
Findings of the Association for Computational Linguistics ACL 2024, pages 6090–6101
August 11-16, 2024 ©2024 Association for Computational Linguistics

Teaching Language Models to Self-Improve
by Learning from Language Feedback

Chi Hu1 Yimin Hu1 Hang Cao1 Tong Xiao1,2* Jingbo Zhu1,2

1NLP Lab, School of Computer Science and Engineering,
Northeastern University, Shenyang, China

2NiuTrans Research, Shenyang, China
huchinlp@gmail.com

{xiaotong,zhujingbo}@mail.neu.edu.cn

Abstract

Aligning Large Language Models (LLMs) with
human intentions and values is crucial yet chal-
lenging. Current methods primarily rely on
human preferences, which are costly and in-
sufficient in capturing nuanced feedback ex-
pressed in natural language. In this paper,
we present Self-Refinement Tuning (SRT), a
method that leverages model feedback for align-
ment, thereby reducing reliance on human an-
notations. SRT uses a base language model
(e.g., Tulu2) to generate initial responses,
which are critiqued and refined by a more ad-
vanced model (e.g., GPT-4-Turbo). This pro-
cess enables the base model to self-evaluate
and improve its outputs, facilitating continuous
learning. SRT further optimizes the model by
learning from its self-generated feedback and
refinements, creating a feedback loop that pro-
motes model improvement. Our empirical eval-
uations demonstrate that SRT significantly out-
performs strong baselines across diverse tasks
and model sizes. When applied to a 70B pa-
rameter model, SRT increases the win rate from
9.6% to 25.8% on the AlpacaEval 2.0 bench-
mark, surpassing well-established systems such
as GPT-4-0314, Claude 2, and Gemini. Our
analysis highlights the crucial role of language
feedback in the success of SRT, suggesting po-
tential for further exploration in this direction.

1 Introduction

Recent advances in Large Language Models
(LLMs) have revolutionized the field of natural
language processing. These models have demon-
strated remarkable capabilities in various tasks
such as open-ended generation, question answer-
ing, and mathematical reasoning (Brown et al.,
2020; Chowdhery et al., 2023; Ouyang et al., 2022;
Bubeck et al., 2023). However, despite their im-
pressive performance, LLMs occasionally generate
content that can be untruthful or harmful. This
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Figure 1: Results on AlpacaEval 2.0. SRT significantly
boosts the performance of the base Tulu2 models. We
report the win rates against GPT-4 Turbo.

highlights the need to align language models with
human intentions and values to ensure safe and
controllable deployment (Weidinger et al., 2021;
Bai et al., 2022b; Perez et al., 2022).

Many current methods to align LLMs, such
as Reinforcement Learning from Human Feed-
back (RLHF) and Direct Preference Optimization
(DPO), rely on human preferences (Christiano
et al., 2017; Jaques et al., 2019; Stiennon et al.,
2020; Rafailov et al., 2023). These preferences
are typically expressed through rankings or scores.
However, there are two main challenges with these
methods. Firstly, annotating human preferences
is expensive and time-consuming, which makes it
difficult to scale these techniques. For instance,
Scheurer et al. (2023) spent $40k to annotate ap-
proximately 60K feedback instances for a single
summarization task. Secondly, simple rankings
or scores may not fully capture the subtlety and
complexity of human preferences. This can limit
the depth of feedback provided to models for im-
provement (Myers et al., 2021; Casper et al., 2023).
Humans, on the other hand, can derive insights
from minimal language feedback, indicating that
there is potential for more sophisticated and ef-
ficient alignment methods (Scheurer et al., 2022;
Chen et al., 2023).
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In response to these challenges, we introduce a
new method for aligning language models, which
we call Self-Refinement Tuning (SRT). SRT obvi-
ates the need for human preferences with a two-
stage learning process. In the first stage, SRT em-
ploys a powerful model like GPT-4 to critique and
refine the outputs from a base model, such as Tulu2
(Ivison et al., 2023). The base model is then fine-
tuned on critiques and refinements, enabling self-
evaluation and improvement. In the second stage,
SRT further boosts the model by learning from self-
feedback. Specifically, SRT uses the fine-tuned
model to generate model preferences, i.e., pairs of
outputs and refinements. Subsequently, SRT opti-
mizes the model on these preferences using DPO
(Rafailov et al., 2023).

We evaluate SRT on open-ended generation,
question answering, and mathematical reasoning.
Empirical results show that SRT consistently out-
performs baseline models of sizes from 7B to 70B,
with an average performance enhancement of 3.7
to 4.0 points. These improvements are obtained
using merely 22K feedback instances annotated
by GPT-4 Turbo. Figure 1 shows that the SRT
significantly improves Tulu2 models using model-
generated feedback. The strongest model trained
with SRT attains a 25.8% win rate against GPT-
4 Turbo on the AlpacaEval 2.0 benchmark. This
performance surpasses established systems such as
GPT-4 0314, Mistral Medium, Claude, and Gem-
ini. Our analysis confirms that the success of SRT
primarily stems from its language feedback feature,
which identifies weak areas and offers valuable
suggestions for improvement.

2 Related Work

This section briefly reviews two critical areas in the
alignment of LLMs: learning from AI feedback and
learning to self-improve. Our work intersects with
these domains and addresses existing challenges.

Learning from AI Feedback. Learning from hu-
man feedback is the key to the success of state-
of-the-art language models such as GPT-4 (Ope-
nAI, 2023) and Gemini (Google, 2023). How-
ever, acquiring high-quality human feedback is
both costly and time-consuming (Christiano et al.,
2017; Jaques et al., 2019; Stiennon et al., 2020;
Rafailov et al., 2023). This has led to a growing
interest in harnessing AI-generated feedback to en-
hance LLMs (Lee et al., 2023; Roit et al., 2023;
Hu et al., 2024). For instance, Hu et al. (2024)

employs LLMs to annotate ranking-based prefer-
ences. Our research diverges from this approach
by utilizing a more comprehensive range of feed-
back, encompassing identified weaknesses and pro-
posed improvements. A similar approach is Rein-
forcement Learning from AI feedback (RLAIF, Bai
et al., 2022b), which uses LLMs to generate cri-
tiques and refinements. However, RLAIF encoun-
ters challenges such as computational inefficiency
and unstable training dynamics due to the inherent
complexities of reinforcement learning techniques
(Casper et al., 2023; Shen et al., 2023). We ad-
dress these challenges by unifying the generation of
feedback and refinement into instruction-following,
thereby simplifying the training process.

Learning to Self-Improve. Using Large Lan-
guage Models (LLMs) to identify and correct their
own errors has become increasingly popular. This
self-improvement capability has significantly en-
hanced performance across various tasks, such as
question-answering, code generation, and math-
ematical reasoning (Shinn et al., 2023; Madaan
et al., 2023; Chen et al., 2024). Pan et al. (2023)
conducted a comprehensive survey of this field.
However, these approaches rely on critique and
refinement skills that are generally lacking in open-
source language models (Valmeekam et al., 2023;
Huang et al., 2023). This underscores the ur-
gent need to train open-source models for self-
improvement. Unlike previous methods that train
separate models for generation, critique, and refine-
ment (Yasunaga and Liang, 2020; Welleck et al.,
2022), our approach employs a single model for all
tasks, facilitating knowledge transfer across them.
Additionally, our method is designed for the gen-
eral alignment of LLMs, in contrast to prior meth-
ods that are task-specific (Wang and Li, 2023; Yu
et al., 2023; Lu et al., 2023).

3 Methodology

Figure 2 presents the two-stage Self-Refinement
Tuning (SRT) process. SRT aims to enhance the
capabilities of a base language model (denoted as
Mbase) by harnessing learning from AI feedback
(LAIF), thereby reducing the reliance on human
feedback. In the first stage, we train Mbase to self-
improve by learning from feedback and refinements
annotated by more powerful models. In the second
stage, we further optimize the model using its self-
generated feedback.
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Figure 2: An overview of Self-Refinement Tuning (SRT). In the first stage (above), SRT teaches the base model to
self-improve by fine-tuning it on the feedback and refinements from a powerful critic model. In the second stage
(bottom), SRT enables the model to learn from its self-generated feedback and refinements.

3.1 Training Models for Self-Improvement

3.1.1 Collecting Feedback and Refinements

In the first stage, we collect the training data for
self-improvement from the interaction of two mod-
els. Specifically, Mbase interacts with a stronger
model, denoted as Mcritic. Given a set of instruc-
tions x = [x1, ..., xN ], Mbase generates initial re-
sponses y = [y1, ..., yN ]. Mcritic then provides
feedback f = [f1, ..., fN ] on these responses. As
delineated in Table 1, we instruct Mcritic to gener-
ate 1) analyses of the weaknesses, 2) overall quality
scores ranging from 1 to 10, and 3) suggestions
for enhancing the responses. Subsequently, Mcritic

generates the refinements (i.e., improved responses)
r = [r1, ..., rN ] according to its previous feedback.

The critique-refinement process can be iterative:
after the first iteration, we obtain a set of instruc-
tions, initial outputs, critiques, and refinements.
We then use the refinements as the inputs for the
next iteration and continue the process until the
quality of the outputs no longer improves. Intrigu-
ingly, we find that a single iteration of refinement
is typically adequate, with additional iterations con-
tributing only marginal improvements. See Section
4.1 for more details of the process of collecting the

feedback and refinement.

3.1.2 Self-Improvement Training
After collecting the feedback and refinements, we
fine-tune Mbase to identify and rectify its own er-
rors or undesirable behaviors, thereby improving its
performance. To facilitate this, we reformat the col-
lected data into sequences of sentences as follow:
Instruction→ Response → Feedback → Refinement

By doing so, we can train the model using a
language modeling objective. This method is
somewhat akin to Chain of Hindsight (Liu et al.,
2023), where the model is trained to produce
outputs from provided instructions and feedback.
However, our approach differs in training the
model to generate the feedback and refinements
sequentially instead of merely predicting the
outputs. More formally, we want to optimize:

L = − 1

N

∑

i=1

logP (yi, fi, ri|xi) (1)

where N is data size, xi is the input instruction,
yi is the initial output, fi is the feedback, and ri
is the best refinement with the highest score. The
input instruction is masked from the loss calcula-
tion during the training phase. This results in a
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### Instruction
{Instruction}
### Response
{Response}
### Requirements
As a AI assistant instructor, your task is to provide
constructive feedback on responses generated by the
assistant. Ensure that your feedback focuses on the
original instruction and do not introduce new require-
ments. Follow these steps to ensure your feedback is
effective and beneficial:
1. Identify Weaknesses: Carefully review the re-
sponse and pinpoint any areas where it falls short.
2. Offer Actionable Advice: Provide specific sugges-
tions on how the response can be improved.
3. Conclude with a Rating: After providing feedback,
score the response on a scale from 1 to 10, with 1
being the lowest and 10 the highest. Use the format:
"Overall Score: [[1-10]]".
4. Show an Improved Response: Offer an improved
version that incorporates your feedback. Clearly in-
dicate the enhanced response with the heading: "###
Improved Response".
### Feedback

Table 1: The template we used for obtaining feedback
from LLMs. It instructs LLMs to evaluate and refine
the response to a given instruction.

self-improvement model, denoted by Mself , which
can provide feedback on its outputs and refine them
until they are satisfactory. In Section 4.2, we show
that Mself significantly outperforms Mbase.

3.2 Scaling SRT through Self-Feedback

We now describe how Mself can be used to scale
the learning from AI feedback. Specifically, we
leverage Mself to generate preference data and for
further model optimization. Our approach is sim-
ilar to Self-Rewarding (Yuan et al., 2024) but de-
viates from the strategy for acquiring superior re-
sponses. Rather than sampling multiple responses
and selecting the optimal one, we directly generate
an improved response via self-refinement, thereby
enhancing efficiency.

More concretely, we use model Mself to gen-
erate initial responses y’ = [y′1, ..., y

′
N ] from a

distinct instruction set x’ = [x′1, ..., x
′
N ]. The

model critiques and refines these responses into
feedback f’ and refinements r’. We filter to ensure
refinements exceed initial response quality, based
on model-assigned scores. This yields preference
pairs of initial responses and refinements, which
can used for DPO training (Rafailov et al., 2023).

4 Experiments

4.1 Implementation Details

In this subsection, we outline the specifics of SRT
training, which includes the choice of base models,
the procedure for feedback annotation and cleaning,
and the comprehensive model training process.

Models. To evaluate the efficacy of SRT, we em-
ploy three fine-tuned LLaMA2 models as our base
models. These include Tulu2-7B, Tulu2-13B, and
Tulu2-70B, all trained on the Tulu-2 Mixture (Ivi-
son et al., 2023). Given that these datasets are
partially distilled from models such as GPT-4, they
can also be referred to as dSFT, an acronym for
distilled Supervised Fine-Tuning (Tunstall et al.,
2023). In the first stage of SRT, we use Tulu2-7B
to generate initial responses and employ GPT-4
Turbo (gpt-4-1106-preview) to generate language
feedback and refinements. The GPT-4 critic ex-
hibits a 78.9% agreement rate with human prefer-
ences on the HH-RLHF dataset (Bai et al., 2022a).
We then fine-tune all base models on these refine-
ments. In the second stage, these fine-tuned models
independently generate feedback and refinements
for DPO training, which we refer to as sDPO (self-
feedback DPO). To measure the effectiveness of
self-feedback, we further compare our models with
other DPO variants trained on the UltraFeedback
(Cui et al., 2023) dataset. These include Tulu2-
DPO-7B, Tulu2-DPO-13B, and Tulu2-DPO-70B.
We refer to these models as dDPO, an acronym for
distilled DPO (Tunstall et al., 2023).

Details on Feedback and Refinements Annota-
tion. In our two-stage process, we initially se-
lect 25,000 instructions from the Tulu-2 Mixture,
followed by 75,000 instructions for the second
stage. We adopt the approach of Li et al. (2023a),
choosing examples of a single conversation turn
to streamline the refinement process. For generat-
ing responses, we use a sampling temperature of
0.7, while for feedback and refinement generation,
we set the temperature to 0 and restrict the max-
imum new tokens to 2,048. We use the prompt
template shown in Table 1 for annotating feedback
and refinements. Figure 3 shows the score distri-
bution of the initial outputs of Tulu2-7B and their
subsequent refinements. On average, the refine-
ments enhance the score by 1.5 points compared to
the initial outputs. Table 2 shows one iteration of
critique-and-refinement is sufficient.
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Figure 3: The score distribution of 25K initial responses
(left) and refined responses (right). The initial responses
are generated by Tulu2-7B and are then refined and
scored by GPT-4 Turbo using the template presented in
Table 1.

Post-processing of Feedback and Refinements.
Our goal is to compile instances that form a con-
sistent sequence of instruction-response-feedback-
refinement. However, even sophisticated models
like GPT-4 Turbo occasionally fail to conform
strictly to the format requirements. As a result,
we apply the following filtering rules:

Rule #1: The feedback should include potential
weaknesses, overall scores, and suggestions1.

Rule #2: The quality of the refinement should
not be lower than that of the initial response.

Note that we evaluate the initial responses and
their subsequent refinements independently. This
is important as the critic sometimes gives higher
scores when it has been conditioned with prior feed-
back, regardless of the quality of the refinement.
After applying these filters, we obtain 22K and 63K
valid feedback and refinements for the initial and
subsequent stages, respectively.

Training Details. The base models are trained
using the Tulu-2 Mixture dataset, following the
same settings as Ivison et al. (2023). In the first
stage of SRT, we fine-tune the base models for five
epochs. We concatenate each instruction’s initial
response, feedback, and refinement into sequences.
Following Ivison et al. (2023), we set the maximum
sequence length to 8,192 but use a smaller global
batch size of 32. We use a cosine learning rate
scheduler with a peak learning rate of 1e-5 and 10%
warmup steps. In the second stage, we train our
DPO models for one epoch with a β value of 0.01.
We maintain the same optimizer and learning rate
scheduler as the first stage but adjust the maximum
learning rate to 5e-7 to ensure training stability.

1We identify these elements by looking for keywords such
as ‘###Feedback,’ ‘###Overall Score,’ and ‘###Improved Re-
sponse.’

Iteration Average Score

Initial Responses 5.42

Iteration 1 6.93
Iteration 2 7.04
Iteration 3 6.91
Iteration 4 6.85

Table 2: The average score of the refinements generated
by GPT-4 Turbo at different iterations. The results are
obtained from 1,000 samples from the Tulu-2 Mixture
dataset. The initial responses are generated by Tulu2-
7B.

We use the HuggingFace TRL library2 to train our
models, and use FlashAttention-2 (Dao, 2023) and
DeepSpeed Zero-3 (Rajbhandari et al., 2020) to
speedup training.

Evaluation Details. We evaluate SRT across
open-ended generation, reasoning, and question-
answering. For open-ended generation, we test
SRT on the AlpacaEval benchmark (Li et al.,
2023b), which consists of 805 instructions. We
report the win rate of our models compared to GPT-
3.5 (text-davinci-003). Since this baseline may
be outdated, we also compare our models with
GPT-4 Turbo (gpt-4-1106-preview). We use the de-
fault configuration provided in the official library3.
For reasoning, we evaluate our models on GSM8K
(Cobbe et al., 2021) and Big-Bench-Hard (BBH,
Suzgun et al., 2022). We report the exact match
score (EM) on the test sets, using few-shot chain-of-
thought prompting strategies identical to those used
by Ivison et al. (2023). For question-answering, we
test with TydiQA (Clark et al., 2020), a multilin-
gual benchmark that covers 11 different languages.
In line with Ivison et al. (2023), we report the F1
score under the Gold Passage (GP) setting, where
the passage containing the answer is provided. To
assess the “self-evaluation" capability of SRT, we
test our models on the HH-RLHF dataset (Bai et al.,
2022a), comparing model-predicted scores with hu-
man preferences. We evaluate using a sample of
500 data points from the HH-RLHF test set. Un-
less stated otherwise, we always select the refined
responses as the outputs for the SRT models. We
also limit the output refinement to one iteration, as
additional iterations provide minimal benefits and
significantly slow down the model’s generation.

2https://github.com/huggingface/trl
3We use ‘alpaca_eval_gpt4’ as the judge for comparing

GPT-3.5 and use ‘weighted_alpaca_eval_gpt4_turbo’ for GPT-
4 Turbo.
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Model Type GSM8k BBH TydiQA AlpacaEval Average
8-shot CoT, EM 3-shot CoT, EM 1-shot, F1 % Win -

Tulu2 7B dSFT 34.0 48.5 46.4 73.9 50.7
Tulu2-DPO 7B dDPO 34.5 45.5 44.5 85.1 52.4
SRT 7B (stage 1) dSFT 35.7 49.2 47.9 84.6 54.4
SRT 7B (stage 2) sDPO 34.2 47.3 47.2 85.3 53.4

Tulu2 13B dSFT 46.0 49.5 53.2 78.9 56.9
Tulu2-DPO 13B dDPO 49.5 49.4 39.7 89.5 57.0
SRT 13B (stage 1) dSFT 48.2 50.4 56.4 88.7 60.9
SRT 13B (stage 2) sDPO 49.7 50.9 57.9 91.6 62.5

Tulu2 70B dSFT 73.0 68.4 53.6 86.6 70.4
Tulu2-DPO 70B dDPO 71.5 66.0 35.8 95.1 67.1
SRT 70B (stage 1) dSFT 72.3 70.2 60.9 93.1 74.1
SRT 70B (stage 2) sDPO 73.9 69.7 61.8 95.2 75.1

Table 3: Comparisons of the performance on four benchmarks. All models are fine-tuned from LLaMA2 pre-trained
models. The term dSFT stands for distilled supervised fine-tuning, dDPO represents direct preference optimization
with distilled feedback, and sDPO signifies direct preference optimization with self-generated feedback. The table
presents the average scores for each benchmark, with the highest performing models of equal size highlighted in
bold. The AlpacaEval results are win rates compared against GPT-3.5.

4.2 Main Results
Table 3 summarizes the experimental results on
four benchmarks. The results indicate that SRT
consistently improves model performance across
various tasks and model sizes. In the first stage,
models trained with language feedback from GPT-
4 significantly outperform the Tulu2 baselines. On
average, the first stage of SRT enhances the perfor-
mance by a margin of 3.7 to 4.0 across different
model scales. Models trained during this stage
are comparable to the Tulu2-DPO baselines on Al-
pacaEval but use considerably fewer feedback in-
stances (22K vs 64K). These findings underscore
the efficacy of training models to assess and refine
their outputs by learning from the feedback of more
advanced models.

In the second stage, SRT further boosts perfor-
mance by scaling feedback with self-generated re-
sponses and refinements. The most notable im-
provement is observed on the AlpacaEval task.
SRT’s second stage is more effective with larger
models (13B and 70B) but less with smaller ones
(7B), which see an average drop of 1.0 points. This
suggests that the inherent capabilities of a model
may restrict its ability to learn from self-feedback.

Additionally, the enhancements observed in rea-
soning tasks, including GSM8K and BBH, are rela-
tively slight, especially for the 7B and 13B models.
This could be attributed to the limited reasoning
capabilities present in these models.

Model Win Rate (%) Length

GPT-4 0314 22.1 1371
Mistral Medium 21.9 1500
Claude 2 17.2 1069
Gemini Pro 16.9 1315

Tulu2 13B 6.0 993
Tulu2-DPO 13B 11.1 1440
SRT 13B (stage 1) 12.6 1307
SRT 13B (stage 2) 15.9 1285

Tulu2 70B 9.6 960
Tulu2-DPO 70B 16.5 1480
SRT 70B (stage 1) 20.2 1536
SRT 70B (stage 2) 25.8 1663

Table 4: AlpacaEval 2.0 results. We report the win rates
compared to GPT-4 Turbo and the output length.

4.3 Results on AlpacaEval 2.0

GPT-3.5 may be a relatively weak baseline for eval-
uating our strongest models. For example, both
SRT 70B and Tulu2-DPO 70B models achieve win
rates over 95%. Therefore, we further evaluate
these models on the more challenging AlpacaEval
2.0 benchmark, which employs GPT-4 Turbo as the
baseline for calculating win rates. Table 4 presents
the results of 13B and 70B models and several
proprietary models. We can see that SRT models
significantly outperform Tulu2 models. Notably,
our strongest model, SRT 70B (stage 2), achieves
a win rate of 25.8%, outperforming Tulu2-DPO
70B by a substantial margin of 9.0%. The model
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Model Human Agreement (%)

GPT-4 Turbo 78.9

SRT 7B (stage 1) 74.4
SRT 7B (stage 2) 68.2
SRT 13B (stage 1) 72.2
SRT 13B (stage 2) 68.9
SRT 70B (stage 1) 72.8
SRT 70B (stage 2) 72.3

Table 5: Feedback accuracy of different models. We
report the level of agreement with human preferences
based on 500 samples from the HH-RLHF test set.

surpasses well-established models such as GPT-4
0314, Mistral Medium, Claude 2, and Gemini Pro.
We also find that SRT encourages models to pro-
duce more verbose outputs, which could influence
the observed performance improvement. However,
despite generating shorter responses, our SRT 13B
models achieve superior results compared to Tulu2-
DPO models.

4.4 Results on HH-RLHF

Table 5 presents a comparison of feedback accu-
racy among different models on the HH-RLHF test
set. Feedback accuracy is evaluated based on the
agreement of model outputs with human prefer-
ences. Specifically, for each pair of responses,
the feedback is considered ‘correct’ if the score
of the ‘chosen’ response exceeds that of the ‘re-
jected’ response. Remarkably, GPT-4 Turbo sur-
passes all other models, achieving an agreement
rate of 78.9%. Intriguingly, during the initial stage
of SRT, the 7B model outperforms larger models,
reaching an agreement rate of 74.4%. However,
after the second-stage fine-tuning of SRT, the ac-
curacy of the 7B and 13B models significantly de-
clines, while the 70B models show slight changes.

5 Analysis

This section provides an in-depth examination
of the factors that affect the performance of our
methods. Initially, we evaluate the efficacy of
self-refinement in SRT by contrasting it with the
widely adopted re-ranking approach. Subsequently,
we explore the influence of various elements in
SRT, encompassing language feedback, the quality
of refinements, and the quantity of training data.
Through these analyses, we aim to deepen the un-
derstanding of our methods.

Win Rate (%)

SRT 70B

SRT 13B

SRT 7B

61.7 38.3

58.3 41.7

55.4 44.6

Refinement Win Re-Ranking Win

Figure 4: Self-Refinement vs. Re-Ranking over 16
candidates. The results are obtained on the AlpacaEval
test set using models trained at the first stage of SRT.

Model Win Rate (%) Drop

SRT 13B (stage 1) 88.7 -
− score 87.6 1.1
− suggestion 85.9 2.8
− weakness 85.5 3.2
− all feedback 83.6 5.1

Refinement Only 84.2 4.5

Table 6: Ablation study on the language feedback com-
ponents. We report the win rates compared to GPT-3.5
using the same settings as Section 4.2.

5.1 Self-Refinement vs. Re-Ranking

Re-ranking is a widely adopted technique to bolster
the performance of text generation systems. Given
that our models can precisely assess the quality
of their outputs, they can be effectively leveraged
for re-ranking. In this study, we contrast the effi-
cacy of self-refinement and re-ranking using the
AlpacaEval test set. For self-refinement, we em-
ploy greedy decoding and refine the response once.
For re-ranking, we sample 16 distinct responses
using a temperature of 0.7. These responses are
then re-ranked based on the scores predicted by the
model itself. We then task GPT-4 for comparing the
two sets of responses using the settings described
in Section 4.1. Figure 4 illustrates a direct com-
parison between self-refinement and re-ranking
across 16 candidate responses. It is evident that
self-refinement consistently surpasses re-ranking
in performance across various models. This advan-
tage becomes more pronounced with an increase
in model size. Given the significant cost associated
with generating multiple responses, self-refinement
emerges as a more efficient and cost-effective ap-
proach for improving the performance of language
models.
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Figure 5: Win rates against GPT-4 Turbo by varying
numbers of training samples for SRT models.

5.2 Impact of Language Feedback

A unique characteristic of SRT is its integration of
language feedback, which offers insights into po-
tential weaknesses, overall scores, and suggestions
for improvement. Here, we ablate these compo-
nents to investigate their influence on the final per-
formance. We evaluate 13B models trained during
SRT’s first stage on AlpacaEval and compare these
models with GPT-3.5. The results are presented
in Table 6. We find that removing any part of the
feedback leads to a drop in performance. Also,
weaknesses and suggestions are almost equally im-
portant, while the score seems less necessary. Re-
moving all feedback results in a significant perfor-
mance drop of 5.1 points, which is even inferior to
the performance achieved by training solely with re-
finement. To summarize, these findings emphasize
the crucial role of language feedback in enhancing
SRT’s performance.

5.3 Impact of Training Data Size

In our primary experiments, we use 22K and 63K
training samples for the first and second stages of
SRT, respectively. We now delve further into the
impact of data volume on the performance of SRT.
We experiment with the challenging AlpacaEval
2.0 benchmark and replicate the training settings
from Section 4.1. Figure 5 illustrates the results of
13B and 70B models. As depicted, the performance
almost monotonically increases with the variation
in the number of training samples. Models of dif-
ferent sizes and stages exhibit diverse convergence
speeds. Increasing the training data results in a
more significant performance gain on the 70B mod-
els. However, we also find the 13B model’s perfor-
mance slightly deteriorates when the data volume
increases from 36K to 48K. We hypothesize that
this could be due to the presence of noise. To vali-
date this hypothesis, we further analyze the impact
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Figure 6: AlpacaEval results (vs. GPT-3.5). The low-,
medium-, and high-quality refinements have scores of
6, 7, and 8, respectively.

of data quality on the performance of SRT.

5.4 Impact of Refinement Quality

In our primary experiment, we merely filter refine-
ments that are of lower quality (reflected by overall
scores) than the initial responses. Here, we delve
deeper into this issue by conducting experiments
with more fine-grained control over the refinement
quality. To investigate this, we train models with
varying levels of refinement quality and compare
their performances. Specifically, we select samples
of 2,000 refinements each from low-, medium-, and
high-quality categories, corresponding to scores of
6, 7, and 8, respectively. As illustrated in Figure
6, there is a clear monotonic increase in the per-
formance of SRT in line with the quality of refine-
ments. The results hold with varying model sizes,
suggesting that SRT can be further augmented by
enhancing the refinement quality.

6 Conclusion

We have presented Self-Refinement Tuning (SRT)
for aligning language models using language feed-
back. SRT initially teaches language models to
assess and enhance their outputs by learning from
feedback provided by more advanced models. Sub-
sequently, SRT optimizes these models further by
learning from their self-generated feedback. The
primary benefits of SRT are twofold: (1) it obvi-
ates the need for human-annotated preferences, and
(2) it obtains promising performance across a wide
range of tasks and model sizes. In our analysis,
we find that both high-quality language feedback
and refinements are crucial for language models to
learn to self-improve. Collectively, we demonstrate
that SRT is an effective and efficient strategy for
improving the performance of language models.
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Limitations

While SRT has demonstrated promising results
across a variety of tasks, it is not without its limita-
tions. A significant constraint lies in its dependency
on a powerful critic model to provide feedback and
refinements. Even state-of-the-art language mod-
els, such as GPT-4-Turbo, can sometimes generate
feedback or refinements that are inaccurate or sub-
optimal. For instance, the refined responses from
GPT-4 yield an approximately average score of 7,
indicating substantial room for improvement.

Moreover, one of the inherent limitation of self-
refinement is it greatly increase the output length
of language models. Although we find a single
iteration of self-refinement is typically sufficient (in
Table 2), it still approximately doubles the output
length of our models. The lengthy outputs lead to
higher computational costs during decoding.

In the future, we will develop more accurate and
efficient feedback mechanisms, optimize the self-
refinement process to control output length, and
explore ways to improve the quality of refinements.

Ethical Considerations

SRT enhances language models by incorporating
feedback and refinements from both open-source
and commercial models. This approach minimizes
the reliance on human annotations but also might
introduces potential risks. Notably, SRT can lead
to unintended issues such as overfitting and the re-
inforcement of existing biases in the initial models.
Therefore, it is essential to develop more robust and
trustworthy alignment methods to ensure these lan-
guage models are safe, fair, and controllable. Ad-
ditionally, as the model improves, it may become
increasingly complex and difficult to interpret, pos-
ing challenges in applications where transparency
and interpretability are crucial. To mitigate these is-
sues, future work could integrate ethical guidelines
or external validation tools into the SRT process.
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Michael Sellitto, Nelson Elhage, Nicholas Schiefer,
Noem’i Mercado, Nova DasSarma, Robert Lasenby,
Robin Larson, Sam Ringer, Scott Johnston, Shauna
Kravec, Sheer El Showk, Stanislav Fort, Tam-
era Lanham, Timothy Telleen-Lawton, Tom Con-
erly, T. J. Henighan, Tristan Hume, Sam Bow-
man, Zac Hatfield-Dodds, Benjamin Mann, Dario
Amodei, Nicholas Joseph, Sam McCandlish, Tom B.
Brown, and Jared Kaplan. 2022b. Constitutional
ai: Harmlessness from ai feedback. ArXiv preprint,
abs/2212.08073.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan,
John A. Gehrke, Eric Horvitz, Ece Kamar, Peter Lee,
Yin Tat Lee, Yuan-Fang Li, Scott M. Lundberg, Har-
sha Nori, Hamid Palangi, Marco Tulio Ribeiro, and
Yi Zhang. 2023. Sparks of artificial general intelli-
gence: Early experiments with gpt-4. ArXiv preprint,
abs/2303.12712.

Stephen Casper, Xander Davies, Claudia Shi,
Thomas Krendl Gilbert, Jérémy Scheurer, Javier
Rando, Rachel Freedman, Tomasz Korbak, David
Lindner, Pedro Freire, Tony Tong Wang, Samuel
Marks, Charbel-Raphael Segerie, Micah Carroll,
Andi Peng, Phillip Christoffersen, Mehul Damani,

6098

http://arxiv.org/abs/2204.05862
http://arxiv.org/abs/2204.05862
http://arxiv.org/abs/2204.05862
https://arxiv.org/abs/2212.08073
https://arxiv.org/abs/2212.08073
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://arxiv.org/abs/2303.12712
https://arxiv.org/abs/2303.12712


Stewart Slocum, Usman Anwar, Anand Siththa-
ranjan, Max Nadeau, Eric J Michaud, Jacob Pfau,
Dmitrii Krasheninnikov, Xin Chen, Lauro Langosco,
Peter Hase, Erdem Biyik, Anca Dragan, David
Krueger, Dorsa Sadigh, and Dylan Hadfield-Menell.
2023. Open problems and fundamental limitations
of reinforcement learning from human feedback.
Transactions on Machine Learning Research. Survey
Certification.

Angelica Chen, Jérémy Scheurer, Tomasz Korbak,
Jon Ander Campos, Jun Shern Chan, Samuel R. Bow-
man, Kyunghyun Cho, and Ethan Perez. 2023. Im-
proving code generation by training with natural lan-
guage feedback.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and
Denny Zhou. 2024. Teaching large language models
to self-debug. In The Twelfth International Confer-
ence on Learning Representations.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2023. Palm: Scaling language mod-
eling with pathways. Journal of Machine Learning
Research, 24(240):1–113.

Paul F. Christiano, Jan Leike, Tom B. Brown, Miljan
Martic, Shane Legg, and Dario Amodei. 2017. Deep
reinforcement learning from human preferences. In
Advances in Neural Information Processing Systems
30: Annual Conference on Neural Information Pro-
cessing Systems 2017, December 4-9, 2017, Long
Beach, CA, USA, pages 4299–4307.

Jonathan H. Clark, Eunsol Choi, Michael Collins, Dan
Garrette, Tom Kwiatkowski, Vitaly Nikolaev, and
Jennimaria Palomaki. 2020. TyDi QA: A benchmark
for information-seeking question answering in typo-
logically diverse languages. Transactions of the As-
sociation for Computational Linguistics, 8:454–470.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.

2021. Training verifiers to solve math word prob-
lems.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao,
Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan Liu, and
Maosong Sun. 2023. Ultrafeedback: Boosting lan-
guage models with high-quality feedback. ArXiv
preprint, abs/2310.01377.

Tri Dao. 2023. Flashattention-2: Faster attention with
better parallelism and work partitioning. ArXiv
preprint, abs/2307.08691.

Google. 2023. Gemini: A family of highly capable
multimodal models.

Chi Hu, Yuan Ge, Xiangnan Ma, Hang Cao, Qiang Li,
Yonghua Yang, Tong Xiao, and Jingbo Zhu. 2024.
Rankprompt: Step-by-step comparisons make lan-
guage models better reasoners.

Jie Huang, Xinyun Chen, Swaroop Mishra,
Huaixiu Steven Zheng, Adams Wei Yu, Xiny-
ing Song, and Denny Zhou. 2023. Large language
models cannot self-correct reasoning yet. ArXiv
preprint, abs/2310.01798.

Hamish Ivison, Yizhong Wang, Valentina Pyatkin,
Nathan Lambert, Matthew E. Peters, Pradeep Dasigi,
Joel Jang, David Wadden, Noah A. Smith, Iz Beltagy,
and Hanna Hajishirzi. 2023. Camels in a changing
climate: Enhancing lm adaptation with tulu 2. ArXiv
preprint, abs/2311.10702.

Natasha Jaques, Asma Ghandeharioun, Judy Hanwen
Shen, Craig Ferguson, Àgata Lapedriza, Noah J.
Jones, Shixiang Shane Gu, and Rosalind W. Picard.
2019. Way off-policy batch deep reinforcement learn-
ing of implicit human preferences in dialog. ArXiv
preprint, abs/1907.00456.

Harrison Lee, Samrat Phatale, Hassan Mansoor, Kellie
Lu, Thomas Mesnard, Colton Bishop, Victor Car-
bune, and Abhinav Rastogi. 2023. Rlaif: Scaling
reinforcement learning from human feedback with ai
feedback. ArXiv preprint, abs/2309.00267.

Xian Li, Ping Yu, Chunting Zhou, Timo Schick, Luke
Zettlemoyer, Omer Levy, Jason Weston, and Mike
Lewis. 2023a. Self-alignment with instruction back-
translation. ArXiv preprint, abs/2308.06259.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori,
Ishaan Gulrajani, Carlos Guestrin, Percy Liang, and
Tatsunori B. Hashimoto. 2023b. Alpacaeval: An
automatic evaluator of instruction-following models.
https://github.com/tatsu-lab/alpaca_eval.

Hao Liu, Carmelo Sferrazza, and P. Abbeel. 2023.
Chain of hindsight aligns language models with feed-
back. ArXiv preprint, abs/2302.02676.

Jianqiao Lu, Wanjun Zhong, Wenyong Huang, Yufei
Wang, Fei Mi, Baojun Wang, Weichao Wang, Lifeng
Shang, and Qun Liu. 2023. Self: Self-evolution with
language feedback.

6099

https://openreview.net/forum?id=bx24KpJ4Eb
https://openreview.net/forum?id=bx24KpJ4Eb
http://arxiv.org/abs/2303.16749
http://arxiv.org/abs/2303.16749
http://arxiv.org/abs/2303.16749
https://openreview.net/forum?id=KuPixIqPiq
https://openreview.net/forum?id=KuPixIqPiq
http://jmlr.org/papers/v24/22-1144.html
http://jmlr.org/papers/v24/22-1144.html
https://proceedings.neurips.cc/paper/2017/hash/d5e2c0adad503c91f91df240d0cd4e49-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/d5e2c0adad503c91f91df240d0cd4e49-Abstract.html
https://doi.org/10.1162/tacl_a_00317
https://doi.org/10.1162/tacl_a_00317
https://doi.org/10.1162/tacl_a_00317
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2310.01377
https://arxiv.org/abs/2310.01377
https://arxiv.org/abs/2307.08691
https://arxiv.org/abs/2307.08691
http://arxiv.org/abs/2312.11805
http://arxiv.org/abs/2312.11805
http://arxiv.org/abs/2403.12373
http://arxiv.org/abs/2403.12373
https://arxiv.org/abs/2310.01798
https://arxiv.org/abs/2310.01798
https://arxiv.org/abs/2311.10702
https://arxiv.org/abs/2311.10702
https://arxiv.org/abs/1907.00456
https://arxiv.org/abs/1907.00456
https://arxiv.org/abs/2309.00267
https://arxiv.org/abs/2309.00267
https://arxiv.org/abs/2309.00267
https://arxiv.org/abs/2308.06259
https://arxiv.org/abs/2308.06259
https://github.com/tatsu-lab/alpaca_eval
https://arxiv.org/abs/2302.02676
https://arxiv.org/abs/2302.02676
https://api.semanticscholar.org/CorpusID:263334155
https://api.semanticscholar.org/CorpusID:263334155


Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdan-
bakhsh, and Peter Clark. 2023. Self-refine: Itera-
tive refinement with self-feedback. In Thirty-seventh
Conference on Neural Information Processing Sys-
tems.

Vivek Myers, Erdem Biyik, Nima Anari, and Dorsa
Sadigh. 2021. Learning multimodal rewards from
rankings. In Conference on Robot Learning, 8-11
November 2021, London, UK, volume 164 of Pro-
ceedings of Machine Learning Research, pages 342–
352. PMLR.

OpenAI. 2023. Gpt-4 technical report.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray,
John Schulman, Jacob Hilton, Fraser Kelton, Luke
Miller, Maddie Simens, Amanda Askell, Peter Welin-
der, Paul F. Christiano, Jan Leike, and Ryan Lowe.
2022. Training language models to follow instruc-
tions with human feedback. In Advances in Neural
Information Processing Systems 35: Annual Confer-
ence on Neural Information Processing Systems 2022,
NeurIPS 2022, New Orleans, LA, USA, November 28
- December 9, 2022.

Liangming Pan, Michael Stephen Saxon, Wenda Xu,
Deepak Nathani, Xinyi Wang, and William Yang
Wang. 2023. Automatically correcting large lan-
guage models: Surveying the landscape of di-
verse self-correction strategies. ArXiv preprint,
abs/2308.03188.

Ethan Perez, Saffron Huang, Francis Song, Trevor Cai,
Roman Ring, John Aslanides, Amelia Glaese, Nat
McAleese, and Geoffrey Irving. 2022. Red teaming
language models with language models. In Proceed-
ings of the 2022 Conference on Empirical Methods
in Natural Language Processing, pages 3419–3448,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano
Ermon, Christopher D. Manning, and Chelsea Finn.
2023. Direct preference optimization: Your language
model is secretly a reward model. ArXiv preprint,
abs/2305.18290.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase,
and Yuxiong He. 2020. Zero: memory optimizations
toward training trillion parameter models. In Pro-
ceedings of the International Conference for High
Performance Computing, Networking, Storage and
Analysis, SC 2020, Virtual Event / Atlanta, Georgia,
USA, November 9-19, 2020, page 20. IEEE/ACM.

Paul Roit, Johan Ferret, Lior Shani, Roee Aharoni, Ge-
offrey Cideron, Robert Dadashi, Matthieu Geist, Ser-
tan Girgin, L’eonard Hussenot, Orgad Keller, Nikola

Momchev, Sabela Ramos, Piotr Stańczyk, Nino Vieil-
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