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Abstract

Social media platforms are hubs for multi-
modal information exchange, encompassing
text, images, and videos, making it challeng-
ing for machines to comprehend the infor-
mation or emotions associated with interac-
tions in online spaces. Multimodal Large Lan-
guage Models (MLLMs) have emerged as a
promising solution to these challenges, yet they
struggle to accurately interpret human emo-
tions and complex content such as misinfor-
mation. This paper introduces MM-SOC, a
comprehensive benchmark designed to evalu-
ate MLLMs’ understanding of multimodal so-
cial media content. MM-SOC compiles promi-
nent multimodal datasets and incorporates a
novel large-scale YouTube tagging dataset, tar-
geting a range of tasks from misinformation
detection, hate speech detection, and social
context generation. Through our exhaustive
evaluation on ten size-variants of four open-
source MLLMs, we have identified significant
performance disparities, highlighting the need
for advancements in models’ social understand-
ing capabilities. Our analysis reveals that, in a
zero-shot setting, various types of MLLMs gen-
erally exhibit difficulties in handling social me-
dia tasks. However, MLLMs demonstrate per-
formance improvements post fine-tuning, sug-
gesting potential pathways for improvement.
Our code and data are available at https:
//github.com/claws-lab/MMSoc.git.

1 Introduction

Social media platforms have become the epicenter
of multimodal information exchange, blending var-
ious formats of content such as text, images, and
videos. These platforms serve not only as chan-
nels for sharing news and personal experiences
but also for spreading rumors and shaping pub-
lic opinion (Ferrara, 2020; Vosoughi et al., 2018).
The inherent multimodality of social media con-
tent requires users to not only interpret individual
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Figure 1: The MM-SOC benchmark includes 10 multi-
modal tasks, including 7 image-text classification tasks
(misinformation detection, tagging, sarcasm, offensive-
ness, sentiment analysis, hate speech detection, and
humor), 2 generative task (image description and social
context description) and a text extraction task (OCR).

modalities such as text or images but also to un-
derstand the interplay between them, pushing the
boundaries of how machines comprehend human
communication in online spaces.

Multimodal Large Language Models (MLLMs)
have recently emerged as powerful tools for bridg-
ing the understanding of natural language and vi-
sual cues, showcasing their potential in a range
of tasks ranging from image captioning to com-
plex question answering (Ramos et al., 2023; Liu
et al., 2023c,b). Despite these advancements, the
complexity of tasks such as understanding hu-
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man emotions, memes, and verifying misinforma-
tion presents significant evaluation challenges to
MLLMs (Chen and Shu, 2023a,b). These tasks
require not only combining signals extracted from
both textual and visual domains, but also consid-
ering various social contexts upon making a deci-
sion regarding contextual appropriateness or cor-
rectness, which often require knowledge of cultural
contexts and subjective interpretations (Ruch, 2010;
Jacobi, 2014). For instance, the task of explaining
visual memes requires not only proficiency in im-
age recognition and language generation, but also
capability of understanding the underlying situation
of the image on why it should be considered hu-
morous. Given that large language models struggle
at solving tasks requiring social knowledge (Choi
et al., 2023), we anticipate multimodal social tasks
to prove an even harder challenge.

The complexity of multimodal tasks from so-
cial media demands a benchmark that can evaluate
MLLMs on their understanding of the different
data domains as well as the social context. Such
a benchmark would not only highlight the current
limitations of MLLMs, but also lead to future inno-
vations aimed at bridging the gap between human
and machine understanding of multimodal content.
This Work. This paper introduces MM-SOC,
a novel multimodal benchmark to rigorously as-
sess the capabilities of MLLMs across diverse
tasks typical of social media environments. Along
with existing prominent multimodal datasets, we
add a large-scale, newly collected YouTube tag-
ging dataset, resulting in ten tasks across five
datasets. Our analysis primarily targets open-
source MLLMs, recognizing their advantages in
terms of rapid deployment, reduced operational
costs, and superior capacity for maintaining data in-
tegrity compared to centralized proprietary models.
Through MM-SOC, we conduct a thorough and
systematic examination of MLLMs, exploring and
validating new methodologies to augment MLLM
efficacy in handling multimodal tasks. Finally, we
provide a detailed discussion on the performances,
shedding light on the implications of our findings
for future MLLM development and deployment.
Contributions. Our contributions are summarized
as follows. First, we introduce MM-SOC, a novel
benchmark to holistically evaluate MLLMs’ capa-
bility in tackling multimodal tasks derived from
online social networks. Second, we perform a com-
prehensive evaluation and benchmark 10 represen-
tative open-source MLLMs on MM-SOC, compar-

ing their performances with fine-tuned LLM base-
lines. Third, we conduct two case studies on MM-
SOC for testing the effectiveness of two methods:
self-improvement and explanation-augmented fine-
tuning. We find that, while zero-shot MLLMs often
fall short in achieving comparable performances
compared to fine-tuned models, their performances
can be improved via specific fine-tuning strategies.

2 The MM-SOC Benchmark
Overview. The deployment of Multimodal Large
Language Models (MLLMs) as general-purpose as-
sistants across social networks marks a significant
shift from traditional, specialized models designed
for singular tasks. This transition necessitates a
comprehensive skill set enabling these models to
navigate the multifaceted challenges presented by
user-generated content.

Motivated by this, we design MM-SOC, which
spans both natural language understanding and gen-
eration tasks. These tasks are designed to test the
models’ abilities to interact with user-generated
content encountered online. The selection includes
binary classification, multi-class classification, text
extraction, and text generation tasks, aiming to
cover a wide range of interactions MLLMs might
encounter with online content. The detailed task
selection process is in Appendix A. To ensure a
comprehensive evaluation, we employ a variety of
10 tasks that mirror the complexity of real-world
scenarios, ranging from understanding online video
content to identifying misinformation and detecting
hate speech in memes. The statistics of the dataset
are in Table 5.
Tagging. In digital content management, the abil-
ity to accurately predict appropriate tags for online
content is particularly significant given their diverse
and multimodal nature, which includes textual nar-
ratives, visual features, and cultural contexts. Ef-
fective tagging enhances content discoverability,
facilitates content moderation, and significantly im-
proves the user experience. To this end, we intro-
duce YouTube2M, a novel dataset comprising 2 mil-
lion YouTube videos shared on Reddit, specifically
curated to assess models’ proficiency in predict-
ing tags from a predefined set in Table 7 based on
video titles, descriptions, and visual content. We
provide a comprehensive analysis of YouTube2M
in Appendix B.

YouTube2M distinguishes itself with two fea-
tures: 1) Relevance to Online User Groups. The
YouTube2M dataset features videos shared on Red-
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dit. The selection of YouTube as the primary source
is based on its expansive user base, with more than
2.5 billion monthly users (Statista, 2024) and the
rich variety of its multimodal content. Reddit is
among the top most popular social media and is
characterized by its unique community structures
called “subreddits”. Unlike general video collec-
tions on YouTube, YouTube2M reflects the choices
of individuals within specific subreddit communi-
ties, aligning with their interests, humor, or pref-
erences. This targeted selection process ensures
our dataset is particularly relevant to distinct user
groups. 2) Viral Potential. Reddit is renowned as a
catalyst for virality. Videos shared on Reddit can
rapidly gain significant attention and engage com-
munities deeply through more discussions, com-
ments, and votes within their respective subreddits.
Notably, the presence of toxic, biased, or unverified
content in online videos raises concerns over the
propagation of misinformation, fostering distrust
and hate speech online. Consequently, the accurate
categorization and tagging of these videos become
critical for content moderation.
Dataset Construction. We retrieved the URLs of
all YouTube videos shared on Reddit over 12 years
spanning from 2011 to 2022. Subsequently, we
used YouTube Data API 1 to collect comprehensive
metadata of the YouTube videos, including their ti-
tles, descriptions, channels, publish timestamps, re-
strictions, default languages, topic categories, and
embeddability status. Additionally, we compiled
extensive statistics for each video, covering aspects
such as duration, and the number of comments,
likes, and views they garnered. To ensure the qual-
ity and relevance of the dataset, we filtered the
dataset and retained only videos with valid tags
and thumbnail images, resulting in a dataset with
1,963,697 videos.
Misinformation Detection. Misinformation detec-
tion represents a critical challenge as the prolifer-
ation of multimodal misinformation across online
platforms can undermine trust in digital ecosys-
tems and lead to real-world harm (Yang et al., 2022,
2023; Ma et al., 2022; Jin et al., 2022; He et al.,
2023). Here, we formulate misinformation detec-
tion as a binary classification problem and utilize
the PolitiFact and GossipCop datasets (Shu et al.,
2020). The task aims at evaluating a model’s ability
to accurately differentiate between true news and
misinformation, leveraging both the textual content

1https://developers.google.com/youtube/v3

and the associated images of news articles.
Hate Speech Detection. The prevalence of hate
speech in online platforms has several detrimental
effects, both on the individual user-level and on
the platform as a whole (Mondal et al., 2017; He
et al., 2021). To support research targeted at curb-
ing the spread of harmful content and abusive lan-
guage, we incorporate the Hateful Memes (Kiela
et al., 2020) dataset. This dataset evaluates the abil-
ity to recognize messages that attack or demean
a group based on attributes such as race, religion,
ethnic origin, sexual orientation, disability, or gen-
der. Such ability is essential for creating inclusive
online environments, protecting users from harm,
and complying with legal standards.
Emotion Analysis. The interactions among users
in online social media platforms often contain rich
and diverse exchanges of emotions. These emo-
tions include not only sentiment but also humor,
sarcasm, and offensiveness. Coupled with multi-
modal means of expressions such as memes, it can
be challenging for MLLMs to accurately capture
the true emotion conveyed through the message.
Therefore, we include the Memotion (Sharma et al.,
2020) dataset which focuses on sentiment and emo-
tion analysis within online memes, presenting a
multifaceted challenge that spans sentiment analy-
sis and the detection of humor, sarcasm, and offen-
sive contents.
OCR. Optical character recognition (OCR) refers
to the task of extracting text within images into
machine-encoded text. A model’s OCR proficiency
is directly related to its ability to access and in-
terpret online information such as infographics,
memes, and screenshots of textual conversations,
which are prevalent forms of communication and
information dissemination online (Zannettou et al.,
2018). We use the Hateful Memes and Memotion
datasets to evaluate OCR capabilities.
Image & Social Context Description. Image de-
scription assesses a model’s ability to generate ac-
curate, contextually relevant, and coherent natural
language descriptions of images. The capability to
accurately describe an image in natural language
aids in the understanding of the visual content,
which both provides an intermediary step in rea-
soning about the multimodal inputs and also aids
human users in understanding their decisions in an
interpretable way. Previous studies have demon-
strated that commercial models such as GPT-4/3.5
possess extensive domain knowledge in various
fields, including social sciences, and have shown
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promising results in data annotation, surpassing the
performance of human annotators (Savelka et al.,
2023; Gilardi et al., 2023; Zhu et al., 2023a). Thus,
for each example in the dataset, we employed GPT-
4V as a strong teacher to generate descriptions of
images and their associated social contexts. For
each example within the dataset, we instructed
the model to provide a comprehensive description
of the image, encompassing its foreground, back-
ground, major subjects, colors, and textures, as well
as the social context for each example, such as cul-
tural backgrounds, possible interpretations within
various societal groups, and the potential target de-
mographics. These examples served as references
for evaluating MLLMs’ capabilities to understand
both the image contents and social knowledge.

2.1 Model Selection

We consider 10 prominent open-source mod-
els spanning four different distinct architectures:
LLaVA-v1.5 (Liu et al., 2023b), BLIP2 (Li et al.,
2023b), InstructBLIP (Dai et al., 2023), and
LLaMA-Adapter-v2 (Zhang et al., 2023b). Details
on model parameter volumes are in Table 12. The
models are selected to cover diverse model sizes.
We apply our prompts (Table 6) to test the perfor-
mances of MLLMs in a zero-shot setting. For tasks
in which ground-truth texts are available as inputs,
we compare MLLMs’ performances with five uni-
modal discriminative models in a full fine-tuning
setting, including BERT (Kenton and Toutanova,
2019), RoBERTa-Base/Large (Liu et al., 2019), De-
BERTa (He et al., 2020), and MiniLM (Wang et al.,
2020). These text-only models have shown com-
petitive performances in text classification. Imple-
mentation details can be found in Appendix D.1.

3 Benchmark Results
Table 1 shows the overall performances across 10
tasks. Here, we use a unified score for each task
to facilitate a high-level performance comparison
across diverse tasks. For text classification and ex-
traction tasks, we use the macro-F1 score as the
aggregated measure. For text generation tasks in-
cluding image description (ID) and social context
description (SCD), we use ROUGE-L (Lin, 2004).
The results for misinformation detection are av-
eraged across PolitiFact and GossipCop, and the
results for OCR are averaged across Memotion and
Hateful Memes. The complete evaluation results
can be found in Appendix D.2.
Zero-shot MLLMs are on par with random

guesses. Despite their large model sizes and ex-
tensive training corpus, all MLLMs demonstrate
underwhelming performances in zero-shot settings,
often paralleling and sometimes falling short of the
random baseline. This trend is especially evident
on the offensiveness detection task, where none of
the 10 models surpass the random baseline, with an
average macro F1 score of 0.402 compared to the
baseline of 0.493. A similar pattern emerges in hu-
mor detection, with eight models underperforming
the baseline. The tasks in our benchmark which
simulate real-life interactions in social media are
indeed challenging for most MLLMs.
Zero-shot MLLMs underperform fully fine-
tuned models in most settings. We next focus on
the misinformation detection task, which takes a
binary classification form and can thus be evaluated
using encoder-only LLMs such as BERT. Table 2
reveals a consistent underperformance of MLLMs
compared to fully fine-tuned LLMs which only use
textual information. To our surprise, DeBERTa
emerges as the top-performing model with only
98 million parameters, whereas zero-shot MLLMs
achieve significantly inferior performances.

The low performances of zero-shot MLLMs can
be attributed primarily to two reasons: 1) The di-
vergence in training objectives. Unlike discrim-
inative models, which are explicitly fine-tuned to
predict correct labels, MLLMs are oriented towards
maximizing cross-modal alignment and instruction-
following abilities. Their training regimes are de-
signed to enhance text generation capabilities based
on input images. Such an alignment does not cater
to misinformation detection, which demands not
only multimodal reasoning but also the ability to
evaluate the reliability of sources and incorporate
extensive external knowledge. 2) Disparity in the
training corpus content. MLLMs are predomi-
nantly trained for tasks such as object detection,
image captioning and visual question answering
(VQA) (Dai et al., 2023; Liu et al., 2023c), which
rarely encompass tasks in social knowledge reason-
ing. The lack of tasks requiring subjective reason-
ing may inherently limit the MLLMs’ performance
regarding these tasks, and is further supported by
the fact that performing task-specific fine-tuning
on even much smaller models that use only limited
information significantly outperforms MLLMs.
LLaVA achieves highest performance among
all MLLMs in most tasks. Among the tested
MLLMs, LLaVA-v1.5-13b/7b achieve the best and
second best overall performances with average
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Model Misinfo Hate Humor Sarc. Off. Sent. Tag OCR ID SCD Avg.

llava-v1.5-7b 0.494 0.490 0.450 0.452 0.484 0.250 0.068 0.514 0.260 0.218 0.368
llava-v1.5-13b 0.642 0.578 0.534 0.436 0.451 0.291 0.071 0.542 0.259 0.216 0.402
instructblip-vicuna-7b 0.311 0.442 0.246 0.481 0.477 0.251 / 0.611 0.048 0.033 0.322
instructblip-vicuna-13b 0.435 0.528 0.435 0.437 0.417 0.262 0.050 0.701 0.097 0.020 0.338
instructblip-flan-t5-xl 0.455 0.470 0.282 0.274 0.464 0.185 0.057 0.652 0.041 0.046 0.293
instructblip-flan-t5-xxl 0.463 0.570 0.406 0.447 0.282 0.335 0.128 0.627 0.043 0.023 0.332
blip2-opt-2.7b 0.261 0.369 0.309 0.389 0.411 0.291 0.022 0.723 0.141 0.140 0.306
blip2-flan-t5-xl 0.467 0.400 0.183 0.497 0.282 0.245 0.157 0.718 0.147 0.137 0.323
blip2-flan-t5-xxl 0.373 0.587 0.200 0.512 0.282 0.295 0.188 0.676 0.133 0.113 0.336
llama-adapter-v2 0.553 0.524 0.556 0.453 0.471 0.268 0.021 0.111 0.098 0.139 0.319

random 0.459 0.500 0.467 0.460 0.493 0.286 / / / / /

Table 1: Performance comparison across all models on the tasks. Best and 2nd best performances among the
MLLMs are highlighted in bold and underline, respectively. “ID” and “SCD” stand for the image description task
and the social context description task, respectively. Note that instructblip-vicuna-7b fails to generate valid answers
on the tagging task. A full comparison of all models on all metrics can be found in Appendix D.2.

PolitiFact GossipCop
Setting Model F1macro Acc AUC SR% F1macro Acc AUC SR%

zero-shot

llava-v1.5-7b 0.488 0.740 0.534 100.0 0.499 0.812 0.524 100.0
llava-v1.5-13b 0.749 0.827 0.721 100.0 0.534 0.773 0.535 100.0
instructblip-vicuna-7b 0.376 0.388 0.511 76.9 0.246 0.251 0.466 70.5
instructblip-vicuna-13b 0.434 0.485 0.441 94.2 0.435 0.503 0.468 90.0
instructblip-flan-t5-xl 0.418 0.718 0.500 99.0 0.492 0.811 0.521 98.1
instructblip-flan-t5-xxl 0.519 0.543 0.537 100.0 0.406 0.429 0.497 100.0
blip2-opt-2.7b 0.213 0.227 0.429 21.2 0.309 0.309 0.437 11.2
blip2-flan-t5-xl 0.419 0.721 0.500 100.0 0.514 0.819 0.534 100.0
blip2-flan-t5-xxl 0.545 0.548 0.634 100.0 0.200 0.215 0.481 100.0
llama-adapter-v2 0.550 0.553 0.613 87.5 0.556 0.673 0.581 83.6

finetuned

bert-base-uncased 0.850 0.875 0.850 100.0 0.769 0.869 0.797 100.0
roberta-base 0.894 0.923 0.894 100.0 0.812 0.879 0.824 100.0
roberta-large 0.846 0.885 0.825 100.0 0.820 0.858 0.820 100.0
MiniLM-v2 0.793 0.827 0.806 100.0 0.777 0.858 0.785 100.0
deberta-v3-large 0.952 0.962 0.952 100.0 0.817 0.895 0.792 100.0

random / 0.471 0.500 0.494 / 0.448 0.500 0.500 /

Table 2: Results of fine-tuning and zero-shot misinformation detection on PolitiFact and GossipCop (Shu et al.,
2020). The best and 2nd best performances of each category is highlighted in bold and . We report the Macro
F1-score (F1), Accuracy (Acc), Area Under the Curve (AUC), and Success Rate (SR). As the number of parameters
in the model increases, the model is better at following instructions as seen from their increasing success rate.

scores of 0.402 / 0.368, a 18.9% / 8.9% improve-
ment over InstructBLIP Vicuna 13B. The perfor-
mance gap is most significant on the text generation
tasks, including ID and SCD as shown in Table 1,
where LLaVA-v1.5-13B reaches a performance im-
provement of 76.9% and 55.7% compared with the
other models. This advantage could result from
both having a wider range of training data and
pretraining objectives — multiturn conversation,
detailed description, and complex reasoning. For
example, the complex reasoning objective typically
requires a step-by-step reasoning process by fol-
lowing rigorous logic. Figure 2 shows the perfor-
mances of the strongest models under each model
architecture. The scores are normalized in the 0-
1 range. Interestingly, we found that no single
model achieves the best performance across all
tasks. LLaVA-v1.5-13B performs the best on text

generation such as ID or SCD as well as tasks that
require social reasoning like misinformation de-
tection, but its ability in tagging is relatively poor.
BLIP2 is best on OCR and discriminative tasks
like sarcasm and hate speech detection, whereas its
generative abilities are relatively poor.
Larger models exhibit better instruction-
following abilities. To quantify an LLM’s adher-
ence to predefined content constraints, we leverage
a success rate metric, defined as the percentage
of responses from a model that aligns with the re-
quested formats. We see a compelling positive
correlation between the parameter size of the text
encoder and its ability to follow instructions and
precisely classify news content. Table 2 shows
that the macro F1-score on PolitiFact for Instruct-
BLIP increases from 0.376 to 0.434 when the text
encoder changes from Vicuna-7B to Vicuna-13B,
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Image Description Social Context Description
Model M R-1 R-2 R-L Len M R-1 R-2 R-L Len

instructblip-vicuna-7b 0.016 0.053 0.008 0.048 3.0 0.014 0.034 0.007 0.033 1.7
instructblip-vicuna-13b 0.040 0.113 0.020 0.097 6.6 0.010 0.021 0.002 0.020 1.9
instructblip-flan-t5-xl 0.014 0.044 0.005 0.041 2.7 0.022 0.050 0.006 0.046 3.0
instructblip-flan-t5-xxl 0.014 0.048 0.005 0.043 2.5 0.009 0.023 0.003 0.023 1.6
blip2-opt-2.7b 0.076 0.158 0.025 0.141 21.2 0.081 0.163 0.021 0.140 16.3
blip2-flan-t5-xl 0.065 0.172 0.026 0.147 9.8 0.069 0.156 0.024 0.137 9.5
blip2-flan-t5-xxl 0.058 0.151 0.025 0.133 9.7 0.066 0.132 0.014 0.113 10.4
llama-adapter-v2 0.041 0.110 0.019 0.098 9.1 0.113 0.152 0.020 0.139 128.5

llava-v1.5-7b 0.223 0.288 0.074 0.260 78.2 0.229 0.247 0.057 0.218 110.1
+ FT 0.217 0.285 0.074 0.253 85.9 0.217 0.249 0.052 0.215 101.1
+ FT w/ explanations 0.240 0.322 0.104 0.289 67.4 0.242 0.280 0.069 0.247 80.9

Improvement 7.7% 12.0% 40.5% 11.0% -13.8% 5.6% 13.4% 20.9% 13.4% -26.5%

llava-v1.5-13b 0.223 0.293 0.079 0.259 71.0 0.239 0.247 0.059 0.216 111.5
+ FT 0.207 0.282 0.068 0.252 68.7 0.213 0.246 0.050 0.218 97.3
+ FT w/ explanations 0.248 0.323 0.103 0.294 68.1 0.239 0.278 0.066 0.244 80.8

Improvement 11.0% 10.2% 30.5% 13.5% -4.1% 0.0% 12.7% 11.6% 13.1% -27.5%

Table 3: Results on the image description (ID) and social context description (SCD) tasks. We report METEOR (M),
ROUGE-1 (R-1), ROUGE-2 (R-2), ROUGE-L (R-L), and the length of responses (Len), calculated as the number
of words in the responses. “FT” represents fine-tuning with the ground-truth, and “FT w/ explanations” represents
fine-tuning with both the ground-truth and the explanations. The Improvement row indicates performance gain
for the FT w/ explanations setting w.r.t. zero-shot baselines. LLaVA-v1.5-7B/13B consistently achieve the best
performances among all MLLMs, and exhibit improved performances after fine-tuning on explanations.Raw Performances MisinformationHate Speech Humor Sarcasm Offensive Sentiment
llava-v1.5-7b 0.494 0.49 0.45 0.452 0.484 0.25
llava-v1.5-13b 0.642 0.578 0.534 0.436 0.451 0.291
instructblip-vicuna-7b 0.311 0.442 0.246 0.481 0.477 0.251
instructblip-vicuna-13b 0.435 0.528 0.435 0.437 0.417 0.262
instructblip-flan-t5-xl 0.455 0.47 0.282 0.274 0.464 0.185
instructblip-flan-t5-xxl 0.463 0.57 0.406 0.447 0.282 0.335
blip2-opt-2.7b 0.261 0.369 0.309 0.389 0.411 0.291
blip2-flan-t5-xl 0.467 0.4 0.183 0.497 0.282 0.245
blip2-flan-t5-xxl 0.373 0.587 0.2 0.512 0.282 0.295
llama-adapter-v2 0.553 0.524 0.556 0.453 0.471 0.268

min 0.261 0.369 0.183 0.274 0.282 0.185
max 0.642 0.587 0.556 0.512 0.484 0.335
max-min 0.381 0.218 0.373 0.238 0.202 0.15

Normalized PerformancesOffensive MisinformationHumor Hate Speech Sarcasm Sentiment
llava-v1.5-7b 1 0.61154856 0.71581769 0.55504587 0.74789916 0.43333333
llava-v1.5-13b 0.83663366 1 0.94101877 0.9587156 0.68067227 0.70666667
instructblip-vicuna-7b 0.96534653 0.1312336 0.1689008 0.33486239 0.8697479 0.44
instructblip-vicuna-13b0.66831683 0.45669291 0.67560322 0.7293578 0.68487395 0.51333333
instructblip-flan-t5-xl 0.9009901 0.50918635 0.26541555 0.46330275 0 0
instructblip-flan-t5-xxl 0 0.53018373 0.59785523 0.92201835 0.72689076 1
blip2-opt-2.7b 0.63861386 0 0.33780161 0 0.48319328 0.70666667
blip2-flan-t5-xl 0 0.54068241 0 0.14220183 0.93697479 0.4
blip2-flan-t5-xxl 0 0.29396325 0.04557641 1 1 0.73333333
llama-adapter-v2 0.93564356 0.7664042 1 0.71100917 0.75210084 0.55333333

ID

SCD

Chart Title

llava-v1.5-7b llava-v1.5-13b

instructblip-vicuna-13b instructblip-flan-t5-xl

blip2-opt-2.7b blip2-flan-t5-xl

llama-adapter-v2

Misinformation

Humor

Hate Speech

Sarcasm

SentimentTagging

OCR
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Figure 2: Performances of the 4 representative models
on the MM-SOC benchmark.
Model Pre Rec F1 Jacc LHam ↓
instructblip-vicuna-13b 0.044 0.230 0.050 0.032 0.429
instructblip-flan-t5-xl 0.045 0.326 0.057 0.036 0.500
instructblip-flan-t5-xxl 0.092 0.376 0.128 0.078 0.161
blip2-opt-2.7b 0.027 0.037 0.022 0.013 0.223
blip2-flan-t5-xl 0.196 0.191 0.157 0.112 0.092
blip2-flan-t5-xxl 0.176 0.350 0.188 0.122 0.085
llama-adapter-v2 0.028 0.029 0.021 0.012 0.137

llava-v1.5-7b 0.048 0.345 0.068 0.041 0.406
+ FT 0.162 0.373 0.209 0.148 0.063
+ FT w/ explanations 0.562 0.491 0.494 0.400 0.027

llava-v1.5-13b 0.052 0.361 0.071 0.043 0.342
+ FT 0.123 0.441 0.167 0.113 0.104
+ FT w/ explanations 0.533 0.473 0.474 0.387 0.027

Table 4: Results of tagging on the YouTube dataset.
A “↓” next to the metric indicates that lower values
represent better performances. instructblip-vicuna-7b
fails to produce valid predictions in this context.
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Figure 3: Success Rate (left) and macro-F1 scores (right)
of varying input lengths on PolitiFact. The instruction
following abilities of MLLMs remains stable across
varying input lengths, and exhibit improvements as
model size increases.

and improves from 0.418 to 0.519 when changing
from FlanT5-XL to FlanT5-XXL. This correlation
indicates that models with larger parameter sizes
are equipped with more complex reasoning abil-
ities and a sophisticated understanding of social
knowledge, which are essential components for
accurately evaluating the veracity of news articles.

Online content ranges from concise and engag-
ing social media posts and microblogs to detailed
and extensive narratives found in news articles and
in-depth blog posts. This diversity in content length
poses a significant challenge for MLLMs, as it re-
quires the models to maintain their generative ca-
pabilities over varying context sizes and a wide
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Figure 4: Left: Pairwise similarity between responses
at adjacent rounds; right: similarity between response
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Figure 5: Results of finetuned LLaVA-v1.5-7/13B. Com-
pared to the zero-shot baseline, finetuning with expla-
nations (FT w/ Expl.) and standard finetuning (FT)
improves performance across different sets of tasks.

range of information densities (Peng et al., 2023;
Peysakhovich and Lerer, 2023). To address these
concerns, we vary the number of tokens used as
input to detect misinformation on the PolitiFact
dataset from 16 to 512 tokens. The results, as de-
picted in Figure 3, provide compelling evidence of
the MLLMs’ stable instruction-following abilities.
Notably, we observed an increase in the macro-F1
score as the input length expanded, suggesting that
MLLMs are able to leverage evidence from longer
contexts for enhanced reasoning and performances.

4 Illustrative Uses of MM-SOC

The MM-SOC benchmark can be used to exper-
iment with new methods for enhancing MLLMs
in solving multimodal reasoning and generation
tasks. We conduct two case studies, proposing new
directions for strengthening MLLM capabilities.

4.1 Can MLLMs Self-improve Its Answers?

The ability of MLLMs to self-improve – enhancing
their answers iteratively without external supervi-
sion – can help generate increasingly consistent
and robust answers, reducing the need for human
oversight. Using our benchmark, we investigate the

self-improvement capabilities of MLLMs. The ini-
tial phase involves the model generating an answer
for each question. Subsequent iterations, starting
from the second round, require the model to pro-
duce new answers conditioned on the multimodal
inputs and its prior responses. The iterative process
is performed for six rounds. To quantitatively as-
sess the evolution of answers across these iterations,
we employed three established similarity metrics:
BERTScore (Zhang et al., 2019), sentence embed-
dings similarity (Reimers and Gurevych, 2019),
and bigram similarity (Kondrak, 2005). These met-
rics enabled us to measure the consistency of an-
swers from one round to the next, as well as their
fidelity to the ground truth.

Figure 4 displays a notable trend towards conver-
gence in the model’s answers with each iteration.
For instance, the average BERTScore between an-
swers from consecutive rounds (first to second, and
second to third) exhibited a significant increase,
from 0.699 to 0.910. Meanwhile, over 55% of all
answer pairs between the second and third rounds
achieved a sentence embedding similarity score ex-
ceeding 0.99. Despite improvements in internal
consistency, our analysis revealed a gradual diver-
gence from the ground truth over successive itera-
tions. This was evidenced by a decrease in sentence
embedding similarity between MLLM-generated
answers and the ground-truth (0.887 → 0.854), sig-
naling a potential limitation in the model’s ability
to maintain factual accuracy in iterative generation.

4.2 Does finetuning MLLMs Improve Overall
Performance?

We examine whether MLLMs can improve on MM-
SOC via additional fine-tuning steps. Instead of
fine-tuning models on separate tasks, we use the
data across all different tasks at once for train-
ing and examine whether this setting still can con-
tribute towards improvements for each task.

We employed two distinct strategies for fine-
tuning. The first approach directly fine-tunes the
model using the default input and output data, anal-
ogous to a standard fine-tuning setting. In the sec-
ond approach, we leverage GPT-4V as a strong
teacher to generate explanations after each ground
truth answer for each sample. Along with the origi-
nal input data, the GPT-generated explanations are
augmented as additional training data.

Figure 5 shows the performances of fine-tuned
LLaVA-7B and 13B models along with baselines.
With standard fine-tuning, we observe notable
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gains in detecting misinformation, offensiveness,
and sentiment, but also drops in hate, humor, and
sarcasm detection. Meanwhile, fine-tuning with ex-
planations improved performance across a broader
spectrum of tasks, e.g., increases of 18.2% in hate
speech detection and 12.7% in sentiment analysis.
Notably, text generation tasks such as image de-
scription and social context demonstrated greater
gains. Table 3 further reinforces the positive effects
of finetuning with explanations for text generation
tasks. Compared to the zero-shot baseline, both the
7B & 13B LLaVA models achieve higher ROUGE-
2 scores on image description (40.5% for 7B and
30.5% for 13B). Similarly, for social context de-
scription, we observe improvements of 20.9% and
11.6% respectively. These improvements are ac-
companied by a reduction in response verbosity,
highlighting the importance of explanations and ra-
tionales for improving multimodal text generation
tasks. Interestingly, finetuning without explana-
tions performs worse than the baseline, indicating
that the standard finetuning approach may not be
sufficient to learn the tasks in MM-SOC and sig-
naling the need for refined finetuning strategies.

5 Related Works

Multimodal Large Language Models: Multi-
modal Large Language Models (MLLMs) have
demonstrated exceptional natural language under-
standing and generation abilities by integrating
visual information with textual inputs (Awadalla
et al., 2023; Yu et al., 2023; Liu et al., 2023a; Verma
et al., 2023; Li et al., 2023c; Zeng et al., 2023;
Xie et al., 2024). Models such as LLaVA (Liu
et al., 2023b,c), BLIP2 (Li et al., 2023b), In-
structBLIP (Dai et al., 2023), and LLaMA-
Adapter (Zhang et al., 2023b; Gao et al., 2023) have
showcased their superior performance in a range of
applications. The success of MLLMs suggests their
potential for widespread use in scenarios requir-
ing not only factual analysis and comprehension
but also subjective judgment and decision-making
based on a nuanced understanding of social con-
texts and human perceptions. Our study reveals that
current MLLMs still fall short of fully grasping and
responding to complex social scenarios with the
required depth of understanding and sensitivity.

Benchmarking Large Language Models: The
evaluation of LLMs is crucial for uncovering
their capabilities and identifying potential risks
associated with their deployment in sensitive do-

mains (Wang et al., 2024a,b, 2023; Liu et al., 2020;
Zhang et al., 2023a; Zhao et al., 2023; Zong et al.,
2023; Xiao et al., 2023; Chan et al., 2023). Bench-
marking efforts across various domains such as
legal (Deroy et al., 2023), healthcare (Jin et al.,
2023), finance (Zhou et al., 2023), psychology (Li
et al., 2023a) have provided valuable insights into
LLMs such as their reliability (Shu et al., 2023),
robustness (Zhu et al., 2023b), and ethical impli-
cations (Sun et al., 2023). Despite these efforts,
there remains a notable gap in the development of
comprehensive multimodal benchmarks for social
domains. In this work, we create a holistic multi-
modal benchmark that captures the broad spectrum
of social language and interactions.

6 Conclusion
Our study presents a comprehensive evaluation
of 4 leading MLLMs on 10 carefully constructed
multimodal social media tasks from diverse do-
mains such as misinformation, hate speech, memes,
and a novel YouTube dataset, which comprises
our proposed MM-SOC benchmark. Our evalua-
tion of the current capabilities presents the follow-
ing insights: (i) zero-shot capabilities of certain
MLLMs are near-random and underperform dras-
tically in comparison to smaller fully fine-tuned
models, (ii) LLaVA-v1.5 is currently the most com-
petitive open-source MLLM, and (iii) instruction
following capabilities of MLLMs improve with
their size. MM-SOC also enables quantitative case
studies, two of which were illustrated in this work
and revealed (a) the limitations of MLLMs in self-
improving their accuracy and (b) the effectiveness
of fine-tuning MLLMs with labeled data. As bench-
marks highlight current limitations and guide future
research, we intend to expand MM-SOC’s cover-
age to more models and social media tasks to en-
courage reliable applicability of MLLMs in online
spheres.

7 Limitations

We describe limitations of the current study settings
and discuss potential directions for future works.

7.1 Exclusion of Proprietary Models
This study does not focus on proprietary models
like GPT-4V and Gemini for specific reasons. First,
this research aims to spotlight the constraints of
open-source MLLMs in tackling multimodal tasks
derived from social media contexts. This empha-
sis on open-source models is driven by our com-
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mitment to enhancing privacy protection. Unlike
proprietary models that aggregate data of multiple
platforms onto a central server, posing significant
privacy risks and operational costs, open-source
models are able to process data in a decentralized
way (Fan et al., 2023; Zhang et al., 2023c). This
distinction not only ensures better privacy safe-
guards but also resonates with our objective to spot-
light and scrutinize the limitations inherent within
open-source frameworks when deployed in com-
plex, real-world scenarios like social media. By
doing so, we hope that the research community
can dedicate resources towards the development
of more sophisticated open-source models that ad-
dress these gaps, promoting the ethos of open sci-
ence. Second, proprietary models like Gemini re-
ject images containing people and prompts associ-
ated with misinformation and hate speech. These
restrictions present significant barriers to a com-
prehensive analysis of MLLMs’ performance in
handling the diverse and often complex content
found on social media platforms.

7.2 Scope of Datasets Included in Benchmark

Online platforms facilitate several well-being dis-
cussions and provide support to potentially vul-
nerable members of the community (Alghowinem
et al., 2016; Sindoni, 2020). While our current
datasets consider applications of MLLMs for some
safety-critical tasks like misinformation and hate
detection, extensions of MM-SOC should include
datasets and tasks that cover applications that pro-
mote inclusivity and support-offering on online
platforms. The current version of the benchmark is
not “open-world, universal, and neutral,” the likes
of which have been contested to exist (Raji et al.,
2021), but an evolving-effort to contextualize the
progress in MLLMs with respect to widely-used
social media tasks.

8 Ethical Considerations and Broader
Impacts

MLLMs are recognized for exhibiting decision-
making biases, a direct consequence of biases
present within their training datasets. These in-
clude but are not limited to, biases in core sociode-
mographic categories such as gender, race, and
religion (Janghorbani and De Melo, 2023; Ruggeri
and Nozza, 2023). This can cause severe issues
during downstream applications of MLLMs, partic-
ularly in contexts where decisions can significantly

affect individual choices.
A significant portion of the biases in MLLMs

may be attributed to the data it is trained on. The
annotation of subjective tasks in NLP benchmarks
also requires consideration, as highlighted in var-
ious studies (Aroyo and Welty, 2015; Waseem,
2016; Al Kuwatly et al., 2020). The interpretation
of humor or offensive content can significantly vary
across different cultural and societal backgrounds,
and thus benchmarks should incorporate a broader
spectrum of human viewpoints. This is also appli-
cable to certain tasks within our benchmark, where
the labels of our questions are reflective of the view-
points of a hypothetical "average Twitter user."
We recognize the importance of this diversity and
inclusivity. Our hope is for subsequent research
leveraging our benchmark to hopefully develop and
include datasets that are more representative of so-
cial diversity and inclusiveness, thereby addressing
these disparities.

One consistent theme throughout our empirical
investigations is that the current performances of
MLLMs in general are suboptimal. Notably, cer-
tain zero-shot MLLMs exhibit lower accuracy com-
pared to both LLMs fine-tuned exclusively on tex-
tual data and even random scores. This underper-
formance is likely attributable to the insufficient
training of MLLMs on tasks requiring subjective
judgment and comprehension of social context. For
MLLMs to achieve broader and more reliable appli-
cability, future versions should be trained on more
tasks that cover ethical, social, and cultural dimen-
sions, thereby ensuring a more comprehensive un-
derstanding and interaction capability in diverse
contexts.
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A Task Selection

The selection of tasks and datasets in MM-SOC

centers around three key criteria:

• Tasks that require multimodal understanding
of both textual and image domains;

• Tasks directly related to the dynamics of social
media platforms;

• Tasks that have undergone rigorous evaluation
in subsequent research, which affirms their
validity as a benchmark.

The task selection process started with a com-
prehensive literature review through NLP confer-
ences (ACL, EMNLP, NAACL, SemEval), Ma-
chine Learning conferences (NeurIPS and ICML)

and Data Mining conferences (KDD and SIGIR)
since 2019. Papers satisfying these criteria were
retained. Our final list of tasks, while collectively
categorized under multimodal engagements in so-
cial media contexts, each distinctly require a variety
of cognitive capabilities. Some of these capabili-
ties intersect across different tasks, while others are
unique to specific challenges. Every task demands
that models not only comprehend textual instruc-
tions but also accurately interpret relevant visual
information to solve the task.

B The YouTube2M dataset

B.1 Distribution of Languages
Table 8 shows the language distribution of YouTube
videos in YouTube2M. There are 138 unique lan-
guages in YouTube2M. 323,007 videos have explic-
itly specified their default languages, representing
16.45% of the total 1,963,697 videos. We provide
a detailed breakdown of the languages, showcasing
the distribution of the top 10 most and least popular
languages within the dataset. Our findings reveal
a long-tail distribution in language popularity. No-
tably, English (including en, en-GB, en-US) domi-
nates the dataset with 275,408 videos, accounting
for 85.3% of videos with a specified language. In
contrast, the ten least common languages each only
appear once.

B.2 Distribution of Tags
The YouTube2M dataset encompasses a rich variety
of 62 unique tags, with 1,389,219 videos bearing
the top 5 tags, as shown in Table 9. Note that a
video can have multiple tags. This accounts for
70.7% of the entire dataset. We observe a strong
inclination towards gaming and music content.

B.3 Channel Information
There are 604,340 unique channels associated with
the videos in the dataset. The most popular 10
channels and their associated videos are shown in
Table 9. As observed from the statistics, a large por-
tion of videos propagated in online social networks
are centered around news and sports, signifying the
popularity of these topics among online discourse.

C Details about Datasets

C.1 Tagging
The tagging task focuses on predicting appropriate
“topic categories” for YouTube videos, chosen from
a predefined set as listed in Table 7. These topics
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Dataset Domain Modality Size

PolitiFact misinformation news content, online posts,
images, user metadata

485
GossipCop 12,840

Hateful Memes hate speech, OCR images, embedded text 12,143

Memotion sentiment, humor, OCR, offensiveness, sarcasm images, embedded text 10,000

YouTube tagging images, text, channels 1,963,697

Table 5: Statistics of the MM-SOC benchmark.

Task Prompt Tags
Misinformation Detection Is the following news misinforma-

tion? [NEWS]
misinformation, not misinforma-
tion

Hate Speech Detection Is the following meme hateful? hateful, not_hateful
Humor Is the following meme humorous? humorous, not_humorous
Sarcasm Is the following meme sarcastic? sarcastic, not_sarcastic
Offensiveness Is the following meme offensive? offensive, not_offensive
Sentiment Analysis What is the overall sentiment ex-

pressed through this meme?
positive, neutral, negative

OCR What is the text in the image? /
Image Description Describe the scene, such as its ma-

jor subjects, colors, and texture.
/

Social Context Description Describe the cultural and social
context of the image. What par-
ticular groups is the image and text
targeting at?

/

Tagging Predict the tags of the following
online video given its title, descrip-
tion, and thumbnail image. Differ-
ent tags must be separated by com-
mas.
Title: [TITLE]
Description: [DESCRIPTION]

(See Table 7 for the list of tags for
YouTube videos)

Table 6: Prompts and possible values for each task.

YouTube Tags
action-adventure_game, action_game, american_football, association_football, baseball, basketball,
boxing, business, casual_game, christian_music, classical_music, country_music, cricket, elec-
tronic_music, entertainment, fashion, film, food, golf, health, hip_hop_music, hobby, humour,
ice_hockey, independent_music, jazz, knowledge, lifestyle, military, mixed_martial_arts, motor-
sport, music, music_of_asia, music_of_latin_america, music_video_game, performing_arts, pet, physi-
cal_attractiveness, physical_fitness, politics, pop_music, professional_wrestling, puzzle_video_game,
racing_video_game, reggae, religion, rhythm_and_blues, rock_music, role-playing_video_game, simu-
lation_video_game, society, soul_music, sport, sports_game, strategy_video_game, technology, televi-
sion_program, tennis, tourism, vehicle, video_game_culture, volleyball

Table 7: Set of tags for YouTube videos

make it easier for users to find videos that match
their interests but also enhance the overall content
management strategy. This dataset exemplifies the

necessity of multimodal understanding in catego-
rizing online video content. The dataset is licensed
under the Apache 2.0 License.
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IETF Language Count IETF Language Count

en English 227,341 kl Kalaallisut 1
en-GB English (United Kingdom) 38,669 ia Interlingua 1
en-US English (United States) 9,398 fr-CH French as spoken in Switzerland 1
ko Korean 7,873 yo Yoruba 1
de German 3,988 ff Fula 1
ja Japanese 3,843 ba Bashkir 1
ru Russian 3,575 sd Sindhi 1
fr Franch 3,091 gd Scottish Gaelic 1
es Spanish 2,799 as Assamese 1
pt Portuguese 2,622 oc Occitan 1

Table 8: Language Distribution of YouTube videos in the YouTube2M dataset. “IETF” represents IETF BCP 47
language tag, the standardized code for identifying human languages on the Internet.

Tag Count

Music 524,369
Video_game_culture 475,124
Action_game 406,582
Lifestyle_(sociology) 383,092
Action-adventure_game 344,743
Role-playing_video_game 320,837
Entertainment 201,722
Strategy_video_game 200,968
Society 190,023
Pop_music 171,038
Rock_music 158,922

Table 9: The most popular tags in YouTube2M

Given the substantial volume of the YouTube2M
dataset, evaluation and fine-tuning on the entire
dataset presents challenges such as runtime costs
and catastrophic forgetting (Huang et al., 2024;
Zhai et al., 2024), where LLMs severely forget pre-
viously acquired information upon being trained
on new data. To address potential biases and the
predominance of YouTube data in tagging tasks,
we strategically curated a subset of 2,000 examples
from YouTube2M, aiming to mitigate any dispropor-
tionate influence of tagging tasks on the fine-tuning
process. We partitioned the sampled dataset into
training and test sets with an 80:20 ratio.

C.2 Misinformation datasets

We consider two datasets under the misinformation
detection theme: PolitiFact and GossipCop. Both
datasets were curated by Shu et al. (2020), dis-
tributed under the CC-BY-SA License, and are pub-
licly available for download at https://github.

com/KaiDMML/FakeNewsNet/.

C.2.1 PolitiFact
This dataset contains news content from the fact-
checking website PolitiFact2, which focuses on
political discourse, and contains the title, body, im-
ages, and user metadata from news articles. The
dataset contains 485 news articles. Each article is
annotated into one of the two categories: ‘fake’ and
‘real.’

C.2.2 GossipCop
This dataset contains news content from Gossip-
Cop, which targets the realm of entertainment news,
and includes the title, body, images, from the news
articles. The article contains 12,840 new articles,
each of which is categorized into one of the two
categories: ‘fake’ and ‘real.’

C.3 Hateful Memes

The Hateful Memes dataset contains 12,840 memes
that were designed to include meme-like visuals
with text laid over them. Since a unimodal classi-
fier (i.e., text-only or image-only) would struggle
to make an inference about the hateful nature of
the memes without considering both the modali-
ties, they present a unique opportunity to test the
multimodal reasoning capabilities of MLLMs. The
designed memes were manually annotated to be
in one of the two categories: ‘hateful’ or ‘benign.’
The dataset is distributed under the MIT License.

C.4 Memotion

The Memotion dataset comprises 12,143 memes,
each meticulously annotated with labels that cate-

2https://www.politifact.com/
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Channel Description #Videos

euronews European television news network, headquartered in Brussels,
Belgium

4737

Al Jazeera English 24-hour English news channel headquartered in Doha, Qatar 4655
IGN American video game media featuring videos about the latest

gaming & entertainment news and events
4041

Fox News 24-hour all-encompassing news service dedicated to delivering
breaking news and political & business news

3504

WWE World Wrestling Entertainment (WWE) original shows 2847
The Young Turks American progressive news commentary show 2345
ESPN Multimedia sports entertainment channel 2026
Movieclips Online movie clips collection 1883
CNN Multinational news channel and website 1808
The Majority Report
w/ Sam Seder

daily political talk show 1655

gorize the memes according to their sentiment (pos-
itive, negative, neutral), the type of emotion they
convey (sarcastic, funny, offensive, motivational),
and the intensity of the expressed emotion. The
emotion class and the overall sentiment were man-
ually labeled by Amazon Mechanical Turk (AMT)
workers. The dataset is distributed under the Com-
munity Free Resource License3.

D Details about Experiments

D.1 Implementation Details

Benchmark Evaluation For inference, we use Nu-
cleus Sampling (Holtzman et al., 2019) with a prob-
ability threshold of 0.9, a temperature of 1.0, and
a maximum output length of 256 tokens. To ac-
count for the randomness in the generation process,
we run each experiment with 3 random seeds and
report the average results. All experiments were
conducted on a server with 5 A100 80GB GPUs.
The models are implemented using the Transform-
ers library (Wolf et al., 2020). We use the NLTK
package (Loper and Bird, 2002) to calculate BLEU
scores, the rouge4 package to calculate ROUGE
scores and the sentence-bert5 package to calcu-
late sentence embedding similarities, respectively.
Model Finetuning. We finetuned the models for 1
epoch using a batch size of 16, a warmup ratio of
0.03, a learning rate of 2e-4 and a cosine annealing
learning rate scheduler.

3https://www.figma.com/legal/
community-free-resource-license/

4https://github.com/pltrdy/rouge
5https://github.com/UKPLab/

sentence-transformers

D.2 Evaluation Metrics
Classification. For classification tasks, we employ
metrics including macro precision, macro recall,
macro F1-score, accuracy (Acc), and Area Under
the Curve (AUC), reflecting the comprehensive as-
sessment of the models’ tagging proficiency.
Tagging. For the tagging task, we additionally
leverage Hamming Loss and Jaccard index. Ham-
ming loss (LHamming) is used to measure the frac-
tion of labels that are incorrectly predicted:

LHamming =
1

N

N∑

i=1

1

|L|

|L|∑

j=1

XOR(yij , ŷij) (1)

where yij ∈ {0, 1} is a binary variable that indi-
cates whether example i has label j. ŷij ∈ {0, 1}
is the predicted binary variable. N is the number
of examples in the dataset, and L is the set of la-
bels. Jaccard index is defined as the size of the

Task Acc Pre Rec F1

Misinformation 0.835 0.758 0.773 0.765
Humor 0.547 0.486 0.483 0.477
Sarcasm 0.717 0.544 0.519 0.503
Offensive 0.389 0.403 0.432 0.364
Sentiment 0.244 0.272 0.162 0.198
Hate Speech 0.670 0.626 0.695 0.614

Table 10: Results on GPT4V.

intersection between the predicted labels and the
ground-truth divided by the size of their union:

Jaccard =
1

N

N∑

i=1

|Yi ∩ Ŷi|
|Yi ∪ Ŷi|

(2)
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where N is the total number of examples. Ŷi and
Yi are the set of predicted and ground-truth labels
for example i.
OCR. We use word error rate (WER), character
error rate (CER), and BLEU scores (Papineni et al.,
2002). The word error rate (WER) and character
error rate (CER) are derived from the Levenshtein
distance (Levenshtein et al., 1966), defined as:

WER =
|WS |+ |WD|+ |WI |

|W | (3)

CER =
|CS |+ |CD|+ |CI |

|C| (4)

where |W | and |C| are the number of words and
characters in the ground-truth. |WS |, |WD|, and
|WI | are the number of substitutions, deletions, and
insertions at the word, and |CS |, |CD|, and |CI | are
at the character level.
Text Generation. We use n-gram-based metrics in-
cluding BLEU (Papineni et al., 2002) ROUGE (Lin,
2004), METEOR (Lavie et al., 2004), and n-gram
similarity (Kondrak, 2005). These metrics eval-
uate the MLLMs by measuring the lexical over-
lap between the generated text and the reference
text. Meanwhile, we use two established simi-
larity metrics based on pretrained language mod-
els, including BERTScore (Zhang et al., 2019)
and sentence embedding similarity (Reimers and
Gurevych, 2019), to measure the high-level se-
mantic overlap between two answers. Specifically,
BERTScore leverages contextualized word embed-
dings to capture a token’s usage in a sentence and
encode sequence information. Sentence embedding
similarity simsent is defined as the cosine similarity
between the sentence embeddings of two answers:

simsent (si, sj) =
si · sj

∥si∥∥sj∥
, (5)

where si is the embedding of the i-th response.
Additionally, we calculate the length of response,
defined as the number of words in a model-generate
response.

D.3 Details on Models
Table 12 contains the names and number of param-
eters of the language encoder and vision encoder
for each of the models used in our study. Table 13
contains the accuracy scores of every classification
task in our benchmark, examined across all of the
zero-shot MLLMs.
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Memotion Pmacro Rmacro F1macro WER CER BLEU1 BLEU2 BLEU3 BLEU4

llava-v1.5-7b 0.651 0.455 0.535 46.7 40.8 0.495 0.454 0.410 0.365
llava-v1.5-13b 0.665 0.470 0.551 45.0 39.2 0.521 0.481 0.437 0.396
instructblip-flan-t5-xl 0.850 0.482 0.615 46.3 42.2 0.490 0.449 0.405 0.363
instructblip-flan-t5-xxl 0.808 0.441 0.571 50.0 45.3 0.445 0.406 0.365 0.326
instructblip-vicuna-7b 0.853 0.558 0.675 38.7 35.1 0.569 0.534 0.497 0.459
instructblip-vicuna-13b 0.834 0.451 0.585 48.9 44.9 0.459 0.425 0.387 0.350
blip2-opt-2.7b 0.774 0.562 0.651 40.7 35.1 0.537 0.493 0.451 0.407
blip2-flan-t5-xl 0.825 0.593 0.690 37.8 31.3 0.606 0.546 0.488 0.432
blip2-flan-t5-xxl 0.791 0.623 0.697 36.3 27.8 0.632 0.569 0.507 0.448
llama-adapter-v2 0.183 0.084 0.115 94.5 82.2 0.059 0.036 0.027 0.021

Hateful Memes Pmacro Rmacro F1macro WER CER BLEU1 BLEU2 BLEU3 BLEU4

LLaVA-v1.5-7b 0.560 0.441 0.493 42.3 34.1 0.535 0.500 0.468 0.412
LLaVA-v1.5-13b 0.619 0.469 0.534 40.3 32.8 0.568 0.536 0.506 0.450
instructblip-flan-t5-xl 0.839 0.584 0.689 34.6 27.3 0.618 0.572 0.524 0.467
instructblip-flan-t5-xxl 0.829 0.536 0.651 39.7 32.7 0.550 0.506 0.465 0.408
instructblip-vicuna-7b 0.835 0.644 0.727 29.7 22.5 0.670 0.629 0.587 0.529
instructblip-vicuna-13b 0.824 0.564 0.670 37.1 30.2 0.592 0.552 0.507 0.451
blip2-opt-2.7b 0.759 0.653 0.702 29.4 21.7 0.646 0.599 0.551 0.494
blip2-flan-t5-xl 0.810 0.690 0.745 26.4 17.0 0.726 0.661 0.596 0.527
blip2-flan-t5-xxl 0.777 0.721 0.748 26.0 14.6 0.734 0.662 0.597 0.521
llama-adapter-v2 0.118 0.099 0.108 94.5 78.5 0.075 0.042 0.031 0.024

Table 11: OCR results on Memotion and Hateful Memes. We report macro precision (Pmacro), macro recall
(Rmacro), macro F1 (F1macro), word error rate (WER), character error rate (CER), and BLEU-1/2/3/4 (Papineni
et al., 2002).

Model Language Encoder Vision Encoder

llava-v1.5-7b LLaMA-2-7B-Chat CLIP ViT-L/14 (0.43B)
llava-v1.5-13b LLaMA-2-13B-Chat CLIP ViT-L/14 (0.43B)
instructblip-vicuna-7b Vicuna-7B EVA-ViT-G (1.3B)
instructblip-vicuna-13b Vicuna-13B EVA-ViT-G (1.3B)
instructblip-flan-t5-xxl Flan-T5-XXL (11.3B) EVA-ViT-G (1.3B)
blip2-opt-2.7b OPT-2.7B EVA-ViT-G (1.3B)
blip2-flan-t5-xxl Flan-T5-XXL (11.3B) EVA-ViT-G (1.3B)
llama-adapter-v2 LLaMA-7B CLIP ViT-L/14 (0.43B)

Table 12: Multimodal large language models (MLLMs) we evaluated in the experiment.

Model Misinfo Hate Humor Sarc. Off. Sent. Avg.

llava-v1.5-7b 0.776 0.526 0.763 0.721 0.492 0.485 0.627
llava-v1.5-13b 0.800 0.580 0.767 0.775 0.591 0.327 0.640
instructblip-vicuna-7b 0.319 0.534 0.771 0.638 0.481 0.547 0.549
instructblip-vicuna-13b 0.494 0.550 0.776 0.775 0.599 0.443 0.606
instructblip-flan-t5-xl 0.765 0.508 0.226 0.560 0.393 0.387 0.473
instructblip-flan-t5-xxl 0.486 0.587 0.762 0.777 0.393 0.471 0.579
blip2-opt-2.7b 0.268 0.508 0.543 0.393 0.418 0.637 0.461
blip2-flan-t5-xl 0.770 0.500 0.224 0.597 0.393 0.373 0.476
blip2-flan-t5-xxl 0.775 0.600 0.767 0.674 0.393 0.420 0.605
llama-adapter-v2 0.613 0.548 0.721 0.770 0.473 0.455 0.597

random 0.500 0.500 0.510 0.502 0.499 0.326 0.473

Table 13: Accuracy of all models on the classification tasks. Best and 2nd best performances among the MLLMs
are highlighted in bold and underline, respectively.

6209



The split-frame image contrasts two 
significant periods in Elon Musk’s life, 
symbolizing not only personal 
transformation but also financial success 
over time.

The left side of the image is set in 1999, 
with a backdrop of a modest, unadorned 
office space that reflects the early struggles 
and humble beginnings. Elon, a then young 
entrepreneur, was portrayed in a simple 
attire with thinning hair, embodying the 
initial phase of his journey under financial 
constraints. The colors in this part of the 
image are muted—grays, browns, and dull 
greens—highlighting the austerity of this 
period. 

The image shows a man in black and white suit.

Two men in black suits and hats

The scene features two men, one on the left and the other on the right, both smiling and posing for 
the camera. They are the main subjects of the image. The background consists of a black and yellow 
color scheme, which adds a contrasting element to the scene. The men are wearing ties, which 
further emphasizes their formal attire. The overall atmosphere of the image is positive and 
engaging, with both men appearing to be enjoying the moment.

The scene features a man with a beard, who is wearing a suit and tie, standing next to a photo of 
himself from 20 years ago. The older photo is in black and white, while the current photo is in color. 
The man appears to be looking at the older photo, possibly reflecting on his life journey or 
comparing the differences between the two images. The overall atmosphere of the scene is 
contemplative and thought-provoking.
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On the right side, the scene transitions to the present day, showcasing Elon in a modern, sleek office 
environment that signifies success, innovation, and achievement. The figure now displays a full 
head of hair, a testament to the personal and financial growth achieved over the years. This 
transformation is not just physical but also a symbol of the ability to afford high-end cosmetic 
procedures like hair transplant surgery, which represents the pinnacle of his financial success. The 
colors here are vibrant and rich—blues, silvers, and whites.

Figure 6: Example generation by GPT-4(V) and the four strongest MLLMs under each model architecture. Answers
from InstructBLIP and BLIP2 are succinct, whereas those from LLaVA and LLaMA-Adapter-v2 are more compre-
hensive. 6210


