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Abstract

Recent research has explored methods for up-
dating and modifying factual knowledge in
large language models, often focusing on spe-
cific multi-layer perceptron blocks. This study
expands on this work by examining the effec-
tiveness of existing knowledge editing methods
across languages and delving into the role of
attention mechanisms in this process. Drawing
from the insights gained, we propose Mass-
Editing Memory with Attention in Transform-
ers (MEMAT), a method that achieves signifi-
cant improvements in all metrics while requir-
ing minimal parameter modifications. MEMAT
delivers a remarkable 10% increase in magni-
tude metrics, benefits languages not included in
the training data and also demonstrates a high
degree of portability. Our code and data are at
https://github.com/dtamayo-nlp/MEMAT.

1 Introduction

Large Language Models (LLMs) based on trans-
formers (Vaswani et al., 2017) are designed to
predict the probability of tokens occurring in a
sentence rather than comprehending the true se-
mantics that underlie it. As a result, they are sus-
ceptible to generating content that lacks a solid
grounding in reality and accuracy. Even when
two prompts relate to the same factual association
⟨s, r, ·⟩ = ⟨Google,CEO, ·⟩; “The CEO of Google
is” and “Google’s CEO is”, the model lacks an
internal constraint that compels it to generate iden-
tical answers.

Different investigations have already highlighted
the limitations of the models’ genuine understand-
ing by analyzing its dependency on the dataset
patterns (Gururangan et al., 2018; Jia and Liang,
2017). Furthermore, even when these models seem
to know the correct answer to a given prompt, they
exhibit vulnerability when provided harmful con-
text (Halawi et al., 2023).

In an initial pursuit of exploring the model’s

true understanding when using knowledge editors,
we analyze Mass-Editing Memory in Transform-
ers (MEMIT) (Meng et al., 2023b), a knowledge-
editing method asserting its capability to insert up
to 10,000 factual associations without heavily in-
ducing catastrophic forgetting. Aligned with previ-
ous research (Wang et al., 2023a), our first investi-
gation involves a cross-lingual examination of the
limitations associated with MEMIT.

Although the cross-lingual consistency is depen-
dent on the similarity between languages (Qi et al.,
2023), our study specifically delves into examin-
ing the polyglot capabilities between English and
Catalan. In this segment, we construct a transla-
tion pipeline to mitigate differences between these
languages and proceed to investigate the impact of
subject tokenization on knowledge incorporation.

Motivated by the potential of language-
independent knowledge neurons (Chen et al.,
2023), and the relevance of the attention mecha-
nism in the factual associations domain (Geva et al.,
2023), we further our study by exploring a particu-
lar part of the attention mechanism: the attention
heads. Attention heads have proven to be useful in
enhancing the model’s reliability under Inference-
Time Intervention (ITI) (Li et al., 2023a). The
foundational hypothesis behind ITI suggests that
attention heads serve as key sources of information
for evaluating the truthfulness of models when pre-
sented with sentences. Through our experiments,
we not only validate the extension of this claim
to the domain of factual associations but also ob-
serve promising outcomes from a cross-lingual lens.
Building on these insights, we propose MEMAT, a
method that introduces a novel approach to guide
the model towards a better understanding of the
edited factual associations.

The proposed method demonstrates improve-
ment across all evaluation metrics from both cross-
lingual and monolingual perspectives, showcasing
differences exceeding 10% in some cases. Fur-
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thermore, additional experiments suggest that the
modifications introduced by our algorithm enhance
the model’s understanding of existing knowledge
rather than reintroducing it, rendering this approach
portable and computationally efficient.

2 Related Work

Retrieval Methods. Rather than directly rely-
ing in LLMs for specific queries, open-domain
question answering systems has historically been
driven by the development of algorithms aligning
queries with external database sources (Robertson
et al., 2009). Recent advancements in aligning
retrieval-based methods with LLMs have demon-
strated promise in this domain (Karpukhin et al.,
2020; Mao et al., 2020; Borgeaud et al., 2022), with
retrieval augmented generation (Lewis et al., 2021)
showing capabilities in both multimodal (Chen
et al., 2022a,b; Yasunaga et al., 2022) and mul-
tilingual (Wang et al., 2023b) contexts. However,
while the use of external sources avoids the need
for fine-tuning, challenges still persist in precisely
identifying the relevant context for a given query
(Gao et al., 2023).

Truthfulness. Efforts to enhance the relia-
bility of LLMs without depending on external
sources have been a focal point of recent research.
Aligning LLMs with human feedback has been
explored through Reinforcement Learning from
Human Feedback (Stiennon et al., 2020; Ouyang
et al., 2022) and Direct Preference Optimization
(Rafailov et al., 2023), offering valuable insights
for veracity alignment (Chen and Li, 2024). Addi-
tionally, approaches contrasting hidden representa-
tions of these models have also yielded significant
results (Li et al., 2022; Chuang et al., 2023) in this
direction.

Factual Knowledge Editors. This research
builds upon MEMIT, a method adept at efficiently
introducing knowledge by modifying the inter-
nal weights of decoder-only architectures, surpass-
ing the effectiveness of earlier meta-learning tech-
niques like MEND (Mitchell et al., 2022a) and
constrained fine-tuning (Zhu et al., 2020). Never-
theless, less intrusive alternatives, which selectively
modify specific hidden states of the model during
inference according to the provided prompt, have
also demonstrated remarkable efficacy in knowl-
edge editing. Notable examples include REMEDI
(Hernandez et al., 2023), GRACE (Hartvigsen et al.,
2022), and SERAC (Mitchell et al., 2022b).

Multilingual Domain. The emergence of knowl-
edge editors and multilingual models raises ques-
tions about whether the information is being in-
serted from a cross-lingual perspective. Current
findings suggest that these methods are not entirely
language-independent (Schott et al., 2023; Wang
et al., 2023a), with approaches based on prompting
and retrieval yielding stronger results (Zheng et al.,
2023; Wang et al., 2023b).

3 Preliminaries

3.1 Background
Since in our experimental setup English and Cata-
lan were chosen as the languages for conducting
experiments, we opted for the utilization of Ǎguila-
7B, a decoder-only model consisting of 6.85 bil-
lion parameters based on Falcon-7B (Penedo et al.,
2023). The internal process performed by this ar-
chitecture to process text is similar to other decoder-
only architectures. It first convert an input to a
sequence of N tokens t1, t2, ..., tN by using Byte-
level Byte-Pair Encoding (Wang et al., 2020). Then,
it process each token by assigning a vector x0i us-
ing an embedding matrix E ∈ R|V| × d, where V
denotes the set of vocabulary tokens and d denotes
the size of each vector. Following this, the input
embeddings undergo a series of L transformer lay-
ers, each comprising a Multi-Query Self-Attention
(MQSA) sublayer (Shazeer, 2019) and a parallel
Multi-Layer Perceptron (MLP) sublayer.

Following the notation proposed in Elhage et al.
(2021); Geva et al. (2023), we avoid representing
bias terms, layer normalization (Ba et al., 2016),
and Rotary Position Embeddings (Su et al., 2023)
for simplicity and denote the transformation as:

xℓi = xℓ−1
i + aℓi +mℓ

i , (1)

where aℓi and mℓ
i are the outputs from the ℓ-

th MQSA and MLP sublayers. In the attention
term, for each layer, we assign different projection
matrices W ℓ,h

Q ,W ℓ
K ,W ℓ

V ∈ Rd× d
H and W ℓ,h

O ∈
R

d
H
×d for h ∈ [1, H], ℓ ∈ [1, L]. Then, given the

hidden states of the sentence at layer ℓ denoted as
Xℓ ∈ RN×d, we define:

Aℓ,h = S
(
(Xℓ−1W ℓ,h

Q )(Xℓ−1W ℓ
K)T

√
d/H

+M ℓ,h

)

(2)

aℓ =
H∑

h=1

Aℓ,h(Xℓ−1W ℓ
V )W

ℓ,h
O , (3)
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where S is a row-wise softmax normalization,
and M ℓ,h is a mask for Aℓ,h that only uses the
attention mechanism to modify the token tr using
the previous tokens t≤r (M ℓ,h

rc = −∞ ∀c > r and
zero otherwise).

In the MLP term, we use the matrices Win ∈
Rd×dff , Wout ∈ Rdff×d and an activation function
γ to define:

kℓi = γ(xℓ−1
i Win)

mℓ
i = kℓiWout.

(4)

3.2 Proposed Framework
While the architecture of large language models
is extensively documented, grasping the precise
mechanisms that empower them to extract fac-
tual information is still matter of research. No-
tably, studies have revealed the impact of adjusting
MLP layers in the generation of factual associations
(Geva et al., 2021; Dai et al., 2022a; Chen et al.,
2023). This comprehension has paved the way for
the development of frameworks such as ROME
(Meng et al., 2023a), PMET (Li et al., 2023b), and
MEMIT. In the case of PMET and MEMIT, a sub-
set of MLP layers are changed by the introduction
of a correction matrix (Ŵout,ℓ = Wout,ℓ+∆ℓ) such
that:

Ŵout,ℓ = argmin
W̃out,ℓ

(
n∑

j=1

||kℓjW̃out,ℓ − m̃ℓ
j ||2+

n+u∑

j=n+1

||kℓjW̃out,ℓ − m̃ℓ
j ||2).

(5)

where n represents the number of factual associ-
ations already encoded in the pre-trained model,
u represents the number of new factual associa-
tions being introduced, each kℓi is taken from the
final position of the subject entities of each factual
triplet, and the representation of m̃ℓ

j is the one that
should be capable of making the model predict the
correct factual entity. Refer to Meng et al. (2023b)
for more details.

Despite the notable performance of these pro-
posals, recent studies highlight the critical role of
attention mechanisms in accurate response genera-
tion (Dai et al., 2022b; Yuksekgonul et al., 2023).
Specifically, its relevance in factual associations
when the attribute extraction is performed (Geva
et al., 2023). These findings have already prompted
some intervention of attention layers for knowledge
editing (Li et al., 2023b; Sakarvadia et al., 2023), a

line of research that this study aims to further ex-
tend by tailoring attention with the ITI framework.

The core principle of ITI involves a simple
method for calculating a subset of head correc-
tions (ωℓ,h) that, when integrated into the language
model:

ãℓ =
H∑

h=1

(Aℓ,h(Xℓ−1W ℓ
V ) + ωℓ,h)W ℓ,h

O , (6)

result in a significant enhancement in the veracity
of the model’s responses.

Nevertheless, as knowledge is infused through
MEMIT, the notion of truth becomes nuanced. The
model can express new information in specific con-
texts, yet upon closer examination of its reasoning
capabilities, a decline in performance is observed
(Cohen et al., 2023). The distinctive approach in-
troduced in MEMAT explores how incorporating
modifications based on head corrections can opti-
mize the method’s understanding of the knowledge
introduced while avoiding catastrophic forgetting.
Refer to Section 6 for further details.

4 Dataset and Evaluation

The dataset employed in this document is a reduced
version of the CounterFact dataset (Meng et al.,
2023a,b). For each sample, the relevant prompts
utilized in our experiments are:

1. Efficacy Prompts (EP). Two distinct objects
associated with the same ⟨s, r, ·⟩ pair, one cor-
responding to the true fact oc and the other
representing a false fact o∗.

2. Paraphrase Prompts (PP). Two prompts that
have the same meaning of the ⟨s, r, ·⟩ pair,
but are paraphrased and receive an addition of
noise at the beginning. In evaluations, these
prompts can also be referred to as indicators
of the model’s generalization capability.

3. Neighborhood Prompts (NP). Ten different
prompts which contain different subjects
(sj ̸= s) with the same relation ⟨sj , r, ·⟩ that
would be true with the object oc. In evalu-
ations, these prompts are referenced as indi-
cators of the model’s ability to specify the
insertion of knowledge.

As discussed in Schott et al. (2023), a purifica-
tion of the original dataset is necessary to elimi-
nate sentences with awkward phrasing, consistent
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inaccuracies, and errors. After performing the re-
finement proposed, the resulting English dataset
consists of 11,550 factual associations. However,
since our goal is also to investigate the cross-lingual
capabilities of MEMIT and there is no available
translated dataset meeting our criteria, we develop
a translation pipeline.

In contrast to the methodologies employing
Wikidata and Google knowledge graphs for trans-
lation verification (Kassner et al., 2021), and
utilizing gpt-3.5-turbo and gpt-4 for trans-
lations (Wang et al., 2023a), our implementa-
tion follows a distinct procedure. Our pipeline
translates English sentences to Catalan using
projecte-aina/mt-aina-en-ca, and maintains
the dataset structure with simalign (Sabet et al.,
2021), an aligner method based on contextual em-
beddings.

Given the significance of preserving sentence
order, cases in which the targets oc or o∗ are trans-
lated before the end of the sentences are flagged as
errors and discarded if necessary. Additionally, we
address a challenge associated with gender differ-
ences between English and Catalan. For instance,
if the English sentence “The CTO of OpenAI is”
is translated as “El CTO d’OpenAI és”, it may in-
troduce bias toward male responses even when the
correct answer is oc = Mira Murati. To mitigate
this, we create two Catalan samples for each En-
glish sample.

Using our pipeline and human supervision, we
manage to obtain a reduced version of the Coun-
terFact dataset in English and Catalan containing
11,229 samples. An example of the samples in
Catalan can be observed in Appendix A.

To evaluate the performance of the different
knowledge editors used in our experiments, this
study inherits the evaluation metrics from Meng
et al. (2023a,b). For each of the three different
prompts contained in the dataset (EP, PP, NP), suc-
cess and magnitude metrics are defined:

• Success Metrics:

ES := E [P[o∗|p] > P[oc|p]|p ∈ EP ]

PS := E [Ep∈PP [P[o∗|p] > P[oc|s]]]
NS := E [Ep∈NP [P[oc|p] > P[o∗|s]]] .

(7)

• Magnitude Metrics:

EM := E [P[o∗|p]− P[oc|p]|p ∈ EP ]

PM := E [Ep∈PP [P[o∗|p]− P[oc|s]]]
NM := E [Ep∈NP [P[oc|p]− P[o∗|s]]] .

(8)

In prior research (Meng et al., 2023a,b; Li et al.,
2023b; Wang et al., 2023a), the assessment of
knowledge editors heavily relied on success met-
rics. Nevertheless, it is crucial to note that a favor-
able success metric coupled with a low-magnitude
metric could suggest uncertainty in the model’s con-
fidence regarding the retrieved knowledge. In the
following sections, we emphasize the significance
of the magnitude metric in uncovering patterns that
may not be readily apparent in traditional success
metrics.

5 Experiments

Before the introduction of MEMAT, the main as-
pects that motivate the use of our method are ex-
plained in this section. Firstly, Section 5.1 outlines
the scope of our analysis and examines the limita-
tions of using only English and Catalan. Our find-
ings suggest a correlation between positive cross-
lingual outcomes in MEMIT and higher token simi-
larity between subject tokens, indicating the depen-
dency of our cross-lingual analysis on languages
that share subject tokens. Subsequently, in Section
5.2, we evaluate the extent of cross-lingual infor-
mation in the hidden representations of words by
studying attention heads.

As Ǎguila-7B was not initially assessed using
MEMIT, further details on the hyperparameter op-
timization of the methods studied can be found in
Appendix B.

5.1 Cross-Linguality

Considering the substantial resemblance between
the English and Catalan alphabets, we investigate
the impact of this similarity on the cross-lingual
hypotheses asserted in this paper. Utilizing the
Jaccard index, expressed as:

J(xeng, xcat) =
|xeng ∩ xcat|
|xeng ∪ xcat|

, (9)

we assess the performance disparity when incor-
porating factual triplets with distinct subject tok-
enizations in English and Catalan (J(seng, scat) ≤
0.5), as opposed to those without such differences
(J(seng, scat) = 1). It is pertinent to note that fac-
tual associations typically pertain to entities such
as institution names, individuals, and series, which
tend to maintain consistent tokenization across lan-
guages that share the same alphabet. More details
of the exact similarity between both datasets can
be found in Appendix C.
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Figure 1: Results of Efficacy, Generalization and Speci-
ficity when applying MEMIT separately in two different
languages and evaluating the effects of training in both.
Each depicted line show a restriction in the tokenization
of the subjects.

In Figure 1, the outcomes of cross-lingual opera-
tions are illustrated for the insertion of 1,000 sam-
ples using MEMIT. Two discernible trends emerge
from the results:

• Given the dependency of MEMIT in the sub-
ject representation, alterations to the subject
result in a more pronounced decline in per-
formance from a cross-lingual perspective.
This phenomenon may explain the less cross-
lingual outcomes observed in Chinese (Wang
et al., 2023a).

• When analyzing cases with the same tokeniza-
tion (J(seng, scat) = 1) in both languages,
the decline in cross-lingual magnitude met-
rics is more noticeable than the decrease ob-
served in success metrics. Instances with
(J(seng, scat) ≤ 0.5) experience a significant
decrease in performance across both metrics.

5.2 Locating Knowledge with Heads
Under the cross-lingual context outlined in the pre-
vious section, we analyze the extent to which the
framework of ITI can be useful in the factual knowl-
edge domain. Considering that we have the same

set of factual associations in two languages, we
denote a language pair as (L1, L2) and design the
location of knowledge using a specific part of the
attention mechanism as follows:

1. We train the model using MEMIT with triplets
on language L1.

2. We identify all heads associated to the last to-
ken of M the triplets ⟨s, r, oc⟩i and ⟨s, r, o∗⟩i
using L2, assigning truthful labels y = 0 and
y = 1 respectively1. The constructed dataset
has the structure: {(headℓ,h−1,·, y)i}Mi=1, where
each head of each layer can be denoted as:

headℓ,h = Aℓ,h(Xℓ−1W ℓ
V ). (10)

3. We train sigmoid classifiers for each head po-
sition (totaling L×H positions) on subset of
triplets, denoted as the training set. The ob-
jective is to predict the assigned label by just
using a single attention head representation.
Subsequently, we utilize the remaining triplets
as a validation set to assess the performance of
this approach. More implementation details
can be found in Appendix D.

(a) L1 = Catalan, L2 = Catalan
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(b) L1 = Catalan, L2 = English
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Figure 2: Accuracy on the validation set for all heads in
all layers in Ǎguila-7B considering two combinations
of L1 and L2. The performance peaks include 78.1%
and 82.2%. The number of samples introduced using
MEMIT is 1,000.

1Note that the concept of truth in this case is diffuse since
the model has already been trained on L1 and the new true
target should be o∗.
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If the attention heads could not provide infor-
mation about whether the sentences are truthful or
not, the expected performance should be around a
50% chance of predicting the correct label. How-
ever, as highlighted in Li et al. (2023a), empiri-
cal observations in a comparable context revealed
that certain attention heads achieved 83.3% perfor-
mance on the validation set in discerning truthful
sentences. In this section, our contribution involves
not only expanding the application of this frame-
work to MEMIT, but also demonstrating a high
degree of language independence. Regardless of
the choice of languages L1 and L2, some attention
heads consistently achieve accurate classification
performances near 80%, as shown in Figure 2.

Note that we are just exploring the cross-lingual
implications from Catalan to English, but similar
patterns can be observed in Appendix E for the
converse relation.

6 MEMAT Method

In light of the proven attention heads’ relevance,
we reinforce the rationale behind equation 6 and
present MEMAT as a method that expands upon
MEMIT. The overall procedure is depicted in Fig-
ure 3, with detailed descriptions for each point as
follows:

(a) Firstly, we modify the model with knowledge
associated to a set of factual triplets using
MEMIT in language L1, which only edit some

MLP layers.

(b) Then, using language L2, we locate the heads
that yield the top K performances using the
procedure explained in Section 5.2. Formally,
let us consider that, for each classifier learned
using the training set, we obtain the predic-
tions ϕℓ,h

i = H(< headℓ,h−1,·, θ
ℓ,h >), where

H denotes the Heaviside step function and
the parameters θℓ,h have been trained in the
training set. The top head positions can be
denoted as those which belong to the set:

ΨK := {(ℓ, h)| K
argsmax

(ℓ,h)
({ϕℓ,h

i ∧ yi}M×β
i=1 )},

(11)

where β is the fraction of the validation set.

(c) Finally, under the language L2, we introduce
head corrections ωℓ,h in each of the K head
positions, ΨK , and minimize the loss func-
tion:

J attn
i =

λω

K

∑

(ℓ,h)∈ΨK

(
||ωℓ,h||

||headℓ,h−1,·||

)2

− 1

R

R∑

j=1

logP
G̃
[o∗i |zj + p(si, ri)]

+DKL

(
P
G̃
[x|p′]||PG[x|p′]

)
,

(12)

LayerNorm

Multi Query
Self-Attention 

with RoPE

Feed

Forward

LayerNorm

Linear

Softmax

N x

Input Embeddings

Input Tokens

Output

Probabilities

Insertion of knowledge

using MEMIT

Locating relevant heads

using classifiers

Optimizing the relevant

attention heads

Dataset

L1

(c)

(b)(a)

Dataset

L2

Figure 3: Illustration depicting the key steps of MEMAT in Ǎguila-7B. The dataset languages, denoted as L1 and
L2, are not restricted to differ or remain equal, but in this diagram we consider both datasets to store the same
triplets. The Eagle images were generated using GPT-4.

5836



Method
(Training Language(s))

English
ES

Catalan
ES

English
PS

Catalan
PS

English
NS

Catalan
NS

Ǎguila-7B Baseline 26.5 (1.2) 25.5 (1.2) 30.4 (1.2) 31.6 (1.2) 73.9 (0.9) 72.2 (0.8)
PMET (CAT) 80.4 (2.5) 95.6 (1.3) 72.5 (2.5) 81.3 (2.3) 73.9 (2.1) 74.3 (1.8)

MEMIT (CAT) 88.8 (0.7) 97.4 (0.4) 84.0 (0.8) 88.3 (0.7) 71.8 (0.8) 70.5 (0.7)
MEMAT-16 (CC) 90.3 (1.1) 97.8 (0.5) 86.2 (1.1) 89.6 (1.0) 72.7 (1.2) 71.8 (1.0)
MEMAT-16 (CE) 90.7 (1.0) 97.6 (0.6) 87.0 (1.1) 89.8 (1.0) 73.4 (1.1) 72.4 (1.0)

MEMAT-16 (CC*) 89.8 (1.1) 97.6 (0.6) 85.7 (1.1) 90.1 (1.0) 73.7 (1.1) 72.7 (1.0)
MEMAT-16 (CE*) 89.5 (1.1) 97.3 (0.6) 85.7 (1.1) 89.1 (1.0) 73.1 (1.2) 71.8 (1.0)

EM EM PM PM NM NM
Ǎguila-7B Baseline -6.7 (0.4) -7.4 (0.5) -5.5 (0.4) -6.2 (0.5) 7.6 (0.3) 8.3 (0.4)

PMET (CAT) 25.3 (2.1) 62.9 (2.0) 23.2 (2.2) 31.9 (2.2) 7.6 (0.7) 8.6 (0.8)
MEMIT (CAT) 31.9 (0.8) 67.0 (0.8) 22.2 (0.6) 40.4 (0.8) 6.6 (0.3) 7.3 (0.3)

MEMAT-16 (CC) 39.0 (1.3) 72.8 (1.2) 27.8 (1.1) 47.9 (1.4) 8.3 (0.5) 9.1 (0.6)
MEMAT-16 (CE) 43.8 (1.3) 73.3 (1.2) 32.2 (1.1) 50.3 (1.4) 9.7 (0.5) 9.7 (0.6)

MEMAT-16 (CC*) 42.2 (1.4) 74.8 (1.2) 31.6 (1.2) 51.1 (1.4) 9.9 (0.5) 10.6 (0.6)
MEMAT-16 (CE*) 38.5 (1.3) 70.6 (1.2) 28.1 (1.1) 46.3 (1.4) 8.7 (0.5) 9.2 (0.5)

Table 1: Results of English and Catalan Efficacy, Generalization and Specificity prompts over the success and
magnitude metrics in both languages. Each row represents the experiments performed for the different knowledge
editing methods when inserting 1,000 factual associations. The notation assigned to MEMAT-16 is (L1-L2), where
the cases (L1-L2*) indicate the use of attention heads that were trained in a different set of factual triplets and which
have been recycled in a new insertion of factual associations. The 95% confidence intervals are in parenthesis.

where G̃ represents the modified decoder
model obtained by inserting ωℓ,h in the de-
coder G that results from point (a), (G̃ =
G([headℓ,h−1,·]+ = [ωℓ,h])). The term DKL is
the KL divergence that minimize the effect of
the modification in prompts p′ that contain the
subject si, but contain the relationship "is a".
Finally, R is the number of random prompts
zj that are inserted at the beginning of the sen-
tence to make the optimization more robust
under different contexts.

Once the head corrections are optimized, we
apply equation 6.

Note that the loss is associated to a single factual
triplet. However, differently from MEMIT, we
optimize the attention heads corrections for all the
samples at the same time by using different batch
sizes in Adam (Kingma and Ba, 2017). We also use
gradient accumulation to keep the method cheap
from a computational perspective.

Given that there is not a clear choice on the num-
ber of heads that should be optimized, we make
a hyperparameter search on the number of atten-
tion heads and find that for most of the metrics, the
optimal number of heads is around K = 16. For
additional information, please refer to Appendix F.

To evaluate the relevance of the information en-
coded in the attention heads corrections, we also
conduct another experiment with our method. We
apply MEMAT in a particular set of factual triplets
using the pair (L1, L2) and save the head correc-
tions and its positions. Then, we insert different
factual triplets in the original model using MEMIT
in L1 and add the head corrections that were previ-
ously obtained. The results of this experiment, as
well as the results of PMET, MEMIT and MEMAT
are shown in Table 1 for some combinations of
L1 and L2, the remaining combinations are left in
Appendix G. Additionally, an exploration of exper-
iments that introduce both languages at the same is
provided in Appendix H, showing similar results.

Our research indicates that while PMET shows
superior performance in neighborhood metrics,
this comes at the expense of reduced efficacy and
generalization in knowledge introduction, with
MEMAT demonstrating promising results in this
area. Across all analyzed metrics, MEMAT con-
sistently outperforms MEMIT. Particularly note-
worthy are the significant improvements in para-
phrase magnitudes, exceeding 10% over the base-
line. These findings, combined with positive neigh-
borhood metrics, suggest that optimizing attention
heads can improve the comprehension of implicit
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Figure 4: MEMIT and MEMAT scaling curves plot showing the performance of English and Catalan against number
of edits (log-scale) when only using Catalan training data. The error correspond to a 68% confidence interval.

knowledge in LLMs. This hypothesis gains further
support from our experiments with recycled atten-
tion heads on other sets of factual triplets (L1-L2*
cases), which occasionally outperform the original
MEMAT approach.

Moreover, our cross-lingual analysis provides
evidence that this enhanced understanding occurs
at a certain cross-lingual level, showing positive re-
sults in multilingual metrics even when only using
monolingual training.

In point (c), the method suggested in ITI was
not employed. The decision to deviate from this
method stems from observed performance declines
within the specified domain. Further details on this
matter can be found in Appendix I.

6.1 Scaling Curves

Considering the notable improvement in perfor-
mance metrics, we opt to conduct a comprehen-
sive comparison of the training evolution between
MEMIT and MEMAT in Figure 4. This investiga-
tion involves varying the number of inserted sam-
ples, with a specific focus on experiments exceed-
ing 100 samples. The sample distribution follows
the formula ni = exp(ln(10, 000) ∗ i

16).
Recognizing the impracticality of training head

corrections with only 100 samples, we opt to opti-
mize the head corrections using a subset of 1,000
factual triplets for the combination L1 = L2 =

Catalan. The samples used to train these heads
are separated from our dataset. Then, we in-
sert the head corrections into the decoders Gni

that result from inserting different factual triplets
with MEMIT in Ǎguila-7B. Specifically, MEMAT
(CC*) refers to training MEMIT on ni factual
triplets, excluding the initial 1,000, while incor-
porating the previously obtained attention head cor-
rections.

Although MEMAT’s performance still degrades
with the introduction of more factual associations,
it consistently outperforms MEMIT across all eval-
uation metrics. This experiment provides addi-
tional evidence that head corrections are highly
portable and that MEMAT enhances the under-
standing of previously unseen languages.

7 Reproducibility

The conducted experiments have been executed
on workstations equipped with AMD Radeon In-
stinct MI50 GPUs, with 32 GB of memory each.
HuggingFace Transformers (Wolf et al., 2020) fa-
cilitates the loading of language models, while Py-
Torch (Paszke et al., 2019) is employed to imple-
ment model editing algorithms on the GPUs. Addi-
tionally, the training of sigmoid classifiers is carried
out using the Scikit-learn library (Pedregosa et al.,
2018) on CPUs.

In this specific setup, introducing 1,000 samples
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through MEMIT takes 3 GPU hours, contrasting
with the 25 GPU minutes required for training 16
attention heads corrections.

8 Conclusions

In this study, we examine the cross-lingual impli-
cations of knowledge within the domain of knowl-
edge editors, identifying two significant patterns.
Firstly, the proposed methods heavily rely on sub-
ject tokenization. Secondly, our experiments show
evidence that attention heads encode information
in a certain language-independent manner.

Expanding our investigation, we introduce
MEMAT, a method that, following the applica-
tion of MEMIT, fortifies the language model’s
knowledge through subtle parameter adjustments.
We substantiate how the approach introduced is
portable and, regardless of the language used dur-
ing training, enhances the performance of other
languages.

9 Future Work

Our work emphasizes the limitations of training
LLMs with monolingual data. As a future direction,
we are interested in further investigating language
adaptation techniques to enable these models to
perform tasks in a more language-agnostic manner.

Additionally, we consider necessary to explore
the role that each architecture component play in
alternative domains. Recognizing the incomplete
understanding of transformer-based models, we
assert that prioritizing explainable AI could be es-
sential to gain the insights necessary to enhance
current state-of-the-art methods. We hope that our
study can contribute to inspiring further exploration
in this domain.

10 Limitations

All hypotheses put forth in this study stem from
experiments conducted in English and Catalan. It is
essential to recognize that due to the similarity be-
tween their alphabet and the phenomena explored
in Section 5.1, the generalization of our findings to
other linguistic contexts may be limited. Further
experimentation involving diverse languages is im-
perative to establish the cross-lingual implications
of the identified patterns.

Moreover, despite considerable efforts within
the natural language processing community, many
challenges related to the reliability of language
models still persist. The limitations in knowledge

editions, as indicated by the inability to modify
related knowledge (Cohen et al., 2023) and the
lack of bidirectionality (Ma et al., 2023), suggest
that exclusively focusing on specific parameters
may not offer a solution to the issues of knowledge
editing (Pinter and Elhadad, 2023).
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A Translated CounterFact Sample
{

"case_id": 2,
"pararel_idx": 13704,
"relation_id": "P1303",
"eval_target_new": {

"requested_rewrite": {
"prompt": "{}, el",
"target_new": {

"str": "piano",
"id": "Q5994"

},
"subject": "Toko Yasuda"

},
"paraphrase_prompts": [

"Inicialment i són zero i és fals.
Toko Yasuda, tocant al",↪→

"La densitat de població era .
Toko Yasuda toca el"↪→

],
"neighborhood_prompts": [

"Paul McCartney toca el",
"John Lennon, tocant el",
"Elvis Presley, el",
"Douglas Adams, tocant el",
"John Lennon toca el",
"Jimi Hendrix, tocant el",
"Ringo Starr, tocant el",
"Leonard Cohen toca el",
"Bruce Springsteen, tocant el",
"John Lennon toca el"

],
},
"eval_target_true": {

"requested_rewrite": {
"prompt": "{}, la",
"target_true": {

"str": "guitarra",
"id": "Q6607"

},
"subject": "Toko Yasuda"

},
"paraphrase_prompts": [

"Inicialment i són zero i és fals.
Toko Yasuda, tocant a la",↪→

"La densitat de població era .
Toko Yasuda toca la"↪→

],
"neighborhood_prompts": [

"Paul McCartney toca la",
"John Lennon, tocant la",
"Elvis Presley, la",
"Douglas Adams, tocant la",
"John Lennon toca la",
"Jimi Hendrix, tocant la",
"Ringo Starr, tocant la",
"Leonard Cohen toca la",
"Bruce Springsteen, tocant la",
"John Lennon toca la"

],
}

}

B Optimization of the Learning Rate

When applying a hyperparameter search in MEMIT
and PMET, we find a stronger effect when changing
the learning rate, which we consider optimal at
lr = 0.2 and lr = 104 respectively. In Figures 5
and 6, an evolution of the success metric associated
to the different prompts is shown given different
values of the learning rate. In our search we found
MEMIT with superior performance, which denotes
some evidence of the dependence of these methods
on the model architecture.
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Figure 5: Results over training using MEMIT in Catalan
and evaluating in Catalan with different values of the
learning rate. Each solid line represents a different
type of prompt used, and the dashed line represents
the harmonic mean between them. The displayed areas
correspond to a 68% confidence interval.
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Figure 6: Results over training using PMET in Catalan
and evaluating in Catalan with different values of the
learning rate. Each solid line represents a different
type of prompt used, and the dashed line represents
the harmonic mean between them. The displayed areas
correspond to a 68% confidence interval.

5842



C Similarity between Setences

In Section 5.1, the connection between MEMIT’s
cross-lingual capability and subject tokenization
becomes evident. Given that in some sections we
also evaluate cross-lingual capacity without im-
posing restrictions on samples based on a specific
Jaccard metric, we consider pertinent to depict the
distribution of our subjects, relations, and targets
⟨s, r, o∗⟩ across both languages in Figure 7.
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(c) Similarity between targets
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Figure 7: Visualization of the frequency distribution of
similarities among subject, relation, and target tokens in
the new English and Catalan CounterFact datasets.

D Implementation Details of Locating
Relevant Heads

When incorporating information through a knowl-
edge editor, not all intended factual associations are
effectively inserted. To address this issue, our locat-
ing procedure incorporates an additional step. Fol-
lowing the insertion of factual associations using
MEMIT in a designated language L1, a refinement
is made by selecting the associations that accurately
predict the corresponding factual association in L2.
Subsequently, the locating procedure is applied to
this refined subset of factual associations. This
additional step enhances the top accuracy perfor-
mance of certain aspects by approximately 8%.

E Relevance of Attention Heads

In Figure 8, we also explore the combinations of
the languages L1 and L2 that were not previously
represented.

(a) L1 = English, L2 = English
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(b) L1 = English, L2 = Catalan
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Figure 8: Accuracy on the validation set for all heads in
all layers in Ǎguila-7B considering two combinations
of L1 and L2. The performance peaks include 79.1%
and 78.6%.
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F Hyperparameter Search

(a) Catalan Evaluation
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(b) English Evaluation
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Figure 9: Illustration of all the metrics in Catalan (a) or English (b) evaluation when employing MEMAT for different
number of heads (K ∈ {8, 16, 32, 48}), in 1,000 factual samples and considering all conceivable combinations
of L1, L2 ∈ {Catalan, English}. The codification of L1 and L2 follows the format “L1-L2". The dashed lines
represent the baseline performances when only applying a MEMIT training for Catalan or English. The displayed
errors correspond to a 68% confidence interval.
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G Tables of Results

Table 2 showcases the outcomes derived from the
various knowledge editing methods investigated in
this study, particularly focusing on previously un-
explored combinations of training languages. Con-
sistent with earlier findings, the incorporation of
MEMAT yields a notable enhancement across the
majority of evaluation metrics.
Furthermore, this performance boost extends to the
accuracy metric, which assesses whether the most
probable token is o∗ for efficacy and paraphrase

prompts or oc for neighborhood prompts:

EA := E
[
o∗ = argmax

ω
P[ω|p]|p ∈ EP

]

PA := E
[
Ep∈PP

[
o∗ = argmax

ω
P[ω|p]

]]

NA := E
[
Ep∈NP

[
oc = argmax

ω
P[ω|p]

]]
.

(13)

Method
(Training Language(s))

English
ES

Catalan
ES

English
PS

Catalan
PS

English
NS

Catalan
NS

Ǎguila-7B Baseline 26.5 (1.2) 25.5 (1.2) 30.4 (1.2) 31.6 (1.2) 73.9 (0.9) 72.2 (0.8)
PMET (ENG) 95.9 (1.2) 83.6 (2.3) 86.4 (1.8) 78.1 (2.4) 74.0 (2.1) 74.3 (1.8)

MEMIT (ENG) 98.4 (0.3) 88.9 (0.7) 92.6 (0.5) 83.7 (0.8) 71.8 (0.8) 71.2 (0.7)
MEMAT-16 (EE) 99.0 (0.4) 89.1 (1.1) 94.6 (0.7) 85.3 (1.2) 72.8 (1.1) 72.5 (1.0)
MEMAT-16 (EC) 98.7 (0.4) 89.0 (1.1) 94.4 (0.7) 85.1 (1.2) 72.4 (1.2) 72.8 (1.0)
MEMAT-16 (EE*) 98.6 (0.4) 89.3 (1.1) 94.4 (0.7) 85.0 (1.2) 73.4 (1.1) 73.0 (1.0)
MEMAT-16 (EC*) 98.5 (0.4) 89.4 (1.1) 93.7 (0.7) 84.8 (1.2) 72.6 (1.2) 72.6 (1.0)

EM EM PM PM NM NM
Ǎguila-7B Baseline -6.7 (0.4) -7.4 (0.5) -5.5 (0.4) -6.2 (0.5) 7.6 (0.3) 8.3 (0.4)

PMET (ENG) 68.3 (1.9) 38.7 (2.4) 36.0 (2.0) 29.4 (2.2) 8.8 (0.8) 7.9 (0.8)
MEMIT (ENG) 61.5 (0.7) 40.9 (0.9) 38.5 (0.7) 31.8 (0.8) 6.8 (0.3) 7.7 (0.3)

MEMAT-16 (EE) 72.0 (1.0) 49.1 (1.4) 50.0 (1.1) 40.2 (1.4) 9.5 (0.5) 10.0 (0.6)
MEMAT-16 (EC) 67.6 (1.1) 49.3 (1.4) 46.5 (1.1) 39.8 (1.4) 8.8 (0.5) 10.3 (0.6)
MEMAT-16 (EE*) 71.0 (1.0) 48.4 (1.5) 49.6 (1.1) 39.4 (1.4) 9.9 (0.5) 10.4 (0.6)
MEMAT-16 (EC*) 67.5 (1.1) 48.1 (1.4) 46.2 (1.1) 39.1 (1.4) 9.2 (0.5) 10.3 (0.6)

EA EA PA PA NA NA
Ǎguila-7B Baseline 0.3 (0.2) 0.8 (0.3) 0.3 (0.1) 1.3 (0.3) 9.8 (0.5) 13.0 (0.6)

PMET (ENG) 87.8 (2.0) 55.0 (3.1) 49.4 (2.6) 41.7 (2.9) 10.8 (1.1) 13.3 (1.3)
MEMIT (ENG) 78.8 (1.0) 57.7 (1.2) 52.0 (1.0) 46.1 (1.1) 9.6 (0.4) 12.3 (0.5)

MEMAT-16 (EE) 84.8 (1.3) 62.9 (1.7) 62.2 (1.4) 52.6 (1.7) 13.8 (0.7) 16.2 (0.8)
MEMAT-16 (EC) 83.2 (1.3) 64.2 (1.7) 60.7 (1.4) 54.8 (1.7) 13.7 (0.6) 17.6 (0.8)
MEMAT-16 (EE*) 85.2 (1.3) 63.2 (1.7) 62.1 (1.4) 53.4 (1.7) 14.8 (0.7) 16.7 (0.8)
MEMAT-16 (EC*) 82.8 (1.4) 63.3 (1.7) 59.7 (1.4) 53.8 (1.7) 14.0 (0.7) 16.7 (0.8)

PMET (CAT) 41.7 (3.1) 83.8 (2.3) 23.2 (2.2) 47.1 (3.0) 13.2 (1.3) 10.1 (1.1)
MEMIT (CAT) 45.2 (1.2) 82.6 (0.9) 33.4 (0.9) 55.7 (1.1) 8.8 (0.4) 12.7 (0.5)

MEMAT-16 (CC) 51.6 (1.8) 84.3 (1.3) 39.3 (1.4) 60.8 (1.7) 11.5 (0.6) 15.3 (0.8)
MEMAT-16 (CE) 57.6 (1.8) 84.6 (1.3) 45.4 (1.5) 63.4 (1.6) 14.4 (0.7) 16.6 (0.8)

MEMAT-16 (CC*) 54.5 (1.8) 84.9 (1.3) 42.9 (1.5) 62.6 (1.6) 13.7 (0.7) 16.8 (0.8)
MEMAT-16 (CE*) 52.7 (1.8) 83.9 (1.3) 41.2 (1.5) 61.3 (1.7) 12.6 (0.6) 15.5 (0.8)

Table 2: Results of English and Catalan Efficacy, Generalization and Specificity prompts over the success, magnitude
and accuracy metrics in both languages. Each row represents the experiments performed for the different knowledge
editing methods when inserting 1,000 factual associations. The notation assigned to MEMAT-16 is (L1-L2), where
the cases (L1-L2*) indicate the use of attention heads that were trained in a different set of factual triplets and which
have been recycled in a new insertion of factual associations. The 95% confidence intervals are in parenthesis.
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H Introduction of Both Languages

To incorporate factual associations for both lan-
guages using the ∆ matrices defined in equation 5,
we can employ two strategies:

• Optimize each factual association concur-
rently in English and Catalan, resulting in a
single bilingual matrix, ∆eng+cat.

• Optimize two separate matrices for the same
factual associations in English and Catalan in-
dependently, and then combine them: ∆eng +
∆cat.

Table 3 displays the experimental results for
1,000 samples, demonstrating that the second strat-
egy—optimizing separate matrices before merg-
ing them—yields significantly superior outcomes.
Additionally, the MEMAT approach for inserting
both languages consistently outperforms MEMIT
across most metrics. Comparing these findings
with the monolingual insertion results in Tables
1 and 2, it is clear that while all neighborhood
metrics decline, paraphrase metrics see substan-
tial improvement. Furthermore, efficacy metrics
are more balanced between the languages. These
results indicate that inserting knowledge in both
languages enhances the model’s comprehension of
factual concepts more effectively, though it also
impacts unrelated knowledge to a greater extent.

I ITI performance

ITI proposes a method aimed at enhancing the ac-
curacy of language models in the generation of
truthful information. Firstly, the approach involves
identifying the heads responsible for encoding per-
tinent information related to the concept of truth,
which only differs with the locating procedure out-
lined in Section 5.2 in the monolingual framework
and the dataset, which is TruthfulQA (Lin et al.,
2022). Subsequently, an average of attention heads
associated with the final token of truthful sentences
is applied to the entire model. While ITI originally
used a limited number of sentences, this Appendix
study its robustness through an experiment com-
prising 1,000 samples.

The initial two stages of our experiment replicate
the methodology outlined in Section 6. However,
instead of optimizing the heads, we average the
truthful samples and amplify the strength of the
introductions by a factor of α. This approach yields
the results shown in Figure 10. Although these
results are subject to high statistical uncertainty,
we find the outcomes from the optimization using
12 to be more favorable.

Method
(Training Language(s))

English
ES

Catalan
ES

English
PS

Catalan
PS

English
NS

Catalan
NS

MEMIT (CAT+ENG) 93.4 (0.6) 92.2 (0.6) 83.7 (0.8) 84.8 (0.7) 67.4 (0.7) 67.8 (0.8)
MEMIT (CAT)+(ENG) 98.3 (0.5) 97.1 (0.6) 94.8 (0.6) 91.3 (0.9) 65.4 (1.2) 65.1 (1.1)
MEMAT (CAT)+(ENG) 99.0 (0.4) 97.6 (0.6) 96.2 (0.6) 93.2 (0.8) 67.2 (1.1) 66.6 (1.1)

EM EM PM PM NM NM
MEMIT (CAT+ENG) 36.7 (0.8) 28.3 (0.7) 23.5 (0.7) 18.0 (0.5) 5.3 (0.3) 4.8 (0.2)

MEMIT (CAT)+(ENG) 54.5 (1.1) 59.7 (1.2) 39.2 (1.0) 43.9 (1.3) 4.6 (0.4) 4.5 (0.5)
MEMAT (CAT)+(ENG) 68.0 (1.1) 70.0 (1.2) 53.1 (1.1) 55.3 (1.4) 7.1 (0.5) 7.0 (0.6)

EA EA PA PA NA NA
MEMIT (CAT+ENG) 55.2 (1.2) 42.1 (1.2) 37.0 (1.1) 27.9 (0.9) 10.0 (0.4) 7.4 (0.3)

MEMIT (CAT)+(ENG) 69.5 (1.6) 75.5 (1.5) 51.4 (1.5) 57.2 (1.7) 7.4 (0.4) 9.3 (0.6)
MEMAT (CAT)+(ENG) 78.5 (1.5) 80.1 (1.4) 63.2 (1.4) 65.6 (1.6) 11.5 (0.6) 13.6 (0.7)

Table 3: Results of English and Catalan Efficacy, Generalization and Specificity prompts over the success, magnitude
and accuracy metrics in both languages. Each row represents experiments performed for different methods to insert
factual knowledge in both languages. The 95% confidence intervals are in parenthesis.
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Figure 10: English Efficacy, Generalization and Specificity general metrics after applying ITI in the context of
factual knowledge considering an original training in Catalan, and ITI applied in English. The interval of confidence
considered is 68%.
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