessel, Jena D.
Hwang, Liwei Jiang, Ronan Le Bras, Ximing Lu,
Sean Welleck, and Yejin Choi. 2022. Symbolic
knowledge distillation: from general language mod-
els to commonsense models. In Proceedings of the
2022 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, NAACL 2022, Seattle,
WA, United States, July 10-15, 2022, pages 4602–
4625. Association for Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transformers:
State-of-the-art natural language processing. In Pro-
ceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing: System Demon-
strations, Online, November 16-20, 2020, pages 38–
45.

Michihiro Yasunaga, Antoine Bosselut, Hongyu Ren,
Xikun Zhang, Christopher D. Manning, Percy Liang,
and Jure Leskovec. 2022. Deep bidirectional
language-knowledge graph pretraining. In NeurIPS.

Michihiro Yasunaga, Hongyu Ren, Antoine Bosselut,
Percy Liang, and Jure Leskovec. 2021. QA-GNN:
reasoning with language models and knowledge
graphs for question answering. In Proceedings of
the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT 2021,
Online, June 6-11, 2021, pages 535–546. Association
for Computational Linguistics.

Wenhao Yu, Chenguang Zhu, Zhihan Zhang, Shuohang
Wang, Zhuosheng Zhang, Yuwei Fang, and Meng
Jiang. 2022. Retrieval augmentation for common-
sense reasoning: A unified approach. In Proceedings
of the 2022 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP 2022, Abu Dhabi,
United Arab Emirates, December 7-11, 2022, pages

4364–4377. Association for Computational Linguis-
tics.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? In Proceedings
of the 57th Conference of the Association for Compu-
tational Linguistics, ACL 2019, Florence, Italy, July
28- August 2, 2019, Volume 1: Long Papers, pages
4791–4800. Association for Computational Linguis-
tics.

Xikun Zhang, Antoine Bosselut, Michihiro Yasunaga,
Hongyu Ren, Percy Liang, Christopher D. Manning,
and Jure Leskovec. 2022. Greaselm: Graph reason-
ing enhanced language models. In The Tenth Inter-
national Conference on Learning Representations,
ICLR 2022, Virtual Event, April 25-29, 2022. Open-
Review.net.

Wangchunshu Zhou, Dong-Ho Lee, Ravi Kiran Sel-
vam, Seyeon Lee, and Xiang Ren. 2021. Pre-training
text-to-text transformers for concept-centric common
sense. In 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net.

Chenguang Zhu, Yichong Xu, Xiang Ren, Bill Yuchen
Lin, Meng Jiang, and Wenhao Yu. 2023. Knowledge-
augmented methods for natural language processing.
In Proceedings of the Sixteenth ACM International
Conference on Web Search and Data Mining, WSDM
2023, Singapore, 27 February 2023 - 3 March 2023,
pages 1228–1231. ACM.

5826

https://aclanthology.org/2023.findings-emnlp.902
https://aclanthology.org/2023.findings-emnlp.902
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.18653/v1/2022.naacl-main.341
https://doi.org/10.18653/v1/2022.naacl-main.341
https://doi.org/10.18653/v1/2022.naacl-main.341
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
http://papers.nips.cc/paper_files/paper/2022/hash/f224f056694bcfe465c5d84579785761-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/f224f056694bcfe465c5d84579785761-Abstract-Conference.html
https://doi.org/10.18653/v1/2021.naacl-main.45
https://doi.org/10.18653/v1/2021.naacl-main.45
https://doi.org/10.18653/v1/2021.naacl-main.45
https://aclanthology.org/2022.emnlp-main.294
https://aclanthology.org/2022.emnlp-main.294
https://doi.org/10.18653/V1/P19-1472
https://doi.org/10.18653/V1/P19-1472
https://openreview.net/forum?id=41e9o6cQPj
https://openreview.net/forum?id=41e9o6cQPj
https://openreview.net/forum?id=3k20LAiHYL2
https://openreview.net/forum?id=3k20LAiHYL2
https://openreview.net/forum?id=3k20LAiHYL2
https://doi.org/10.1145/3539597.3572720
https://doi.org/10.1145/3539597.3572720


A Technical Appendix

A.1 Additional Experimental Details
Implementation details. We implement CO-
CONUT on PyTorch (Paszke et al., 2019) and Hug-
gingFace Transformers (Wolf et al., 2020). All
our experiments are conducted on four NVIDIA
RTX A6000 GPUs. We train the models in bfloat16
mixed-precision for efficiency. The training of CO-
CONUT-large took 117 hours, while that of CO-
CONUT-3B took 359 hours. The hyperparemeter
settings are described in Table 7. The verbalization
templates are shown in Table 8.

Datasets. Detailed information of datasets are
shown in Table 9.

Human Evaluation. We asked three NLP ex-
perts to annotate the quality of generated knowl-
edge. We randomly selected 1,200 examples, 100
examples per dataset. Each annotator evaluated
the quality of knowledge statements along three
axes: (1) Relevance: whether it is relevant to the
situation in a question; (2) Factuality: whether it
contains only correct statements; and (3) Helpful-
ness: whether it helps solve a question correctly.
For each example, the annotator chose “good” or
“bad”. We do not reveal whether the knowledge
rectifies or misleads the model prediction for ob-
jectivity.

A.2 Additional Results and Analyses
Extended experimental results. Full results on
seen and unseen datasets are reported in Table 10
and 11, respectively.

Qualitative analysis. Tables 12 and 13 present
examples showcasing both the strengths and weak-
nesses of contextualized knowledge prompting and
COCONUT. In the first two examples of Table
12, the contextualized knowledge prompting ef-
fectively generates well-contextualized knowledge
descriptions that suit the implicit intentions of
the questions, while knowledge tuples barely pro-
vide the information to distinguish the answer and
wrong options. Yet, some examples are not as favor-
able, as shown in the last two examples. In Table
13, we observe several undesirable cases from the
generation results of COCONUT including a direct
guidance to the answer, a knowledge description
seemingly plausible but not relevant to the question,
and nonsense descriptions.

Hyperparameter Value

Contextualized Knowledge Prompting

Maximum number of extracted knowledge tuples 5
Number of sampled texts 1
p in nucleus sampling 0.8
Maximum length 128

COCONUT Training

Maximum input length 512
Maximum output length 128
Batch size 128
Training steps 200,000
Optimizer Adam
Learning rate 2e-5
β1 0.9
β2 0.999
ϵ 1e-8
Warmup steps 1,000
Learning rate scheduling Linear decay

Inference

Maximum number of extracted knowledge tuples 128
Number of sampled texts 10
p in nucleus sampling 0.8
Maximum input length of COCONUT 512
Maximum output length of COCONUT 128
Maximum input length of inference models 512
Maximum output length of inference models 128

Table 7: Hyperparamter settings.
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Relation Verbalized

RelatedTo _ is related to _
FormOf _ is an inflected form of _
IsA _ is a specific instance of _
PartOf _ is a part of _
UsedFor _ is used for _
NotUsedFor _ is not used for _
CapableOf _ can do _
NotCapableOf _ cannot do _
AtLocation _ is located at _
Causes _ causes _
HasFirstSubevent _ begins with _
HasLastSubevent _ concludes with _
HasProperty _ can be described as _
NotHasProperty _ cannot be described as _
MotivatedByGoal _ is a step toward accomplishing _
ObstructedBy _ can be prevented by _
Desires _ wants _
NotDesires _ does not want _
Synonym _ has a very similar meaning to _
Antonym _ is opposite to _
DistinctFrom _ is not _
DerivedFrom _ appears within _
SymbolOf _ symbolically represents _
MannerOf _ a specific way to do _
LocatedNear _ is found near _
HasContext _ is used in the context of _
SimilarTo _ is similar to _
EtymologicallyRelatedTo _ has a common origin with _
EtymologicallyDerivedFrom _ is derived from _
CausesDesire _ makes someone want _
MadeOf _ is made of _
Entails _ happens with _
InstanceOf _ is an example of _
HasA _ belongs to _
HasSubevent _ happens as a subevent of _
HasPrerequisite _ is a dependency of _
CreatedBy _ creates _
DefinedAs _ is _
ReceivesAction _ can be done to _

Table 8: ConceptNet verbalization templates.

Name Train Ex. Dev Ex. Train Statements

Seen

OpenBookQA 4957 500 14871
ARC easy 2251 570 6753
ARC hard 1119 299 3357
CommonsenseQA 9741 1221 38964
QASC 8134 926 56938
PIQA 16113 1838 16113
SocialIQA 33410 1954 66820
SynQA 486778 - 973556
Winogrande 40398 1267 80796
CommonsenseQA 2.0 9264 2541 9264
Com2sense 1608 782 1608
ComVE 20000 1994 20000
GenericsKB 1904144 - 1904144
Total 2537917 13892 3193184

Unseen

NumerSense 0 200 0
RiddleSense 0 1021 0
QuaRTz 0 384 0
HellaSwag 0 10042 0
Total 0 11647 0

Table 9: Statistics of Datasets.
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Method #Params OBQA ARCe ARCh CSQA QASC PIQA SIQA WNGR Avg.

UnifiedQA-small 0.06B 48.6 43.5 35.8 32.0 19.0 53.2 41.9 49.4 40.4
+ COCONUT-large + 0.83B 60.2 56.8 46.8 59.0 51.0 58.5 44.2 48.5 53.1

UnifiedQA-base 0.22B 60.2 53.9 44.8 45.3 25.3 58.5 47.8 52.1 48.5
+ COCONUT-large + 0.83B 70.6 66.8 51.2 70.8 58.6 67.5 54.4 53.3 61.7

UnifiedQA-large 0.77B 69.8 68.1 55.2 61.4 43.1 63.4 52.9 53.3 58.7
+ COCONUT-large + 0.83B 75.2 75.8 61.5 74.8 67.0 74.6 67.3 57.9 69.3
+ COCONUT-3B + 3B 80.8 80.9 68.9 80.9 75.3 79.6 64.0 58.8 73.7

UnifiedQA-3B 0.77B 79.0 77.9 70.2 71.7 62.1 75.7 60.7 63.3 70.1
+ COCONUT-large + 0.83B 78.8 78.1 64.5 77.1 70.1 77.9 72.1 65.7 73.0
+ COCONUT-3B + 3B 83.6 82.1 69.2 81.1 77.0 81.3 69.5 66.4 76.3

UnifiedQAv2-small 0.06B 46.4 44.6 38.1 39.6 27.2 61.2 55.2 57.5 46.2
+ COCONUT-large + 0.83B 55.6 53.5 42.8 48.2 41.3 61.3 59.2 57.4 52.4

UnifiedQAv2-base 0.22B 60.4 56.3 48.2 58.5 46.5 67.7 63.2 60.2 57.6
+ COCONUT-large + 0.83B 67.4 66.8 52.5 69.5 61.0 72.1 67.5 61.4 64.8

UnifiedQAv2-large 0.77B 69.8 69.1 61.5 71.7 59.6 75.6 71.0 74.9 69.2
+ COCONUT-large + 0.83B 76.2 74.9 61.1 76.2 68.9 77.6 75.4 75.0 73.1
+ COCONUT-3B + 3B 79.8 80.5 69.6 81.0 76.5 81.6 75.0 75.8 77.5

UnifiedQAv2-3B 3B 81.8 77.4 72.6 80.8 73.9 83.4 76.3 82.2 78.6
+ COCONUT-large + 0.83B 81.0 80.2 66.2 79.4 72.5 80.5 77.6 77.5 76.9
+ COCONUT-3B + 3B 84.8 82.1 73.2 82.6 78.2 83.6 77.5 83.6 80.7

LLaMA-7B 7B 27.8 73.0 33.9 58.2 51.5 78.9 46.9 51.9 57.5
+ COCONUT-3B + 3B 45.8 79.3 53.2 70.7 59.4 79.1 57.3 56.5 64.6

LLaMA-13B 13B 29.8 78.2 43.1 60.0 56.6 79.3 47.5 51.9 59.1
+ COCONUT-3B + 3B 62.9 80.2 65.3 71.9 61.2 79.3 57.7 57.0 65.4

Table 10: Full experimental results on seen datasets.

Method #Params RiddleSense NumerSense QuaRTz HellaSwag Avg.

UnifiedQA-small 0.06B 16.8 4.0 54.2 27.4 25.6
+ COCONUT-large + 0.83B 26.8 21.5 57.0 28.8 33.5

UnifiedQA-base 0.22B 20.0 15.5 57.0 29.6 30.5
+ COCONUT-large + 0.83B 30.2 37.0 61.2 32.9 40.3

UnifiedQA-large 0.77B 32.5 28.3 69.3 36.2 41.6
+ COCONUT-large + 0.83B 36.1 41.5 72.9 39.6 47.5
+ COCONUT-3B + 3B 40.9 42.0 74.2 42.0 49.8

UnifiedQA-3B 3B 30.5 38.3 69.5 48.2 46.6
+ COCONUT-large + 0.83B 38.4 46.0 73.7 49.5 51.9
+ COCONUT-3B + 3B 45.4 48.0 71.9 51.8 54.3

UnifiedQAv2-small 0.06B 26.2 7.0 56.2 25.7 28.8
+ COCONUT-large + 0.77B 26.7 8.0 58.6 26.3 29.9

UnifiedQAv2-base 0.22B 32.3 27.5 66.4 28.7 38.7
+ COCONUT-large + 0.77B 36.3 32.0 65.9 30.6 41.2

UnifiedQAv2-large 0.77B 32.0 37.6 72.7 40.0 45.6
+ COCONUT-large + 0.77B 38.7 46.0 74.5 41.7 50.2
+ COCONUT-3B + 3B 43.0 45.0 73.4 43.8 51.3

UnifiedQAv2-3B 3B 40.5 51.2 74.0 56.7 55.6
+ COCONUT-large + 0.77B 42.0 46.0 75.0 56.1 54.8
+ COCONUT-3B + 3B 48.3 49.5 72.9 59.5 57.6

Table 11: Full experimental results on unseen datasets.
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Question / Knowledge Related Knowledge Tuples Plausible

Sammy wanted to go to where the people were. Where might he go? people - AtLocation - populated areas

✓
(A) race track (B) populated areas (C) the desert (D) apartment (E) roadblock people - AtLocation - apartment
→ Populated areas suggest many people are present, suggesting Sammy would likely

seek these locations to interact and socialize with others. An apartment generally
houses fewer people compared to larger, public spaces, so this location would
likely not satisfy Sammy’s intent.

The fox walked from the city into the forest, what was it looking for? fox - AtLocation - natural habitat

✓
(A) pretty flowers (B) hen house (C) natural habitat (D)storybook (E) dense forest fox - AtLocation - hen house
→ Foxes are native forest animals and require natural habitats to survive and thrive.

A hen house represents a man-made artificial structure that isn’t conducive to
supporting the wild nature of foxes.

Where do you put your grapes just before checking out? grape - AtLocation - mouth

✗
(A) mouth (B) grocery cart (C) super market (D) fruit basket (E) fruit market grape - AtLocation - grocery cart
→ Grocery carts serve as temporary holding places for items during shopping trips,

providing convenience and mobility. Grapes placed in a grocery cart are ready for
purchase and transportation, as opposed to those in the mouth, which are part of a
snack or meal.

Seeds exhibit little or no dormancy, losing their ability to germinate after about five years. seed - RelatedTo - germinate.

✗
(A) True (B) False seed - RelatedTo - grow.
→ Seeds generally have varying degrees of dormancy, often exhibiting longer

lifespans exceeding five years without compromising their germination capabilities.

Table 12: Qualitative analysis on generated examples by contextualized knowledge prompting.

Task Question / Knowledge Plausible

CSQA A revolving door is convenient for two direction travel, but it also serves as a security measure at a what?

✓
(A) bank (B) library (C) department store (D) mall (E) new york
→ A revolving door is a door that can be turned to open and close. It is also a security measure at banks

and other financial institutions.

QASC Climate is generally described in terms of what?

✓
(A) sand (B) occurs over a wide range (C) forests (D) Global warming ... (G) local weather conditions
→ Climate is defined in terms of local weather conditions observed over a prolonged period,

considering factors like temperature, precipitation, humidity, atmospheric pressure, and seasonal
variability. Desert is primarily a geological term linked to arid landscapes, rather than a meteorological
descriptor used to define or quantify climate patterns.

PIQA Make outdoor pillow.

✓
(A) Blow into tin can and tie with rubber band. (B) Blow into trash bag and tie with rubber band.
→ You have to blow a large amount of air into the pillow. You can then tie it with a rubber band.

You can’t blow into a tin can.

SIQA Jordan was in charge of taking the food on the camping trip and left all the food at home. ...

✗
(A) horrible that he let his friends down on the camping trip (B) happy that he doesn’t ...
→ They are feeling horrible. This is because they have ruined the camping trip. When someone leaves

home and does not cook, they are generally feeling happy or satisfied.

WG Sarah was a much better surgeon than Maria so _ always got the easier cases.

✗
(A) Sarah (B) Maria
→ Maria is the sister of Sarah. Sarah is also the sister of Maria. She was the sister of Maria’s mother.

Maria was a doctor who worked with Maria. Maria is a doctor who worked with Sarah.

Table 13: Qualitative analysis on generated examples by COCONUT.
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