
Findings of the Association for Computational Linguistics ACL 2024, pages 5935–5947
August 11-16, 2024 ©2024 Association for Computational Linguistics

CodeInsight: A Curated Dataset of Practical Coding Solutions from Stack
Overflow

Anonymous ACL submission

Abstract

We introduce a novel dataset tailored for code001
generation, aimed at aiding developers in com-002
mon tasks. Our dataset provides examples that003
include a clarified intent, code snippets associ-004
ated, and an average of three related unit tests.005
It encompasses a range of libraries such as006
Pandas, Numpy, and Regex, along with more007
than 70 standard libraries in Python code de-008
rived from Stack Overflow. Comprising 3,402009
crafted examples by Python experts, our dataset010
is designed for both model finetuning and stan-011
dalone evaluation. To complete unit tests eval-012
uation, we categorize examples in order to get013
more fine grained analysis, enhancing the un-014
derstanding of models’ strengths and weak-015
nesses in specific coding tasks. The examples016
have been refined to reduce data contamina-017
tion, a process confirmed by the performance018
of three leading models: Mistral 7B, CodeL-019
LAMA 13B, and Starcoder 15B. We further in-020
vestigate data-contamination testing GPT-4 per-021
formance on a part of our dataset. The bench-022
mark can be accessed at anonymized address.023

1 Introduction024

In the dynamic landscape of software engineering,025

developers frequently confront the challenge of026

translating conceptual ideas into functional code.027

While navigating this process, the gap between028

intention and implementation can often be a hur-029

dle, even for experienced programmers. Tradition-030

ally, developers have turned to online resources like031

Stack Overflow, searching for solutions in natural032

language to address their specific coding dilemmas.033

The emergence of large language models034

(LLMs) trained on code has heralded a new era035

in this domain. Innovations like Codex (Chen et al.,036

2021a) have revolutionized the field by providing037

real-time code suggestions in Integrated Devel-038

opment Environments (IDEs). Similarly, models039

such as ChatGPT and CodeLLAMA (Rozière et al.,040

2023) demonstrate the potential for integrating into041

IDEs, offering developers context-aware assistance 042

in initiating and refining code, thereby enhancing 043

the efficiency of the software development cycle. 044

However, the ascent of code generation through 045

LLMs underscores the heightened need for datasets 046

that emphasize precision, context-awareness, and 047

syntactic accuracy. While existing datasets have 048

propelled advancements in this arena, they are 049

not without limitations. The shift towards LLM- 050

focused datasets has led to a decreased emphasis on 051

traditional training sets, directing attention towards 052

evaluation sets. This shift challenges the training of 053

models from scratch or for specific task fine-tuning. 054

Moreover, while datasets like HumanEval (Chen 055

et al., 2021b) or APPS (Hendrycks et al., 2021) 056

provide valuable insights, they often fall short of 057

mirroring the real-world coding challenges devel- 058

opers encounter. 059

Addressing these gaps, this paper introduces the 060

CodeInsight dataset, a resource specifically tai- 061

lored for Python code generation. This focus is 062

anchored in Python’s widespread adoption in key 063

sectors like data science, machine learning, and 064

web development. The dataset, comprising 3,402 065

unique, expert-curated Python examples, spans ba- 066

sic programming to complex data science chal- 067

lenges, complete with unit tests for evaluation. The 068

CodeInsight dataset stands out in its ability to pro- 069

vide a nuanced balance between breadth and depth, 070

offering a finely-tuned resource for training and 071

evaluating LLMs in Python code generation. By 072

bridging the gap between natural language and 073

code, CodeInsight presents a tool for understand- 074

ing and enhancing the capabilities of LLMs in real- 075

world programming contexts. 076

The dataset provides three primary innovations, 077

uniquely combined within this resource: 078

• It includes a unit test based evaluation, of- 079

fering a more robust evaluation metric than 080

traditional methods such as BLEU score. 081

1
5935



• Examples are annotated to facilitate a deeper082

analysis of its strengths and weaknesses.083

• It provides a training set in addition to a test084

set, with each example being manually cu-085

rated to ensure high quality, supporting effi-086

cient fine-tuning.087

Organized as follows, this paper first details the088

dataset construction process in Section 2, includ-089

ing our sources, selection criteria, and annotation090

methods. Section 3 presents astatistical analysis091

of the dataset, highlighting its diverse applications.092

In Section 4, the dataset’s is tested through eval-093

uations using LLM baselines. Lastly, Section 5094

situates CodeInsight within the broader landscape095

of code generation datasets.096

2 Dataset Construction097

Our pipeline for building CodeInsight consists of098

three pivotal steps. Initially, we identified the099

sources to retrieve examples. Subsequently, from100

these sources, we filtered the most relevant natu-101

ral language-code pairs. The final phase involved102

annotating these pairs and crafting associated unit103

tests. This section provides a breakdown of each104

of these stages.105

2.1 Data Sources106

To develop a dataset for code generation aimed107

at aiding development, we prioritize sources that108

closely mirror real-world development challenges,109

ensuring a match between natural language and110

code. We chose Stack Overflow due to its exten-111

sive collection of real-world programming ques-112

tions and solutions, featuring balanced complexity113

and contributed by a broad and experienced com-114

munity.115

Despite Stack Overflow’s extensive collection116

of developer queries, only 36% of Python-tagged117

questions fit the how-to format essential for our118

dataset, as identified in Yin et al. (2018). A ’how-119

to’ question typically presents a clear, task-oriented120

query where the developer seeks a method to ac-121

complish a specific programming task.122

To address the challenge of identifying relevant123

examples, we utilized the CoNaLa dataset (Yin124

et al., 2018), a curated collection of Python ’how-125

to’ examples from Stack Overflow. This dataset126

features 2,379 examples that have been manually127

reviewed and corrected by annotators, alongside128

approximately 600,000 unrefined examples ranked129

by their likelihood of fitting the ’how-to’ criteria. 130

Our selection encompassed the 2,379 hand-written 131

examples and the top-ranked 3,121 unrefined ex- 132

amples. 133

To broaden the scope and applicability of our 134

dataset, we have incorporated an additional 600 135

samples from Stack Overflow, emphasizing the use 136

of packages like Pandas, Numpy, and Regex. The 137

integration of these packages is a decision to align 138

the dataset with the emergent code generation de- 139

mands in data science, both in academic research 140

and industry applications. Moreover, Regex’s in- 141

clusion enhances the dataset’s to accommodate a 142

wider range of specialized problems. 143

The sourcing procedure began with the elim- 144

ination of redundancies and the filtration of is- 145

sues based on a baseline of community engage- 146

ment—measured by votes and views—and the pres- 147

ence of accepted answers. We then prioritized the 148

problems using a weighted ranking system that ac- 149

counts for the temporal dimension, recognizing that 150

older issues may naturally garner more attention 151

over time. 152

Finally, from our selection process, we gathered 153

a total of 7,300 raw examples to serve as the foun- 154

dation for our dataset. 155

2.2 Data Filtering 156

The transition into the data filtering phase necessi- 157

tates a strategy to select examples from the source, 158

acknowledging that not all contributions from the 159

Stack Overflow community are directly amenable 160

to our goals, as underscored by Yin et al. (2018); 161

Lai et al. (2023). To illustrate, the most upvoted 162

question on pandas is ’How to iterate over rows in 163

a DataFrame in Pandas’, yet the consensus answer 164

advises against iteration, highlighting the complex- 165

ity inherent in the selection process. 166

To navigate these intricacies, we established cri- 167

teria for inclusion: 168

Authenticity of Developer Inquiries Only those 169

questions that present realistic programming sce- 170

narios are considered, ensuring the dataset’s rele- 171

vance to the actual needs of developers. 172

Direct Extractability of Code We require that 173

the code snippet can be unambiguously identified 174

and extracted from the accompanying explanatory 175

text. 176

Natural Language and Code Alignment A ro- 177

bust correspondence between the problem state- 178

2
5936



Figure 1: Curation Workflow from Stack Overflow to Dataset - The filtering phase (left) screens questions based on
usefulness, code extractability, alignment, and testability, with one example advancing. The labeling phase (right)
details the annotation of this example: extracting and standardizing code, refining the question for clarity with
normalized terms, and developing unit tests to validate the function.

ment and the code solution is necessary for main-179

taining semantic integrity.180

Executable Code Samples The code must be181

functionally valid, capable of running in a desig-182

nated environment, which is essential for both veri-183

fying its effectiveness and constructing unit tests.184

We decide to exclude code where we need to open185

or save a file.186

After implementing our filtering process, we re-187

fined our initial collection of 7,300 examples to188

2,707 distinct problems, constituting about 37% of189

the original raw examples. This significant reduc-190

tion is represented across various sources: from191

Stack Overflow’s CoNaLa dataset, we retained192

1,993 out of 5,500 examples; in the Pandas, Numpy,193

and Regex categories, the numbers were pruned194

down to 294, 242, and 178 from their respective195

totals of 600.196

The low retention rate in my dataset can be at-197

tributed to various factors. For instance, some198

CoNaLa dataset examples were either non-testable199

or too specialized, necessitating extensive mod-200

ification for practical use. Additionally, certain201

examples offered best practice advice or warnings202

rather than direct code solutions. The complexity of203

queries involving advanced libraries like Pandas,204

Numpy, and Regex also posed challenges. While 205

these queries provide valuable specialized advice 206

on Stack Overflow, they often require significant 207

adaptation for generalization. The second and third 208

examples on the left of Figure 1 illustrate these chal- 209

lenges: one involves extracting features from an 210

image using a library, which is relevant but difficult 211

to test due to the need for incorporating and process- 212

ing images. The other example from the Pandas 213

library focuses on best practices rather than direct 214

coding solutions, not aligning with the dataset’s 215

aim for concrete developer tasks. More examples 216

of what we consider as real-world problems, overly 217

specialized queries, or edge cases are detailed in 218

Appendix A. 219

2.3 Data Annotation 220

Our data annotation workflow is designed to pre- 221

vent model memorization and instead cultivate 222

problem-solving skills within the generated dataset. 223

Through a multi-stage annotation process presented 224

on the right of Figure 1, we curate selected ex- 225

amples from the filtering phase into delineated 226

instances, which are then tested against specially 227

crafted unit tests to ensure their correctness. By 228

refining natural language focusing on the semantic 229

relationships between functions and their descrip- 230

3
5937



tions, we diminish the likelihood of models trained231

on massive datasets to merely replicate solutions232

seen in their training data, a concern highlighted by233

Lai et al. (2023) regarding examples sourced from234

Stack Overflow. To maintain focus and efficiency,235

annotators are allocated a strict twenty-minute win-236

dow per example to ensure timely progression and237

a broad coverage of examples. The ensuing steps238

show our annotation strategy:239

Task 1 - Code Extraction from Stack Overflow240

This initial phase entailed the extraction of code241

solutions from Stack Overflow in response to devel-242

opers’ inquiries. When the question admits more243

than one valid response, annotators are expected244

to capture alternate solutions as well, creating a245

supplementary example for the same intent. Upon246

extraction, they transform these snippets into a stan-247

dardized Python function named test, systemati-248

cally renaming arguments (e.g., vari for variables,249

arri for arrays, etc. See Appendix B for all normal-250

ized names). This normalization approach aligns251

with Yin et al. (2018), recognizing, as pointed out252

by Beau and Crabbé (2022), the significant influ-253

ence this method has on models performance.254

Task 2 - Refinement for Natural Language and255

Code Consistency During this stage, annotators256

refined the natural language descriptions to pre-257

cisely correspond with the test function created258

in Task 1. The challenge lay in harmonizing the259

language descriptions with the Python code’s logic,260

ensuring they are concise yet informative. Anno-261

tators were also tasked with incorporating normal-262

ized argument names into these descriptions to bol-263

ster the dataset’s internal coherence and force the264

alignment.265

Task 3 - Development of Function Test Cases266

The concluding annotation task involved the gener-267

ation of 3 unique test cases for each test function,268

designed to rigorously assess the function’s opera-269

tional integrity and accuracy. These test cases in-270

clude a normal scenario, an edge case, and an error271

situation, providing comprehensive coverage. This272

ensures a thorough yet time-efficient evaluation.273

Once the test cases have been passed, annotator274

can proceed the next example.275

A team of five data science professionals, each276

with a minimum of five years of experience, con-277

tributed to the labeling of the filtered examples.278

They managed to complete the annotation in an av-279

erage time of twelve minutes per example, amount-280

ing to a collective annotation effort of over 540 281

hours. 282

This process yielded a compendium of 3,402 ex- 283

amples derived from 2,702 distinct problem state- 284

ments formulated by seasoned developers. 285

3 Dataset Statistics 286

This section outlines the statistical framework of 287

our dataset, highlighting the diversity of program- 288

ming tasks and the complexity of the included code 289

samples. We approach the analysis from two an- 290

gles: the representation of code libraries and differ- 291

ent labels representing the characteristics of code. 292

Key metrics such as item count, average words per 293

natural language problem, and lines per code sam- 294

ple, alongside the depth of Abstract Syntax Tree 295

(AST) to complete code analysis, are presented to 296

give keys of the difficulty of the dataset. 297

3.1 Packages Statistics 298

The Table 1 illustrates the scope of CodeInsight, 299

which encompasses a variety of packages. 300

A key aspect of CodeInsight is its focus on con- 301

cise and precise problem descriptions, a departure 302

from datasets that retain extensive problem con- 303

texts. This approach is aimed at reducing the word 304

count in problem descriptions without sacrificing 305

clarity and specificity, a crucial factor for effective 306

code generation. 307

Code complexity is evaluated using two pri- 308

mary quantitative metrics: the mean line count 309

of code alongside the depth of ASTs. The lat- 310

ter, a measure of syntactic structure complexity, 311

serves to augment the insights gained from line 312

count data. Analysis of AST depth within our 313

dataset reveals a trend: more intricate coding struc- 314

tures, characterized by nested or conditional logic, 315

are associated with deeper ASTs, whereas sim- 316

pler, linear code correlates with shallower ASTs. 317

Notably, across different packages in our dataset, 318

the AST depth remains relatively consistent, with 319

minor variations observed in packages like Scipy 320

and Scikit-learn, potentially attributable to their 321

smaller sample sizes. 322

Our dataset is compared with the DS-1000 323

dataset (Lai et al., 2023), the latter comprising 324

1,000 evaluation instances and utilizing specialized 325

data science tools from Stack Overflow, complete 326

with extensive problem descriptions. Despite sim- 327

ilarities in code line counts and complexity, dif- 328

ferences in AST depths, particularly in Pandas, 329

4
5938



Item Count Avg. Prob Words Avg. Code Lines Avg. Depth AST
Package CodeInsight DS-1000 CodeInsight DS-1000 CodeInsight DS-1000 CodeInsight DS-1000

Full dataset 3,402 1,000 12.6 ± 4.3 140.0 4.6 ± 2.3 3.6 8.6 ± 1.5 8.5

Pandas 819 291 14.1 ± 4.2 184.8 3.59 ± 1.9 5.4 8.7 ± 1.4 10.7
Numpy 591 220 12.2 ± 3.3 137.5 5.3 ± 1.2 2.5 8.0 ± 1.4 8.1
Scikit-learn 19 115 13.8 ± 5.5 147.3 8.1 ± 7.4 3.3 7.6 ± 0.7 7.6
Scipy 8 106 13.0 ± 4.4 192.4 5.5 ± 1.3 3.1 6.5 ± 1.8 8.3

NoImport 415 - 12.1 ± 4.0 - 3.6 ± 1.9 - 8.2 ± 1.2 -
Re 241 - 12.2 ± 2.1 - 5.5 ± 0.8 - 8.1 ± 1.4 -
Other 1309 - 12.5 ± 3.2 - 6.1 ± 2.8 - 8.7 ± 0.9 -

Matplotlib - 155 - 21.1 - 3.0 - 6.5
TensorFlow - 45 - 192.4 - 3.1 - 7.8
Pytorch - 68 - 133.4 - 2.1 - 8.2

Table 1: Comparative Analysis of Package Statistics in CodeInsight and DS-1000 Datasets. Standard deviations
are reported where applicable. "-" indicates the package is not included in the dataset. Other contains 78 distinct
packages like Itertools, Collections, Operator, etc. Detailed statistical data can be found in Appendix D.

indicate nuanced syntactic complexity variances.330

CodeInsight features a higher average number of331

unit tests per example, suggesting a more thorough332

evaluation methodology. Unlike DS-1000, which333

lacks detailed analysis of code model failures in334

unit tests, we provide a statistical breakdown of335

code categories to enhance understanding of model336

performance in the next Section.337

Figure 2: Ratio of positive (belonging to a specific cat-
egory) to negative (not belonging to the category) ex-
amples for each of the 10 distinct Categories focusing
on item count, average code lines and AST depths. De-
tailed statistical data supporting this analysis can be
found in Appendix D.

3.2 Labels Statistics338

In our study, we identified 10 Categories to en-339

hance our analysis and gain a better understanding340

of our dataset. These predefined categories provide341

insights into the conditions under which models342

were successful or not. These categories vary from343

basic indicators like BUILTIN denoting the use of 344

Python’s built-in functions, to ASSIGN marking 345

variable assignments. More complex categories 346

include COMPLEXTASK for codes with multiple 347

imports, and >THREEVARS for functions with over 348

three arguments. Each example in the dataset is bi- 349

nary annotated—marked as positive if it falls under 350

a category and negative otherwise. For a precise 351

definition of all Categories , refer to Appendix C. 352

Figure 2 illustrates the ratio of positive to neg- 353

ative examples for each category to highlight the 354

impact of each category. For example, we compare 355

the ASSIGN category against all examples that do 356

not include variable assignments. Our analysis pri- 357

marily focuses on the most striking ratios, namely 358

the item count, average code lines and average AST 359

depth, as we found that the unit tests and average 360

problem words exhibit minimal variation across 361

the dataset. Detailed statistical data is provided in 362

Appendix D. 363

The blue bars in the chart, representing item 364

count ratios, significantly highlight the volume and 365

distribution of data in each category. This show- 366

cases the prevalence of certain coding practices; for 367

instance, the BUILTIN category, with nearly twice 368

as many instances as its counterpart, suggests fre- 369

quent utilization of built-in functions, indicative 370

of a Pythonic approach in our dataset. In contrast, 371

labels like COND and LOOP exhibit more balanced 372

distributions, reflecting a diverse representation of 373

these elements. Notably, categories such as COM- 374

PLEXTASK and >THREEVARS are less represented, 375

aligning with the expectation of their complexity. 376

In the context of average code lines, represented 377

by green bars in the graph, specific categories 378

5
5939



such as COMPLEXTASK, MULTIPLETASK, and379

>THREEVARS exhibit notably higher ratios. This380

finding suggests a more intricate and voluminous381

nature of code associated with these tasks. Contrary382

to initial expectations, the LOOP category does not383

show an increased number of lines. Further investi-384

gation indicates that this outcome can be attributed385

to the frequent utilization of Python list compre-386

hensions in this category, which typically reduces387

the number of code lines. In terms of AST depth, it388

remains relatively consistent for MULTILINE and389

>THREEVARS categories. This observation implies390

that longer codes or handling multiple variables do391

not necessarily correlate with increased syntactic392

complexity. However, in the cases of MULTIPLE-393

TASK and COMPLEXTASK, there is a correlation394

between the number of code lines and higher syn-395

tactic complexity. For other categories, the com-396

plexity levels remain to be stable.397

Overall, this analysis underscores the diverse na-398

ture of coding practices and the value of categoriza-399

tion in understanding code complexity and coding400

styles in a nuanced manner. This category-based401

perspective evaluation on code analysis can be used402

in general to understand better model mistakes and403

way to improve model development.404

4 Baselines405

In this section, we test our dataset using state-of-406

the-art LLMs for code generation. Considering407

the volume and nature of our dataset, we explore408

various model evaluation methodologies. Initially,409

we employ a zero-shot evaluation framework, aug-410

menting it with pre-prompts to align better with411

our specialized task. Subsequently, we experi-412

ment diverse partitioning strategies of the dataset413

for model fine-tuning, followed by evaluation on414

the remaining data. Additionally, we conduct a415

comparative performance analysis of GPT-4 on a416

subset of CoNaLa examples and their modified ver-417

sions by our annotators, to understand the impact418

of language and code remodeling relatively to data419

contamination.420

4.1 Experimental Setup421

Models We evaluate the following pre-trained422

language models: Mistral 7B (Jiang et al., 2023) ;423

CodeLLAMA 13B (Rozière et al., 2023) and Star-424

coder 15B (Li et al., 2023). These models have425

been selected to provide a perspective on the scal-426

ability of model performance in relation to their427

size and the intricacies of code understanding and 428

generation. 429

Evaluation Metrics We follow Lai et al. (2023) 430

and measure the execution accuracy using the 431

pass@1 metric i.e. we generate one code and test 432

it agains all unit tests. We also use the BLEU score 433

(Papineni et al., 2002) and the codeBLEU score 434

(Ren et al., 2020) to complete our evaluation. 435

Model input For evaluation, we give to the 436

model the intent in natural language and its as- 437

sociated function header with its arguments. Once 438

the generation is finished, we automatically detect 439

the end of the function -when it exists- to get the 440

whole code and test it. 441

4.2 Prompting Evaluation 442

Mistral CodeLLAMA Starcoder

Without Prompt 4.7% 44.7% 45.1%
First Prompt 4.9% 40.3% 45.1%
Second Prompt 10.1% 48.1% 46.8%

Table 2: Baselines result varying prompt method. We
report the percentage of all unit tests passed (pass@1
score).

Without prompt Initially, the models were eval- 443

uated using the entire dataset without any addi- 444

tional context added to the natural language intent. 445

The results, as presented in the Table 2, indicate a 446

contrast in performance. Mistral showed notably 447

lower efficiency compared to CodeLLAMA and 448

Starcoder, which both passed nearly 45% of the 449

unit tests. A key observation was the absence of a 450

return statement in a significant proportion of the 451

generated code. While Python allows for scenarios 452

where not returning an explicit value is acceptable, 453

such as actions or modifications without a return 454

value, our dataset did not align with these scenarios. 455

Mistral particularly exhibited a tendency (25% of 456

the cases) to end functions with print statements 457

instead of return statements, affecting its accuracy. 458

First prompt In an attempt to steer the models 459

towards generating return statements for develop- 460

ment aid tasks, a pre-prompt was introduced: “You 461

are a powerful code generation model. Your job 462

is to convert a given natural language prompt into 463

Python function code and return the result.”. Sur- 464

prisingly, this prompt only marginally improved 465

Mistral’s performance, with a slight increase in re- 466

turn statement generation. However, it did not sig- 467

6
5940



Split Pass@1 BLEU codeBLEU

20-80 48.9± 0.6% 50.0± 0.2 42.5± 0.1
40-60 52.6± 0.8% 58.1± 0.4 48.8± 0.4
60-40 53.4± 1.0% 57.9± 0.8 48.8± 0.7
80-20 53.1± 1.7% 57.9± 1.4 48.6± 1.2

Table 3: Scores for Different Splits of CodeLLaMA over
five different seed. We report the mean and standard
deviation for each metric.

nificantly affect the performance of CodeLLAMA468

and Starcoder. Notably, CodeLLAMA’s perfor-469

mance even dropped to 40%, indicating that this470

prompting method might not be optimal.471

Second prompt Aiming to further encourage the472

generation of return statements, a different prompt,473

“Return the Result.” was added to the end of the474

natural language intent. This change led to an over-475

all improvement in performance across all mod-476

els, with CodeLLAMA outperforming Starcoder.477

Mistral, although still lagging, showed an improve-478

ment, successfully passing 10.1% of the unit tests.479

4.3 Fine-Tuning Evaluation480

This segment delves into fine-tuning configurations481

to discern their impact on model efficacy.482

Splitting Method For the assembly of our test483

subset, we curated a collection of 3,094 unique484

problems, each along with at least three unit tests to485

ensure an assessment of model performance. This486

selection criterion is grounded in the necessity for487

test case coverage, which is important in evaluat-488

ing model robustness. Out of this repository, we489

allocated different subset to evaluate the need of a490

train set to perform on test set.491

Fine-Tuning Details We finetuned using Lora492

with r = 16 and α = 16. The LoRA layer incor-493

porated a dropout rate of 0.05 and was configured494

without bias adjustments. The batch size was estab-495

lished at 128, encompassing a warmup phase of 100496

steps and an overall training regimen of 400 steps.497

The learning rate was set at 3× 10−5, with the op-498

timization executed using the AdamW algorithm.499

To optimize computational efficiency, training was500

conducted using half-precision computation (FP16)501

on an a100 GPU with 40GB memory.502

We crafted four distinct training/test splits - 20-503

80, 40-60, 60-40, and 80-20 - to fine-tune the504

CodeLLaMa model. Each split was evaluated over505

five different seeds, and the results are depicted in 506

the following table. 507

In our analysis, we noticed that the performance 508

scores for CodeLLaMa exhibit minimal variation 509

when the training set ranges between 40% to 80%. 510

Interestingly, these scores surpass those achieved 511

through prompting alone. It appears that fine- 512

tuning with just 20% of the dataset approaches 513

the performance levels seen with prompting meth- 514

ods, yet it falls short by approximately 4 percentage 515

points in the pass@1 metric and at least 6 points in 516

both BLEU and codeBLEU scores. Given our ob- 517

jective to maximize the utilization of unit tests, we 518

have determined that a 40-60 split represents the 519

most optimal division for the final configuration of 520

the CodeInsight dataset. This decision is grounded 521

in achieving a balanced approach between training 522

efficacy and test coverage. 523

4.4 Results 524

Finally, we chose the 40-60 split to perform our 525

final evaluation on our baselines. We report the 526

result in Table 5. The Table highlights that fine- 527

tuning has a varied impact on different models. 528

Fine-tuning yields comparable outcomes for Star- 529

coder and CodeLLaMa, each passing slightly over 530

half of the problems. Notably, Starcoder excels in 531

complex tasks like COMPLEXTASK and >THREE- 532

VARS, though it drops to 30% in logical complex 533

tasks. Regex, being a distinct language, poses chal- 534

lenges for all models. Interestingly, Mistral shows 535

significant improvement post-finetuning, adapting 536

well to the task with 38.4% test pass rate. However, 537

Mistral struggles with complex tasks and Regex, 538

likely due to its non-code-specific pre-training, un- 539

like the other two models. 540

We provide a deeper error analysis of CodeL- 541

LaMa in Appendix E. 542

4.5 Exploring remodeling relatively to data 543

contamination 544

In Section 2.3, we detail our approach to mitigate 545

data contamination by rephrasing natural language 546

intents and converting code snippets into function 547

formats. Out of 2,379 CoNaLa handwritten exam- 548

ples, we annotated 812 for analysis. Considering 549

the possibility of these examples being included in 550

GPT-4’s training set—a model not open for fine- 551

tuning—we evaluated its zero-shot performance on 552

them, achieving a BLEU score of 58.8. 553

Further analysis was conducted on the 812 ex- 554

amples post-annotation to assess the impact of our 555

7
5941



Dataset Problems Evaluation Avg. Test Cases Avg. P Words Avg. Lines of Code Data Source Train Set

HumanEval 164 Test Cases 7.7 23.0 6.3 Hand-Written No
MBPP 974 Test Cases 3.0 15.7 6.7 Hand-Written No
APPS 5000 Test Cases 13.2 293.2 18.0 Competitions Yes

JulCe 1981 Exact Match + BLEU – 57.2 3.3 Notebooks No
DSP 1119 Test Cases 2.1 71.9 4.5 Notebooks No
CoNaLa 500 BLEU – 13.8 1.1 StackOverflow Yes
Odex 945 Test Cases 1.8 14.5 3.9 Stack Overflow No
DS-1000 1000 Test Cases 1.6 140.0 3.6 StackOverflow No

CodeInsight 1860 Test Cases 3.0 12.6 4.7 StackOverflow Yes

Table 4: Comparison of Test Set Statistics for CodeInsight with recent Code Generation Datasets

Category Total Starcoder CodeLLAMA Mistral
Full Dataset 1860 52.5% 53.1% 38.4%

Labels
MULTILINE 1258 51.8% 50.2% 42.0%
ASSIGN 703 47.0% 48.2% 40.5%
MULTIPLETASK 692 44.5% 42.2% 39.8%
BUILTIN 1292 51.2% 49.8% 41.9%
COND 260 46.7% 47.6% 38.3%
LOOP 573 48.9% 47.8% 40.4%
LIST 408 49.0% 49.5% 41.2%
>THREEVARS 47 53.5% 53.1% 42.3%
COMPLEXTASK 90 35.6% 34.5% 23.1%

Packages
Pandas 458 56.0% 55.2% 44.8%
Numpy 335 53.6% 52.8% 43.2%
NoImport 775 54.1% 53.9% 44.0%
Regex 133 37.5% 38.3% 26.2%

Table 5: Baselines Result on final Test Set split 40-60.
We report the pass@1 for all models.

modifications. This evaluation resulted in a BLEU556

reduction to 47.6. Remarkably, without fine-tuning,557

GPT-4 passed 64% of unit tests for these examples,558

indicating its effectiveness in understanding natural559

language.560

The performance of GPT-4, despite a drop in561

BLEU score, suggests its coding capabilities rather562

than full data leakage from its training phase. The563

contrast in BLEU scores before and after annota-564

tion suggests our approach’s impact. Appendix F565

presents GPT-4’s predictions, illustrating potential566

memorization.567

5 Related Works568

We introduce a comparative analysis, as detailed in569

Table 4, to assess our evaluation set against prevail-570

ing code generation datasets. This analysis clusters571

HumanEval (Chen et al., 2021b), MBPP (Austin572

et al., 2021), and APPS (Hendrycks et al., 2021)573

due to their emphasis on resolving comprehensive574

programming challenges. Our dataset, however, is575

distinguished by its focus on development assis-576

tance, which is typically characterized by a lower577

average line count in the provided code examples, 578

reflecting a different use case compared to the afore- 579

mentioned datasets. It is important to note that 580

many datasets are designed primarily for the pur- 581

pose of evaluating LLMs, which aligns with the 582

prevalent trend in the field. However, the CodeIn- 583

sight dataset sets itself apart by offering an aver- 584

age number of unit tests per example that exceeds 585

those found in datasets oriented towards data sci- 586

ence, such as DSP (Chandel et al., 2022), DS-1000 587

(Lai et al., 2023), and ODEX (Wang et al., 2022). 588

This difference is largely due to the specific re- 589

quirements of data science code generation tasks, 590

which often necessitate fewer but more complex 591

test cases, dealing with sophisticated input objects 592

like square matrices, classifiers, or dataframes. 593

Featuring three distinct unit tests per example, 594

a specialized training set, and predefined labels 595

for in-depth performance analysis, the CodeInsight 596

dataset represents an unparalleled resource. It sup- 597

ports fine-tuning and a comprehensive evaluation of 598

code generation models, offering a novel approach 599

to enhance their development and assessment. 600

6 Conclusion 601

In conclusion, CodeInsight proposes a new frame- 602

work for testing code generation, specialized in as- 603

sisting developers. It adeptly links natural language 604

and code in more than 3,402 problems, providing 605

a robust platform for model training and evalua- 606

tion. The dataset’s strength lies in its diversity, 607

expert annotation, and focus on practical coding 608

scenarios, making it a valuable asset in the inter- 609

section of computational linguistics and code gen- 610

eration research. Thanks to its categories, it allows 611

a more precise comprehension of code generation 612

model on this task and is completely compatible 613

with other datasets for development aid. 614

8
5942



Limitations615

The CodeInsight dataset, while innovative, presents616

several limitations. Firstly, its specialized nature617

in development aid may not fully represent the618

broader spectrum of coding challenges. Expert an-619

notations, while valuable, could introduce biases620

and may not capture diverse coding methodolo-621

gies. Additionally, the dataset’s current scope may622

limit its adaptability to evolving programming lan-623

guages and practices. Furthermore, its reliance on624

Python restricts its applicability across different625

programming environments. These limitations sug-626

gest areas for future expansion and improvement627

to enhance the dataset’s comprehensiveness and628

applicability in diverse coding contexts.629

References630

Jacob Austin, Augustus Odena, Maxwell I. Nye,631
Maarten Bosma, Henryk Michalewski, David Dohan,632
Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le,633
and Charles Sutton. 2021. Program synthesis with634
large language models. CoRR, abs/2108.07732.635

Nathanaël Beau and Benoît Crabbé. 2022. The impact636
of lexical and grammatical processing on generating637
code from natural language. In Findings of the As-638
sociation for Computational Linguistics: ACL 2022,639
Dublin, Ireland, May 22-27, 2022, pages 2204–2214.640
Association for Computational Linguistics.641

Shubham Chandel, Colin B. Clement, Guillermo Ser-642
rato, and Neel Sundaresan. 2022. Training and643
evaluating a jupyter notebook data science assistant.644
CoRR, abs/2201.12901.645

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,646
Henrique Pondé de Oliveira Pinto, Jared Kaplan,647
Harrison Edwards, Yuri Burda, Nicholas Joseph,648
Greg Brockman, Alex Ray, Raul Puri, Gretchen649
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-650
try, Pamela Mishkin, Brooke Chan, Scott Gray,651
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz652
Kaiser, Mohammad Bavarian, Clemens Winter,653
Philippe Tillet, Felipe Petroski Such, Dave Cum-654
mings, Matthias Plappert, Fotios Chantzis, Eliza-655
beth Barnes, Ariel Herbert-Voss, William Hebgen656
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie657
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,658
William Saunders, Christopher Hesse, Andrew N.659
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan660
Morikawa, Alec Radford, Matthew Knight, Miles661
Brundage, Mira Murati, Katie Mayer, Peter Welinder,662
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya663
Sutskever, and Wojciech Zaremba. 2021a. Evaluat-664
ing large language models trained on code. CoRR,665
abs/2107.03374.666

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,667
Henrique Pondé de Oliveira Pinto, Jared Kaplan,668

Harrison Edwards, Yuri Burda, Nicholas Joseph, 669
Greg Brockman, Alex Ray, Raul Puri, Gretchen 670
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas- 671
try, Pamela Mishkin, Brooke Chan, Scott Gray, 672
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz 673
Kaiser, Mohammad Bavarian, Clemens Winter, 674
Philippe Tillet, Felipe Petroski Such, Dave Cum- 675
mings, Matthias Plappert, Fotios Chantzis, Eliza- 676
beth Barnes, Ariel Herbert-Voss, William Hebgen 677
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie 678
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, 679
William Saunders, Christopher Hesse, Andrew N. 680
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan 681
Morikawa, Alec Radford, Matthew Knight, Miles 682
Brundage, Mira Murati, Katie Mayer, Peter Welinder, 683
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya 684
Sutskever, and Wojciech Zaremba. 2021b. Evaluat- 685
ing large language models trained on code. CoRR, 686
abs/2107.03374. 687

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man- 688
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns, 689
Samir Puranik, Horace He, Dawn Song, and Jacob 690
Steinhardt. 2021. Measuring coding challenge com- 691
petence with APPS. In Proceedings of the Neural 692
Information Processing Systems Track on Datasets 693
and Benchmarks 1, NeurIPS Datasets and Bench- 694
marks 2021, December 2021, virtual. 695

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men- 696
sch, Chris Bamford, Devendra Singh Chaplot, Diego 697
de Las Casas, Florian Bressand, Gianna Lengyel, 698
Guillaume Lample, Lucile Saulnier, Lélio Re- 699
nard Lavaud, Marie-Anne Lachaux, Pierre Stock, 700
Teven Le Scao, Thibaut Lavril, Thomas Wang, Timo- 701
thée Lacroix, and William El Sayed. 2023. Mistral 702
7b. CoRR, abs/2310.06825. 703

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, 704
Ruiqi Zhong, Luke Zettlemoyer, Wen-Tau Yih, 705
Daniel Fried, Sida I. Wang, and Tao Yu. 2023. DS- 706
1000: A natural and reliable benchmark for data sci- 707
ence code generation. In International Conference 708
on Machine Learning, ICML 2023, 23-29 July 2023, 709
Honolulu, Hawaii, USA, volume 202 of Proceedings 710
of Machine Learning Research, pages 18319–18345. 711
PMLR. 712

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas 713
Muennighoff, Denis Kocetkov, Chenghao Mou, 714
Marc Marone, Christopher Akiki, Jia Li, Jenny 715
Chim, Qian Liu, Evgenii Zheltonozhskii, Terry Yue 716
Zhuo, Thomas Wang, Olivier Dehaene, Mishig 717
Davaadorj, Joel Lamy-Poirier, João Monteiro, Oleh 718
Shliazhko, Nicolas Gontier, Nicholas Meade, Armel 719
Zebaze, Ming-Ho Yee, Logesh Kumar Umapathi, 720
Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov, 721
Zhiruo Wang, Rudra Murthy V, Jason Stillerman, 722
Siva Sankalp Patel, Dmitry Abulkhanov, Marco 723
Zocca, Manan Dey, Zhihan Zhang, Nour Moustafa- 724
Fahmy, Urvashi Bhattacharyya, Wenhao Yu, Swayam 725
Singh, Sasha Luccioni, Paulo Villegas, Maxim Ku- 726
nakov, Fedor Zhdanov, Manuel Romero, Tony Lee, 727
Nadav Timor, Jennifer Ding, Claire Schlesinger, Hai- 728
ley Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra, 729

9
5943

http://arxiv.org/abs/2108.07732
http://arxiv.org/abs/2108.07732
http://arxiv.org/abs/2108.07732
https://doi.org/10.18653/V1/2022.FINDINGS-ACL.173
https://doi.org/10.18653/V1/2022.FINDINGS-ACL.173
https://doi.org/10.18653/V1/2022.FINDINGS-ACL.173
https://doi.org/10.18653/V1/2022.FINDINGS-ACL.173
https://doi.org/10.18653/V1/2022.FINDINGS-ACL.173
http://arxiv.org/abs/2201.12901
http://arxiv.org/abs/2201.12901
http://arxiv.org/abs/2201.12901
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c24cd76e1ce41366a4bbe8a49b02a028-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c24cd76e1ce41366a4bbe8a49b02a028-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c24cd76e1ce41366a4bbe8a49b02a028-Abstract-round2.html
https://doi.org/10.48550/ARXIV.2310.06825
https://doi.org/10.48550/ARXIV.2310.06825
https://doi.org/10.48550/ARXIV.2310.06825
https://proceedings.mlr.press/v202/lai23b.html
https://proceedings.mlr.press/v202/lai23b.html
https://proceedings.mlr.press/v202/lai23b.html
https://proceedings.mlr.press/v202/lai23b.html
https://proceedings.mlr.press/v202/lai23b.html


Alex Gu, Jennifer Robinson, Carolyn Jane Ander-730
son, Brendan Dolan-Gavitt, Danish Contractor, Siva731
Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jer-732
nite, Carlos Muñoz Ferrandis, Sean Hughes, Thomas733
Wolf, Arjun Guha, Leandro von Werra, and Harm734
de Vries. 2023. Starcoder: may the source be with735
you! CoRR, abs/2305.06161.736

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-737
Jing Zhu. 2002. Bleu: a method for automatic evalu-738
ation of machine translation. In Proceedings of the739
40th Annual Meeting of the Association for Compu-740
tational Linguistics, July 6-12, 2002, Philadelphia,741
PA, USA, pages 311–318. ACL.742

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu,743
Duyu Tang, Neel Sundaresan, Ming Zhou, Ambrosio744
Blanco, and Shuai Ma. 2020. Codebleu: a method745
for automatic evaluation of code synthesis. CoRR,746
abs/2009.10297.747

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten748
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,749
Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom750
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Man-751
ish Bhatt, Cristian Canton-Ferrer, Aaron Grattafiori,752
Wenhan Xiong, Alexandre Défossez, Jade Copet,753
Faisal Azhar, Hugo Touvron, Louis Martin, Nico-754
las Usunier, Thomas Scialom, and Gabriel Synnaeve.755
2023. Code llama: Open foundation models for code.756
CoRR, abs/2308.12950.757

Zhiruo Wang, Shuyan Zhou, Daniel Fried, and Graham758
Neubig. 2022. Execution-based evaluation for open-759
domain code generation. CoRR, abs/2212.10481.760

Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan761
Vasilescu, and Graham Neubig. 2018. Learning to762
mine aligned code and natural language pairs from763
stack overflow. In Proceedings of the 15th Interna-764
tional Conference on Mining Software Repositories,765
MSR 2018, Gothenburg, Sweden, May 28-29, 2018,766
pages 476–486. ACM.767

A Detailed overview of filtering phase768

We include two tables that analyze the exploitabil-769

ity of examples from the CoNaLa dataset. The770

Table 6 presents the 10 examples with the high-771

est probability of exploitability, highlighting their772

votes, titles, and whether they are exploitable. The773

Table 7 displays a random selection of 10 exam-774

ples from the same dataset, also detailing their ex-775

ploitability probability, votes, and titles.776

We provide a detailed description of an accepted777

example, a rejected example and a borderline case778

for passing the filtering phase.779

Accepted example We detailed the accepted ex-780

ample which is the first one on the left of the Figure781

1. This particular example, a query about finding782

the largest values in a numpy array, demonstrates783

P(expl) Vote Title Exploitability
0.87 +8 Sort a nested list by two elements Yes
0.85 +61 Converting integer to list in python Yes
0.85 +37 Converting byte string in unicode string Yes
0.85 +7 List of arguments with argparse No
0.84 +20 How to convert a Date string to a DateTime object? Yes/No
0.82 +64 Converting html to text with Python Yes
0.81 +8 Ordering a list of dictionaries in python Yes
0.81 +4 Two Combination Lists from One List No
0.80 +4 Creating a list of dictionaries in python No
0.79 +16 get index of character in python list Yes

Table 6: Exploitability of the 10th examples with high-
est P(exploitability) from CoNaLa dataset

P(expl) Vote Title Exploitability
0.75 +11 How can I plot hysteresis in matplotlib? No
0.67 +499 How can I get list of values from dict? Yes
0.71 +7 How do I stack two DataFrames next to each other in Pandas? Yes
0.56 +4 List sorting with multiple attributes and mixed order No
0.10 +7 Set x-axis intervals(ticks) for graph of Pandas DataFrame No
0.26 +6 pandas binning a list based on qcut of another list No
0.05 +1989 Determine the type of an object? Yes
0.03 +11 Saving an animated GIF in Pillow No
0.02 +5 Quiver or Barb with a date axis No
0.018 +6 Can’t pretty print json from python No
0.008 +31 For loop - like Python range function No

Table 7: Exploitability of 10th random from CoNaLa
dataset

a typical developer’s question due to unfamiliar- 784

ity with specific numpy functions. Its solution, 785

involving the argpartition function, is directly 786

responsive to the query and easily testable, making 787

it a perfect fit for our dataset. 788

Rejected example The "List sorting with multi- 789

ple attributes and mixed order" question on Stack 790

Overflow from Table 7 presents an excessive level 791

of specificity for inclusion whereas it has a high 792

P(expl) value. This question delves into sorting 793

a list by different attributes of a particular class, 794

emphasizing the specific class’s complexity rather 795

than a broader understanding of sorting functions. 796

The high level of detail in both the problem and its 797

solution complicates the extraction of universally 798

applicable code examples. Therefore, including it 799

may not aptly represent the range of coding tasks 800

and challenges. 801

Edge example An example such as "How to con- 802

vert a Date string to a datetime object?" presented 803

in Table 6 necessitates a more specific reformu- 804

lation for a precise coding answer, like "How to 805

compare a date string in ISO format to a datetime 806

object." This demands the annotator’s understand- 807

ing of ISO format data. These are considered edge 808

cases in our dataset and are included based on the 809

annotator’s expertise, who are constrained to a max- 810

imum of 20 minutes per annotation process. 811

10
5944

https://doi.org/10.48550/ARXIV.2305.06161
https://doi.org/10.48550/ARXIV.2305.06161
https://doi.org/10.48550/ARXIV.2305.06161
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
http://arxiv.org/abs/2009.10297
http://arxiv.org/abs/2009.10297
http://arxiv.org/abs/2009.10297
https://doi.org/10.48550/ARXIV.2308.12950
https://doi.org/10.48550/ARXIV.2212.10481
https://doi.org/10.48550/ARXIV.2212.10481
https://doi.org/10.48550/ARXIV.2212.10481
https://doi.org/10.1145/3196398.3196408
https://doi.org/10.1145/3196398.3196408
https://doi.org/10.1145/3196398.3196408
https://doi.org/10.1145/3196398.3196408
https://doi.org/10.1145/3196398.3196408


LABEL CONDITION

vari Variable
dicti Dictionary
arri Array
dfi Dataframe
stri String
lsti List
mati Matrix
inti Int

Table 8: List of normalized variable names used in our
dataset

B Normalized variable names812

The Table 8 outlines the standardized variable813

names utilized in the dataset, such as vari for814

’Variable’ and dicti for ’Dictionary’, where i cor-815

respond to the number of the element appearing.816

This approach also allows for evaluating model817

efficacy with or without these normalized names.818

Note that vari is employed universally, even when819

alternatives might be applicable, without affecting820

test outcomes.821

C Code Categories822

Label Condition Description
ASSIGN Includes variable assignment.
BUILTIN Uses a built-in function.
COND Has conditional statement(s).
LOOP Contains ‘for‘ or ‘while‘ loops.
STR Performs string operation(s).
LIST Uses list method(s).
MULTILINE Code exceeds two lines.
MULTIPLETASK Has ≥3 other Labels.
>THREEVARS Function with >3 parameters.
COMPLEXTASK Has ≥2 imports

Table 9: Detailed Labels for Automated Annotation

823

D CodeInsight Statistics824

The two tables provide a detailed statistical analy-825

sis of the CodeInsight dataset, breaking down by826

Packages and Labels. The Table 10 covers various827

Python packages like Pandas, Numpy, and Regex,828

detailing the item count, average problem words,829

code lines, and unit tests. The second Table 11 ana-830

lyzes different labels presented in Appendix C such831

as Builtin, Assign, Cond, and others, also including832

their item count and average metrics. Both tables833

gives insight on the dataset’s complexity and diver-834

sity into the typical problem structure and testing835

framework associated with different programming 836

constructs and packages. 837

Item Count Avg. Prob Words Avg. Code Lines Avg. Unit Tests

Full dataset 3,402 12.6± 4.3 4.6± 2.3 3.0± 0.4

NoImport 415 12.1± 4.0 3.6± 1.9 3.0± 0.4
Pandas 819 14.1± 4.2 5.4± 1.8 3.0± 0.2
Numpy 591 12.2± 3.3 5.3± 2.0 3.0± 0.2
Re 241 12.2± 2.1 5.5± 0.8 3.0± 0.2
Scikit-learn 19 13.8± 5.5 8.1± 7.4 3.0± 0.0
Scipy 8 13.0± 4.4 5.5± 1.3 3.0± 0.0
Itertools 55 11.8± 3.5 6.4± 3.1 3.0± 0.4
Collections 39 13.1± 3.5 6.8± 2.6 3.0± 0.2
Operator 43 13.4± 3.0 5.0± 1.4 3.2± 0.5
String 8 9.0± 1.8 5.8± 1.1 3.0± 0.0
Random 14 12.0± 2.0 5.4± 2.4 2.9± 0.5
Math 8 13.1± 4.7 6.0± 1.9 2.9± 0.3

Table 10: Statistical analysis of Packages in CodeIn-
sight. We report including Item Count, Average Prob-
lem Words, Code Lines, and Unit Tests with Standard
Deviations.

Item Count Avg. Prob Words Avg. Code Lines Avg. AST depth

Full dataset 3402 12.6± 4.3 4.6± 2.3 3.0± 0.4

BUILTIN 2261 12.7± 3.8 4.7± 2.2 8.7± 1.5
NOBUILTIN 1141 12.4± 3.6 4.6± 1.4 7.7± 1.2
ASSIGN 1269 13.2± 3.9 5.8± 2.4 8.6± 1.4
NOASSIGN 2133 12.3± 3.6 4.0± 1.4 8.2± 1.5
COND 471 13.4± 3.8 5.8± 2.9 9.2± 1.3
NOCOND 2931 12.5± 3.8 4.5± 1.8 8.2± 1.4
STR 885 12.8± 3.5 5.1± 2.0 8.5± 1.6
NOSTR 2517 12.6± 3.9 4.5± 2.0 8.3± 1.5
LIST 685 12.8± 3.8 4.8± 3.0 8.9± 1.3
NOLIST 2717 12.6± 3.8 4.7± 1.6 8.2± 1.5
LOOP 981 12.8± 3.8 4.8± 2.8 9.0± 1.3
NOLOOP 2421 12.5± 3.8 4.6± 1.5 8.2± 1.5

MULTILINE 2232 12.8± 3.7 5.5± 1.9 8.5± 1.5
NOMULTILINE 1170 12.2± 3.9 2.7± 0.5 8.3± 1.4
MULTIPLETASK 1236 13.2± 3.8 5.6± 2.5 8.9± 1.5
NOMULTIPLETASK 2166 12.3± 3.7 4.1± 1.4 7.8± 1.4
COMPLEXTASK 169 13.2± 3.8 7.0± 2.8 10.4± 2.3
NOCOMPLEXTASK 3233 12.6± 3.8 4.6± 1.9 8.3± 1.5
>THREEVARS 82 16.9± 4.2 5.5± 1.2 8.6± 1.4
<=THREEVARS 3320 12.5± 3.7 4.7± 2.0 8.4± 1.5

Table 11: Statistical analysis of Labels in CodeIn-
sight. We report including Item Count, Average Prob-
lem Words, Code Lines, and AST depth with Standard
Deviations.

E Code Error Analysis 838

We present in Table 12 an error analysis of dif- 839

ferent CodeLLaMa outputs on our dataset. 840

For the first scenario, involving scikit-learn, the 841

task is to generate a textual representation of a 842

decision tree with specified feature names for read- 843

ability. Despite providing the model with import 844

statements and the function signature, the gener- 845

ated code omits the necessary argument syntax 846

feature_names=feature_names0, resulting in a 847

TypeError due to excessive positional arguments. 848

This minor but pivotal error exemplifies a scenario 849

where a developer could struggle with argument 850

specification. 851

In the second case, the task is to split a string 852

while retaining separators, such as punctuation or 853

11
5945



Statement Generated Code Reference Code

Extract decision
rules from a scikit-
learn decision
tree tree0 with
feature_names
feature_names0

1 from sklearn.tree import export_text
2 def test(tree0, feature_names0):
3 return export_text(tree0,

feature_names0)

1 from sklearn.tree import export_text
2 def test(tree0, feature_names0):
3 return export_text(tree0,

feature_names=feature_names0)

Split a string str0
and keep the sepa-
rators

1 import re
2 def test(str0: str) -> list:
3 return re.split(r’\W+’, str0)

1 import re
2 def test(str0: str) -> list:
3 return [x for x in re.split(r’(\W

+)’, str0) if x]

Reset index in a
pandas dataframe
df0

1 import pandas as pd
2 def test(df0):
3 df0.reset_index(inplace=True)
4 return df0

1 import pandas as pd
2 def test(df0):
3 return pd.DataFrame(df0.values,

columns=df0.columns)

Table 12: Error analysis of CodeLLaMa outputs on our final evaluation set.

special tokens like newline characters. The gener-854

ated code, however, omits an essential parenthesis855

in the re.split function, leading to a split that ex-856

cludes the separators. This highlights the dual com-857

plexity of understanding both Python and Regex858

syntaxes.859

The final example presents an annotation discrep-860

ancy. It involves resetting the index of a Pandas861

dataframe without specific instructions on handling862

the old index. The model correctly employs the863

reset_index function, typically retaining the old864

index as a new column. However, the reference865

code, and consequently the unit tests, do not pre-866

serve the old index. Thus, while the generated code867

aligns with the stated task, it fails unit tests due to868

the discrepancy in index handling. This case under-869

scores the need for nuanced dataset analysis and870

exemplifies the challenges of borderline scenarios871

in dataset construction.872

F GPT-4’s prediction873

We investigate data contamination within the874

CoNaLa and our dataset by examining GPT-4’s875

outputs on both dataset. This can offer information876

in re-writting example during data annotation877

phase to mitigate data contamination.878

879

Intent Reference
Solution

GPT-4
Prediction

Convert a
list of
integers x
into a single
integer

1 r = int(’’.join
(map(str, x
)))

1 r = int(’’.join
(map(str, x
)))

Convert a
DateTime
string back
to a
DateTime
object of
format
%Y-%m-%d
%H:%M:%S

1 datetime.
strptime
(’2010-11-13
10:33:54’,
’%Y-%m-%d
%H:%M:%S’)

1 datetime.
datetime.
strptime(
date_string
, ’%Y-%m-%d
%H:%M:%S’)

Reverse sort
dictionary d
based on its
values

1 sorted(list(d.
items()),
key=lambda
k_v: k_v
[1],
reverse=
True)

1 sorted(list(d.
items()),
key=lambda
k_v: k_v
[1],
reverse=
True)

Table 13: GPT-4’s Outputs Comparison for CoNaLa

12
5946



Intent Reference
Solution

Prediction

Convert a
list of
integers
lst0 into a
single
integer.

1 def test(lst0):
2 return int

(’’.join(
map(str,
lst0)))

1 def test(lst0):
2 return int

(’’.join(
map(str,
lst0)))

Convert a
datetime
string str0
back to
datetime
object of
format
%Y-%m-%d
%H:%M:%S.

1 from datetime
import
datetime

2

3 def test(str0):
4 return

datetime.
strptime(
str0, "%Y-%
m-%dT%H:%M
:%S")

1 from datetime
import
datetime

2

3 def test(str0):
4 return

datetime.
strptime(
str0, "%Y-%
m-%dT%H:%M
:%S")

Sort in
reversing
order the
items in
dictionary
dict0 by
their first
values.

1 def test(dict0):

2 return dict
(sorted(
dict0.items
(), key=
lambda item
: item[1],
reverse=
True))

1 def test(dict0):

2 return dict
(sorted(
dict0.items
(), key=
itemgetter
(1),
reverse=
True))

Table 14: GPT-4’s Outputs for CodeInsight

Discussion This discussion presents an analysis 880

of GPT-4’s outputs on equivalent examples from 881

the CoNaLa dataset and our dataset, CodeInsight, 882

as detailed in Tables 13 and 14. 883

For the CoNaLa dataset, the analysis of GPT- 884

4’s predictions reveals interesting observations for 885

the first and third examples. Specifically, GPT-4 886

autonomously includes an assignment to variable 887

r in its prediction for the first example, despite the 888

absence of such instruction in the original example. 889

Similarly, in the third example, GPT-4 employs the 890

k_v variable, an uncommon choice, demonstrating 891

a potential memorization to variable naming. 892

Conversely, the second example highlights GPT- 893

4’s ability to generalize. The model infers the use 894

of date_string even though the specific datetime 895

format is not explicitly mentioned in the intent, 896

showcasing its adeptness at filling in contextual 897

gaps based on the provided intent. 898

Regarding the outputs on CodeInsight for the 899

same rewritten intents, GPT-4’s accuracy remains 900

consistent for the first example. The second exam- 901

ple further underscores GPT-4’s precision, where 902

the model’s prediction aligns exactly with the ref- 903

erence, attributed to a more clearly defined intent 904

or to a memorization from CoNaLa. 905

The third example diverges in response using 906

itemgetter instead of lambda function but notably 907

passes our unit tests, illustrating GPT-4’s capacity 908

for generating viable alternative solutions. This 909

indicates that despite potential differences, GPT- 910

4’s inherent generalization capabilities enable it to 911

offer valid code solutions, reflecting its understand- 912

ing of programming concepts without memorizing 913

data. 914

13
5947


