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Abstract

For multilingual training, we present CrossInit,
an initialization method that initializes em-
beddings into similar geometrical structures
across languages in an unsupervised manner.
CrossInit leverages a common cognitive lin-
guistic mechanism, Zipf’s law, which indicates
that similar concepts across languages have
similar word ranks or frequencies in their mono-
lingual corpora. Instead of considering point-
to-point alignments based on ranks, CrossInit
considers the same span of consecutive ranks
in each language as the Positive pairs for align-
ment, while others out of the span are used as
Negative pairs. CrossInit then employs Con-
trastive Learning to iteratively refine randomly
initialized embeddings for similar geometrical
structures across languages. Our experiments
on Unsupervised NMT, XNLI, and MLQA
showed significant gains in low-resource and
dissimilar languages after applying CrossInit.

1 Introduction

Zipf’s law suggests that words with similar mean-
ings and senses in different languages may have
similar word ranks in their monolingual corpus 1.
In multilingual training, the starting point is how
Zipf’s law reflects on the multilingual corpus we
use. To observe this from an inspiring experiment,
we considered a bilingual model by computing
the word ranks on en and de Wikipedia dumps† 2.
Then, we downloaded conception mappings from
CLLD (List et al., 2022)† to understand the corre-
spondence between word ranks and conceptions,
where conception mappings associate words to con-
ceptions or semantics, e.g., "Etwas" (de), "Wenig"
(de), "bit", and "little" are associated with the same

1Suppose f is the frequency of a word in the corpus and r
is the rank. Zipf’s law indicates f = k

rβ
, where k and β are

constants for the corpus. For instance, according to Wikipedia
word frequency †, the English word "the" (r = 1) has a similar
meaning to the German word "der" (r = 1).

2Sources, scripts, and tools marked with † are listed in
Table 8. Source code will be publicly available.

Figure 1: Correlation of word ranks and conceptions.
We map words to conceptions via conception mappings
from CLLD (List et al., 2022)†.

ID 2949, and the shared conception is "A LITTLE".
Our results, presented in Figure 1, demostrated sim-
ilar patterns across en and de. In conclusion, as
supported by the literature (Zipf, 1949, 2013; Di-
vjak and Caldwell-Harris, 2019), languages are
motivated by common cognitive mechanisms to
form similar structural patterns across languages,
thus conforming to Zipf’s law.

One idea we can derive from Zipf’s law is how
to align words in different languages without train-
ing, e.g., aligning words in initialization. However,
directly aligning words across languages based on
word ranks is still a challenge because it is impossi-
ble to use point-to-point alignments based on word
ranks in practice. On multilingual corpus, although
we use a shared vocabulary for all the languages,
each language has a different local vocabulary, and
words with similar concepts and meanings only
have similar ranks (not identical) in the language,
as observed in Figure 1. To address challenges, we
can approximately separate totally irrelevant words
or word ranks to some extend. Intuitively, we can
consider Positive pairs between relevant spans of
consecutive word ranks and Negative pairs between
irrelevant ones. In this way, the multilingual model
is encouraged to understand possible and impossi-
ble alignments between words across languages.
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We present a method to take into account cross-
lingual self-supervision for alignments in the em-
bedding initialization phase. In a multilingual em-
bedding space, there are two types of alignments:
1) absolute and 2) geometrical. The absolute align-
ment is based on language-agnostic word embed-
dings (Artetxe et al., 2017; Lample et al., 2018a),
while geometrical alignments preserve language
characteristics based on a similar geometric spatial
structure across languages (Vulić et al., 2020). Our
idea aligns Positive pairs and separate Negative
pairs for similar geometrical structures that reflect
on similar manifold patterns across languages. In
other words, work ranks on monolingual corpus
implicitly work as pivots or anchors for alignments
across languages.

Another motivation comes from self-inference
multilingual models (Ai and Fang, 2023b). Exist-
ing works have shown that a pre-trained multilin-
gual model can infer translations for input words,
where translations and input words have similar
word ranks or frequencies on their monolingual
corpora. If the model is more likely to under-
stand words with similar ranks across languages
as cross-lingual transferable entries, we can align
these words in the initialization phase to provide
meta-learning supervision.

In this work, we present CrossInit, a method
to iteratively initialize an embedding space for a
multilingual model before formal training or pre-
training on a multilingual corpus. In each initializa-
tion step, according to word ranks in each language,
we randomly sample a span of consecutive ranks
and use all words (embeddings) in this span across
languages for Positive pairs. In contrast, we create
Negative pairs between words inside and outside
of this span across languages. We show the idea
in Figure 2. We experimented with Contrastive
Learning to train these Positive and Negative pairs
in each initialization step, but we believe there is a
significant potential for the development of new al-
ternatives. Our experimental results demonstrated
that CrossInit can improve results in low-resource
and dissimilar languages on unsupervised NMT,
XNLI, and MLQA. We summarize contributions
and findings as follows:

• We introduce CrossInit, an initialization
method that aligns embeddings across lan-
guages for similar geometrical structures in
an unsupervised manner.

• Previous works like (K et al., 2020) have pro-

vided some evidence that word frequencies
alone do not contain enough information for
cross-lingual learning. However, we found
that words with similar frequencies might help
the model in forming a similar structure across
languages.

• CrossInit shows a long-term impact through-
out multilingual training as it can predict a
possible structure of the embedding space for
cross-lingual transfer during the initialization
phase.

• In experiments, CrossInit improved zero-shot
cross-lingual transfer in multilingual training
for low-resource and dissimilar languages.

2 Cross-lingual Initialization

CrossInit aims to iteratively initialize random em-
beddings using Contrastive Learning. Instead of
standard initialization, CrossInit can be run before
any multilingual pre-training for downstream tasks.

2.1 Step 1: Sorting

CrossInit requires a multilingual vocabulary across
languages and word ranks based on their frequen-
cies/counts in each language. To obtain these
resouces, we first sample sentences from all the
monolingual corpora with the temperature strategy
(Lample and Conneau, 2019) to learn BPE codes
and the multilingual vocabulary. Next, we count
the occurrences of each word on each monolingual
corpus and sort word counts in descending order.
For our implementation,

• we used the multilingual vocabulary and the
tokenizer of the target model. For example,
in our experiments with XLM (Lample and
Conneau, 2019), we use the multilingual vo-
cabulary and the corresponding tokenizer of
XLM.

• we collected word counts from the monolin-
gual Wikipedia.

2.2 Step 2: Pairing

When createing Positive and Negative pairs, we
randomly sample a span of consecutive ranks. We
then create Positive pairs using words in this span
across languages and Negative pairs using words
inside and outside of this span. Suppose the span
width is n, the language id is Li, the word ranks
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Figure 2: Example of CrossInit in each training step. We assign labels 1 and 0 to Positive and Negative pairs,
respectively. Then, we leverage Supervised Contrastive Learning (SCL) to train embeddings from these pairs. We
suggest frequent words in creating Positive pairs because frequencies across languages differ significantly in long
tails.

for each language are V Li , and a random rank is k.
We zip pairs:

• Positive: ∀i, j : {V Li
span, V

Lj
span}

• Negative: ∀i, j : {V Li
span, V

Lj

/∈span}

where V Li
k stands for the word with rank k in

V Li , span is a span of consective ranks [(k −
n/2), . . . , (k + n/2)]. In our experiments, we con-
sidered a quite dev experiments to find the key
hyperparameter n. We will discuss this later.

2.3 Step 3: Contrastive Learning

We randomly initialize all embeddings for the mul-
tilingual vocabulary. Then, in each CrossInit step,
we run Step 2: Pairing to acquire Positive and
Negative pairs for Contrastive Learning. We com-
pute dot products between paired embeddings in
Positive and Negative pairs, respectively. Then,
we classify the two dot products with labels {1, 0}
(Positive and Negative). Formally, we have an ini-
tialization objective:

LCrossInit = − logP (1|E
V

Li
span

ET

V
Lj
span

)

− logP (0|E
V

Li
span

ET

V
Lj
/∈span

),
(1)
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n
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k

,
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= 1
n

∑V
Lj
span
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V

Lj
/∈span

=

1

|V Lj
/∈span

|

∑V
Lj
/∈span

k E
V

Lj
k

. In this Contrastive

Learning for initialization, we randomly select
the span center k in Step 2: Pairing for different
spans and i and j for different languages. We
refine embeddings until the flatness of LCrossInit.

3 Analysis and Discussion

3.1 Setup
To analyze CrossInit quickly, we configured an
XLM model (Lample and Conneau, 2019) and
made 3 significant modifications:

• trained the model on 3 languages
{En,De,Hi}.

• adjusted the number of layers to 3.

• ran CrossInit for the randomly initialized em-
beddings.

Any other settings are identical to the XLM model.
In this scenario, the model is not overly parameter-
ized for these three languages so that unsupervised
cross-lingual transfer could succeed. Additionally,
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Figure 3: LCrossInit with different span width.

Hi is distant from {En,De}, which can verify
the effectiveness for distant and low-resource lan-
guages. We used Adam optimizer with learning
rate 1e− 4 for CrossInit. We marked these settings
as XLM-tiny-3 in our work.

3.2 Hyper-parameter

In Step 2: Pairing, there are two important hy-
perparameters. The first one is the random bound
of the span center k. As shown in Figure 2, we
observed that word frequencies are divergent and
not ideally comparable in the long tail area. There-
fore, in our experiments, we only considered the
first 20k most frequent words in each language as
candidates for Positive pairs, i.e., words ranked
between 1 and 20k in each language. This means
that CrossInit does not consider words in the long
tail area for Positive pairs. Those words contribute
to over 80% of total word frequency in the train-
ing corpus. Note that Negative pairs still use all
the ranks. The second one is the width of span
n in Eq. 1. We experimented with 3 settings
span = {1000, 2000, 3000} for LCrossInit. As
shown in Figure 3, we found that LCrossInit be-
come flat for all settings.

3.3 Type of Initialized Alignment

We examined the type of cross-lingual alignment
CrossInit initializes in an unsupervised manner.
We demonstrated PCA visualizations in Figure 4.
We found that compared to Random initialization,
CrossInit successfully formed some consistent pat-
terns across languages, showing different distribu-
tions while sharing a similar geographic structure.
Note that for shared tokens, we randomly choose
colors for the scattered points. We observed that
CrossInit was inclined to move shared tokens into
a dense area.

3.4 Cross-lingual Analogy Test

Ai and Fang (2023a) used the classic analogy test:
"English: King - Man + Woman = Queen and Ger-
man: König-Mann+Frau = Königin" to observe
cross-lingual analogical phenomenon. We show
the results of 3 runs in Table 1. Compared to Ran-
dom initialization, CrossInit obtains positive scores
for mixed languages multi, indicating potential for
kickstarting cross-lingual transferability. This test
tells us that CrossInit might improve cross-lingual
transferability due to cross-lingual analogy.

In addition to the above toy example, we devel-
oped more cross-lingual analogy tests using state-
ments from mLAMA (Kassner et al., 2021). Specif-
ically, mLAMA offers triples in the form of (ob-
ject, relation, subject), e.g., (Paris, capital, France).
Similar to the toy example, we created analogy
tests in the form of objectlang1 − subjectlang1 +
subjectlang2 = objectlang2. As shown in Table
2, we observed that CrossInit can initialize cross-
lingual analogy information.

3.5 Fast XNLI Experiment

So far we have analyzed CrossInit from the per-
spective of cross-lingual alignments. Before ap-
plying it to standard multilingual experiments, we
conducted an analysis of XNLI. We pre-trained
XLM-tiny-3 for 200k steps with batch size 64 on
Wikipedia dumps. We used Adam optimizer with
a learning rate 1e − 4. For temperature sampling
(Lample and Conneau, 2019), we set α = 0.7 .
After pre-training, we evaluated XLM-tiny-3 on
the XNLI dataset with zero-shot settings (only fine-
tuning on the English dataset). We ran experiments
3 times and showed the average results in Table 3.
Due to the small size of the model and language
diversities (i.e., Hi is distant), the model is difficult
to learn zero-shot cross-lingual transferability in
zero-shot settings because of "the curse of multi-
linguality" (Conneau et al., 2020). However, we
still observe significant gains for the distant and
low-resource language in all settings, which means
the gain is agnostic to shared tokens. We attribute
to a similar geometric structure CrossInit forms
in initialization across languages. We skip the in-
troduction of both XLM and XNLI here and will
introduce them properly in §Experiment.

3.6 Predictable Structure and Lifetime Effect

Recall that, in §Introduction, we justify our motiva-
tion of CrossInit from cognitive mechanisms and
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(a) XLM-3-tiny, span1000 vs after multilingual pre-training.

(b) XLM-3-tiny, span2000 vs after multilingual pre-training.

(c) XLM-3-tiny, span3000 vs after multilingual pre-training.

(d) XLM vs after multilingual pre-training.

(e) Bi-mBART-enro vs after multilingual pre-training.

(f) mBART-ennehi vs after multilingual pre-training.

Figure 4: PCA visualization for "CrossInit vs After Multilingual Pre-training". CrossInit is derived from the fact
that languages are motivated by common cognitive mechanisms and results in Zipf’s law with similar structural
patterns, as reported in the literature (Zipf, 1949, 2013; Divjak and Caldwell-Harris, 2019). This is might be main
reason that CrossInit predicts a possible structure of the embedding space for multilinguality and shows a long-term
effect from beginning to ending.
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X cos (X , Queen) cos(X , Königin)
Random span=1000 span=2000 span=3000 Random span=1000 span=2000 span=3000

mono: King-Man+Woman 0.00 0.90 0.90 0.93 -0.04 0.92 0.93 0.91
mono: König-Mann+Frau -0.05 0.93 0.96 0.95 0.24 0.92 0.93 0.91
multi: King-Man+Frau -0.08 0.85 0.85 0.91 -0.10 0.92 0.93 0.93
multi: King-Mann+Woman 0.04 0.97 0.98 0.96 0.24 0.91 0.91 0.89
multi: King-Mann+Frau -0.05 0.96 0.97 0.96 0.16 0.92 0.93 0.91
multi: König-Man+Woman 0.00 87 0.87 0.92 0.04 0.92 0.93 0.92
multi: König-Man+Frau -0.09 -0.78 0.80 0.89 -0.03 0.89 0.91 0.93
multi: König-Mann+Woman 0.04 0.96 0.98 0.96 0.32 0.91 0.92 0.90

Table 1: Word analogy: King - Man + Woman = Queen (German: König-Mann+Frau = Königin).

CrossInit Lang1, 2=En, De Lang1, 2=En, Hi Lang1, 2=Hi, En avg.
span=1000 0.601 0.222 0.258 0.360
span=2000 0.599 0.221 0.262 0.360
span=3000 0.613 0.233 0.265 0.370

Table 2: Word analogy from mLAMA statements.
We create analogy tests in the form of objectlang1 −
subjectlang1 + subjectlang2 = objectlang2 from
triples (object, relation, subject) in 3 languages . .

CrossInit en de hi avg.
Random initialization 71.01 51.08 38.22 53.40
span1000 71.57 52.15 39.80 54.50
span2000 71.45 53.05 41.09 55.20
span3000 71.49 52.53 42.07 55.36

Table 3: Fast XNLI Experiment. Results are reported
by averaging 3 runs.

statistics on Wikipedia. However, if sufficient cor-
pora are avaliable in training, the effectiveness of
well-organized embeddings in initialization might
be washed out due to extensive mappings between
these trainable embeddings throughout training.
There is an interesting question: Can we predict
a possible structure for the embedding space? To
answer this question, we compared the embedding
space at CrossInit with the one after multilingual
training. The idea is, if the two structures are simi-
lar, it is possible to predict an optimal structure for
embeddings at initialization. To set up experiments,
we considered XLM (encoder based) and mBART
(encoder-decoder based). Figure 4 demonstrates
the contrast between "CrossInit" and "After Mul-
tilingual Training", showing that the embedding
space keeps its shape throughout training. This
suggests that CrossInit has a lifetime effect and pre-
dicts a possible structure of the embedding space
for all the languages at initialization.

4 Experiment

Our analysis including fast XNLI experiments
show the effectiveness of CrossInit. In scaled ex-
periments, we transfer our findings from our small
setup to larger scale settings.

4.1 Multilingual Task
XNLI We experimented with the cross-lingual
classification task on XNLI † (Conneau et al., 2018)
including all 15 languages to test the general cross-
lingual capabilities our method could impact. The
model was only fine-tuned on the En NLI dataset
for English classification, aiming at making zero-
shot classification for other languages.

MLQA We experimented with MLQA† (Lewis
et al., 2020) for a cross-lingual question-answering
task. Given a question and a passage containing the
answers, the goal is to predict the answer text span
in the passage. This task involves identifying the
answer to a question as a span in the corresponding
paragraph. The evaluation data for English and
6 other languages are obtained by automatically
mining target language sentences that are parallel
to sentences in English from Wikipedia, crowd-
sourcing annotations in English, and translating
the question and aligning the answer spans in the
target languages. Similar to XNLI, the model is
fine-tuned on the English dataset and makes zero-
shot predictions for other languages.

Unsupervised NMT UNMT (Lample and Con-
neau, 2019; Lample et al., 2018b; Liu et al., 2020)
tackles bilingual translation (Bahdanau et al., 2015;
Vaswani et al., 2017) on non-parallel bilingual cor-
pora without access to any parallel sentence. In the
pre-training phase, UNMT is trained on monolin-
gual corpor with the objective of MLM for the two
languages. During the training phase, on-the-fly
back-translation (Sennrich et al., 2016) performs
to generate synthetic parallel sentences that can
be used for training of translation as NMT (neural
machine translation) is trained on genuine parallel
sentences in a supervised manner.

4.2 Model and dataset cards
We use pre-configured models, the corresponding
tokenizers, and trainings datasets from Hugging-
face, showing in Table 4 .
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Model Card

XLM facebook/xlm-mlm-xnli15-1024
mBART facebook/mbart-large-en-ro
Wiki wikimedia/wikipedia (version: 20231101)
CC cc100
wmt16 wmt/wmt16
XNLI facebook/xnli
MLQA facebook/mlqa
FLoRes facebook/flores

Table 4: List of model cards.

4.3 Multilingual Training with CrossInit

Following the previous work, we set up identical
XLM and mBART using the model cards and the
same corpora. We randomly initialize these models
and utilize our CrossInit to embeddings. For pre-
training, we used the Adam optimizer (Kingma and
Ba, 2015) with hyperparameters β1 = 0.9,β2 =
0.99, ϵ = 10−6,lr = 1e − 4, and learning warm-
up step 30k. We set dropout regularization with a
drop rate rate = 0.1. We processed 18k tokens
per training step. We trained the model until no
improvements were observed in dev sets.

5 Result

5.1 XNLI

Setup and Fine-tuning After multilingual train-
ing with CrossInit, we fine-tuned the models on
the English NLI dataset with mini-batch size 8.
We used Adam optimizer (Kingma and Ba, 2015)
with lr = 5e− 6. Categorical cross-entropy were
employed with three labels: entailment, contradic-
tion, and neutral. Following fine-tuning, we made
zero-shot predictions for the other 14 languages.

Performance We report the result in Table 5. Our
method consistently improves baseline models by
2.1% (Avg). As discussed in previous models (Con-
neau et al., 2018; K et al., 2020; Wu and Dredze,
2019; Pires et al., 2019; Dufter and Schütze, 2020),
multilinguality is essential for this task. Then,
we confirm the effectiveness of CrossInit in im-
proving multilinguality for cross-lingual transfer.
Additionally, the result is consistent with our fast
experiment on XNLI as we observe more gains
≈ 8% in low-resource and dissimilar languages
than rich-resource languages ≈ 2.5%. In this way,
CrossInit is suitable for low-resource and dissimi-
lar languages, which improve the fairness of multi-
lingual models in the consideration of all the lan-
guages.

5.2 MLQA

Setup and Fine-tuning The setup is similar to
the experiment on XNLI. We used Adam optimizer
(Kingma and Ba, 2015) with lr = 5e−5 and linear
decay of lr. Meanwhile, as suggested, we fine-
tuned the model on the SQuAD v1.1 (Rajpurkar
et al., 2016) dataset and then made zero-shot pre-
dictions for the 7 languages of MLQA.

Performance In Table 6, CrossInit substantially
improves the overall performance (Avg) in terms
of both F1 and EM metrics by 3 % and 2 %, re-
spectively. In addition, CrossInit yields more im-
provements for low-resource and dissimilar lan-
guages, which is consistent with fast experiments
and XNLI. Meanwhile, answers across languages
are most likely to consist of analogous nouns
and terms with similar frequencies in Wikipedia.
CrossInit can prompt similar embeddings for them
at initialization because of the dot products be-
tween Positive pairs. This could be observed from
our word analogy tests. Finally, analogous words
across different languages help the training process.

5.3 UNMT

Setup and Training We considered 2 language
families. Specifically, we considered low-resource
language pairs Ro ↔ En on newstest2016. Mean-
while, we shared the FLoRes† (Guzmán et al.,
2019) task to evaluate a dissimilar language pair
Ne ↔ English (Nepali). In the translation train-
ing phase, we used Adam optimizer (Kingma and
Ba, 2015) with parameters β1 = 0.9,β2 = 0.997,
ϵ = e − 9, warm_up = 8000 and lr = 7e − 4
(Vaswani et al., 2017). We set dropout regulariza-
tion with a drop rate rate = 0.1 and label smooth-
ing with gamma = 0.1 (Mezzini, 2018). On-the-
fly back-translation (Sennrich et al., 2016) (the in-
ference mode of the model) performed to generate
synthetic parallel sentences that can be used for
translation training as NMT (neural machine trans-
lation) is trained on genuine parallel sentences in a
supervised manner. We reported BLEU computed
by scareBLEU† with default rules.

Performance In Table 7, we report sacreBleu †
to compare with mBART (Liu et al., 2020). Given
Ne’s extremely low resources, we use its similar
language Hi in our multilingual training. We ob-
served that CrossInit improves low-resource and
dissimilar languages significantly. The findings
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Model en fr es de el bg ru tr ar vi th zh hi sw ur Avg

XLM Conneau et al. (2018) 73.7 67.7 68.7 67.7 68.9 67.9 65.4 64.2 64.8 66.4 64.1 65.8 64.1 55.7 58.4 65.6
mBERT (Devlin et al., 2019) 81.4 74.3 70.5 62.1 63.8 58.3
XLM ⋆ 83.1 76.4 76.3 74.2 73.1 74.0 73.1 67.6 68.3 71.1 69.1 71.6 65.6 64.5 63.3 71.4
+ CrossInit 83.2 77.3 76.8 74.8 73.9 75.0 73.9 70.9 70.8 73.4 71.4 73.9 69.3 68.8 67.8 73.5

Table 5: Performance of cross-lingual classification on XNLI. During multilingual training, models are initialized
by CrossInit and trained on 15 languages. ⋆ denotes models we reimplement with model cards.

Model en es de ar hi vi zh Avg

(Lewis et al., 2020) 80.2 / 67.4
mBERT 77.7 / 65.2 64.3 / 46.6 57.9 / 44.3 45.7 / 29.8 43.8 / 29.7 57.1 / 38.6 57.5 / 37.3 57.7 / 41.6
XLM 74.9 / 62.4 68.0 / 49.8 62.2 / 47.6 54.8 / 36.3 48.8 / 27.3 61.4 / 41.8 61.1 / 39.6 61.6 / 43.5
+CrossInit 75.9 / 64.1 70.8 / 50.4 64.7 / 48.1 57.5 / 39.1 51.5 / 29.4 64.5 / 42.5 63.9 / 41.2 63.8 / 45.1

Table 6: Performance of cross-lingual question answering on MLQA. We report the F1 and EM (exact match)
scores for zero-shot prediction. During multilingual training, models are initialized by CrossInit and trained on 15
languages.

of this experiment align with other experiments
conducted in this work. CrossInit initializes ge-
ometrical alignments and multilingual analogies,
helping the model preserve language characteris-
tics based on a similar geometric spatial structure
across languages (Vulić et al., 2020). As a result,
we suspect that translation might be more fluent
due to the initialized language characteristics and
dependencies of each language.

6 Related Work and Other Inspiration

Structural Similarity and Zipf’s Law Zipf’s
law (Zipf, 1949, 2013; Søgaard, 2020) indicates
that words or phrases appear with different fre-
quencies, and one may suggest analogical words or
phrases appear with relatively similar frequencies
in other languages. In multilingual training, Wu
et al. (2020); K et al. (2020); Pires et al. (2019); K
et al. (2020); Sinha et al. (2021) study structural in-
formation and find that structural similarities across
languages are essential for multilinguality, where
in this paper, structural similarities refer to similar
ranks as Zipf’s law indicated. Another interesting
work is from Ai and Fang (2023a). They use trans-
lation pairs to show that phrases with similar mean-
ings have similar (not identical) frequencies in com-
parable corpora. In our work, we consider spans of
word ranks to alleviate the non-identical problem
reported by (Ai and Fang, 2023a) with Contrastive
Learning. Moreover, Artetxe et al. (2020) show
that monolingual models trained individually on
monolingual corpora eventually result in a similar
structure including the embedding space. In our
case, due to Positive and Negative pairs used for
Contrastive Learning, embeddings are refined to a
similar geometric structure in the embedding space

across languages.

6.1 Intuition from V-structure Dependency

Multilingual training with the MLM objective (De-
vlin et al., 2019; Lample and Conneau, 2019) usu-
ally forms a vocabulary that covers shared tokens
across 1+ languages. This v-structure dependency
is explored and leveraged in different perspectives
including multilingual BOW (Ai and Fang, 2023b),
information theory (Chi et al., 2021), language do-
main adaptation (Ai and Fang, 2022), and data
augmentation processes (Krishnan et al., 2021;
Chaudhary et al., 2020; Tarunesh et al., 2021). In
this work, we follow this line but concentrate on
initialization. Meanwhile, tokens do not have to
be shared as the information bottleneck principle
pushes cross-lingual structural similarity into iso-
morphic representations (Chi et al., 2021), which
have similar bridge effects as the anchor points. In
our idea, we do not rely on shared tokens but con-
sider a span with similar ranks across languages to
initialize a geometrical structure with Contrastive
Learning. Our analysis shows that the initialized
geometrical structure can be retained from begin-
ning to end in multilingual training.

6.2 Pre-trained Embeddings for Initialization

Qi et al. (2018) shows an effective initialization
from pre-trained embeddings for downstream mul-
tilingual tasks. (Dufter and Schütze, 2020; Ai and
Fang, 2023b) considers pre-trained embeddings
in initialization for multilingual training with the
MLM objective. We share the same goal. Com-
pared to those existing works, which consider em-
bedding similarity, CrossInit uses word ranks as
implicit signals to align and refine embeddings.
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Language pair Ro ↔ En Ne ↔ En

mBART25 30.5 35.0 10.0 (+cc25 ) 4.4 (+cc25 )
bi-mBART ⋆ 31.5 32.9 2.3 (+Hi) 0.5 (+Hi)
bi-mBART + CrossInit 32.2 36.3 4.2 (+Hi) 2.1 (+Hi)

Table 7: Performance of UNMT. During multilingual training, models are initialized by CrossInit and trained on
monolingual corpora in paired languages. Given Ne’s extremely low resources, we use its similar language Hi in
our multilingual training (+Hi ). ⋆ denotes models we reimplement with model cards. +cc25 stands for using cc25
corpora.

Another interesting line is initializing embeddings
for transfer learning (Minixhofer et al., 2022; Kim
et al., 2019), where new embeddings are properly
initialized in order to be merged with pre-trained
embeddings. In contrast, we focus on initializing
embeddings before training. However, CrossInit
might be further explored for a similar application.

7 Conclusion

In this work, we present CrossInit, an initializa-
tion method to arrange embeddings into similar
geometric structures in an unsupervised manner.
CrossInit is based on Zipf’s law, a common cog-
nitive mechanism, that indicates similar concepts
across languages have similar word ranks or fre-
quencies in their monolingual corpora. To allevi-
ate non-identical ranks across languages, CrossInit
considers a span of consecutive ranks in each lan-
guage as the Positive pairs for alignment while
others out of the span are Negative pairs.CrossInit
further employs Contrastive Learning for Positive
and Negative pairs to refine embeddings. In our
analysis, we observed that CrossInit can predict
a possible structure of the embedding space for
cross-lingual transfer and show a long-term effect
over the course of multilingual training. In our
experiments on UNMT, XNLI, and MLQA, we ob-
served significant gains in low-resource languages
and dissimilar languages after applying CrossInit.

8 Limitation

We did not conduct experiments on incomparable
corpora. Incomparable corpora across languages
might have different domains, which results in sig-
nificant differences in word ranks as Zipf’s law
might be satisfied only for similar domains in prac-
tice. This might limit the scope of our method.
However, multilingual models are commonly pre-
trained on comparable corpora, e.g., Wikipedia and
CC.
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