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Abstract

Recently, there has been considerable atten-
tion on detecting hallucinations and omissions
in Machine Translation (MT) systems. The two
dominant approaches to tackle this task involve
analyzing the MT system’s internal states or
relying on the output of external tools, such
as sentence similarity or MT quality estima-
tors. In this work, we introduce OTTAWA,
a novel Optimal Transport (OT)-based word
aligner specifically designed to enhance the
detection of hallucinations and omissions in
MT systems. Our approach explicitly models
the missing alignments by introducing a “null”
vector, for which we propose a novel one-side
constrained OT setting to allow an adaptive
null alignment. Our approach yields competi-
tive results compared to state-of-the-art meth-
ods across 18 language pairs on the HalOmi
benchmark. In addition, it shows promising
features, such as the ability to distinguish be-
tween both error types and perform word-level
detection without accessing the MT system’s
internal states.1

1 Introduction

Concerns regarding hallucination (as known as
fabrication) of Machine Translation (MT) sys-
tems (Raunak et al., 2021; Müller and Sennrich,
2021; Guerreiro et al., 2023a) have led to consid-
erable efforts towards the creation of diagnostic
datasets (Zhou et al., 2021; Guerreiro et al., 2023c;
Dale et al., 2023b) and developing detection meth-
ods (Guerreiro et al., 2023b; Dale et al., 2023a).
In addition to hallucination errors, which occur
when words in the translation are detached from
the source sequence, addressing omission errors is
also crucial—these are cases where words from the
source sequence are absent in the translation.

*Equal contribution
†Work is done during an internship at Noah’s Ark Lab.
1Our code is publicly available at https://github.com/

chenyangh/OTTAWA
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Figure 1: A hallucinatory German-English translation
was detected by correctly identifying the null alignments
with our Optimal Transport-based method. Here, if a
target word is mapping to “NULL”, it is likely to be
hallucinated, as no source word supports its translation.

Existing methods for detecting hallucinations
and omissions in MT either focus on analyzing
the model’s internal states (e.g. cross-attention) or
rely on the output of external tools, such as cross-
lingual similarity estimators (Feng et al., 2022; Hef-
fernan et al., 2022) or MT quality estimators (Rei
et al., 2020; Duquenne et al., 2023). On one hand,
internal methods are limited to scenarios where
white-box access to the MT system is assumed,
and are further limited by dependencies on spe-
cific model architectures (e.g. attention-based). On
the other hand, external methods heavily rely on
scalar outputs from models optimized for related
tasks, such as MT quality or sentence similarity,
but not directly optimized for hallucination detec-
tion. While hallucinations and omissions constitute
low-quality translations, the opposite does not al-
ways hold. Furthermore, despite their effectiveness
in detecting hallucinations and omissions, existing
internal and external methods cannot distinguish
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between these two error types. This is because they
frame the task as anomaly detection, relying on a
single outlier score to detect both error types.

Cross-lingual word alignment (Brown et al.,
1993a; Och and Ney, 2003) aligns source to target
tokens in parallel sentence pairs, and it provides
unique insight for translation errors like halluci-
nation and omission. Following the definition by
Guerreiro et al. (2023c), hallucinated translation
happens when the generated content is largely de-
tached from the source text; therefore, we can mea-
sure hallucination by the amount of “misaligned”
words in the translated text. Similarly, an omis-
sion error is likely if a significant amount of source
words are not found in the translation.

Despite the strong relevance between word align-
ments and translation errors, alignment tools have
not yet been widely applied for hallucination and
omission detection. In particular, we observe that
existing alignment approaches (Sabet et al., 2020;
Azadi et al., 2023; Arase et al., 2023) are often
based on the assumption that the translation is cor-
rect, such that most of the source or target words
can be aligned with each other. This assumption,
however, does not hold for scenarios where transla-
tion errors have occurred; hence, the direct appli-
cation of existing word alignment tools does not
work well for detecting translation errors.

In this paper, we utilize Optimal Transport prob-
lem (Villani, 2009; Cuturi, 2013) and propose OT-
TAWA, an Optimal TransporT Adaptive Word
Aligner that is specifically tailored to aligning
words for the pathological cases where significant
hallucination and omission errors are present. Our
approach explicitly models the missing alignments
by introducing a “null” vector. Specifically, we pro-
pose a novel one-side constrained Optimal Trans-
port (OT) problem, which allows the null vector
to be adaptively aligned to any number of words.
Moreover, we set the null vector as a centric point,
which is not biased during the computation of the
OT problem. We show an example of our OT-based
method in Figure 1.

We conduct extensive experiments using the
newly proposed HalOmi benchmark (Dale et al.,
2023b), designed for hallucination and omission
detection, across a total of 18 language pairs.
Results show that our word aligner-based ap-
proach, equipped with OTTAWA, performs on par
with state-of-the-art internal and external detec-
tion methods (Guerreiro et al., 2023b; Dale et al.,
2023a). In contrast to previous approaches, we

show that our method can distinguish between hal-
lucination and omission errors, while OTTAWA
being crucial for performances compared to using
existing word aligners.

2 Related Work

Hallucination remains a persistent concern in ma-
chine translation systems, which have recently
gained increased attention in the field. Zhou et al.
(2021) studied token-level hallucinations in ma-
chine translation on a Chinese-English dataset,
which they constructed by randomly corrupting
some tokens in the translation sentences. Guer-
reiro et al. (2023c) developed a dataset of 3.4k
naturally occurring German-English translations,
manually annotated at both the sentence and token
levels for hallucinations and omissions detection.
HalOmi (Dale et al., 2023b) expanded the language
coverage for this task by manually annotating hun-
dreds of translation pairs across 18 language pairs.

Methods for detecting hallucinations and omis-
sions in machine translation can be broadly catego-
rized into two types: internal, which analyzes the
translation model’s own outputs and states, and ex-
ternal, which relies on additional tools or data out-
side the model itself (Dale et al., 2023a). Guerreiro
et al. (2023b) developed a method that employs
various optimal transport-based distances (Kan-
torovich, 1942; Villani, 2009) to evaluate the ab-
normality in a machine translation (MT) model’s
internal cross-attention distribution of a given trans-
lation, by making comparisons with those from a
collection of high-quality translations. This method
not only requires access to the internal states of the
MT model but also necessitates a large collection
of cross-attention maps from ground truth parallel
sequences for the targeted language pair.

Dale et al. (2023a) investigated the use of
other internal MT model components, such as
length-normalized sequence log-probability (Seq-
Logprob) and the token-token layer-wise interac-
tion framework (ALTI) 2, as alternative abnormality
estimators that do not require external translation
data. In addition, the authors suggested directly
using scores from external MT quality estimator
models, such as COMET-QE (Rei et al., 2020), or
employing the cosine similarity between the source
and translation as generated by cross-lingual sen-
tence similarity models, including LASER (Heffer-

2Originally proposed by (Ferrando et al., 2022) for inter-
preting MT systems
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nan et al., 2022), LaBSE (Feng et al., 2022).
Word alignment (Brown et al., 1993a,b) has

been extensively studied over the years in both
cross-lingual (Nagata et al., 2020; Dou and Neu-
big, 2021) and monolingual (Nagata et al., 2020;
Lan et al., 2021) settings. The task is approached
with supervised learning methods (Och and Ney,
2003; Östling and Tiedemann, 2016), which re-
quire sentence-level parallel data, as well as unsu-
pervised methods that do not rely on such data. The
latter approach involves leveraging token-token at-
tention matrices (Ghader and Monz, 2017; Zenkel
et al., 2020; Zhang and van Genabith, 2021) or
pairwise similarity matrices between tokens’ em-
bedding vectors (Sabet et al., 2020; Azadi et al.,
2023), both extracted from a multilingual pre-
trained language models (Devlin et al., 2019; Con-
neau et al., 2020). The application of Optimal
Transport (OT, Monge, 1781; Kantorovich, 1942;
Villani, 2009; Cuturi, 2013) in natural language
processing tasks was mainly focused on similar-
ity estimation between textual segments (Huang
et al., 2016; Alqahtani et al., 2021; Lee et al., 2022;
Mysore et al., 2022), and more recently for word
alignment (Azadi et al., 2023; Arase et al., 2023).

3 Method

We formulate the unsupervised word alignment
task in § 3.1, and then provide an overview on how
standard and partial optimal transport are employed
to address the task in § 3.2 and § 3.3, respectively.
In § 3.4, we describe our newly proposed opti-
mal transport word aligner, OTTAWA, specifically
adapted to enhance the detection of MT hallucina-
tions and omissions.

3.1 Unsupervised Word Alignment

Given a source word sequence s=[s1, . . . , sm]
and a target word sequence t=[t1, . . . , tn],
let E(s)=[e

(s)
1 , . . . , e

(s)
m ] ∈ Rm×D and

E(t)=[e
(t)
1 , . . . , e

(t)
n ] ∈ Rn×D be the embed-

ding matrices for the source and target sequences,
respectively, where D is the dimensionality of the
embeddings. A cost matrix C ∈ Rm×n is defined
such that Ci,j is the cosine distance between the
i-th source vector and the j-th target vector.

The goal is to compute the alignment matrix
Γ ∈ {0, 1}m×n, where Γi,j = 1 if the i-th source
word is aligned to the j-th target word, such that the
aligned words have the smallest distance in the cost
matrix C. A straightforward approach to obtain

Γ involves making greedy decisions on each word
alignment in both forward (source-to-target) and
reverse (target-to-source) directions. Specifically,
given the cost matrix C, the forward alignment
Γ
(F )
i,j can be obtained by:

Γ
(F )
i,j =

{
1, if j = argminj Ci,j

0, otherwise
(1)

and similarly, the reverse alignment Γ(R)
i,j is com-

puted by:

Γ
(R)
i,j =

{
1, if i = argminiCi,j

0, otherwise
(2)

The final alignment matrix Γ is obtained by tak-
ing the element-wise multiplication of Γ(F ) and
Γ(R). However, Sabet et al. (2020) found that
greedy decisions tend to ignore the word pairs of
relatively lower similarity. Therefore, the authors
propose to formulate the word alignment as an
assignment problem (Kuhn, 1955), which conse-
quently involves solving the following optimization
problem:

Γ∗ = argmin
Γ∈U(A)

∑

i,j

Ci,jΓi,j (3)

where U (A) = {Γ ∈ {0, 1}m×n : Γ1n ≤
1n,Γ

⊤1m ≤ 1m,
∑

i,j Γi,j = min(m,n)} is the
set of all binary matrices with the sum of row and
column equal to 1. The optimization in Eq. 3 can
be solved by linear programming (Bourgeois and
Lassalle, 1971).

3.2 Standard Optimal Transport
Chi et al. (2021) have noticed that binary assign-
ments obtained by Eq. 3 pose challenges when
aligning source and target texts of markedly differ-
ent lengths. This is because the binary assignment
assumes that each word in the shorter text corre-
sponds to a word in the longer text, while the ad-
ditional words in the longer text remain unaligned.
To address this issue, Chi et al. (2021); Dou and
Neubig (2021) leverage standard optimal transport
as an alternative solution for word alignment. The
goal is to compute a matrix P ∗ ∈ Rm×n

+ as follows:

P ∗ = argmin
P∈U(O)

∑

i,j

Ci,jPi,j (4)

where U (O) = {P ∈ Rm×n
+ : P1n =

µ, P⊤1m = ν}, µ = (1/m, . . . , 1/m), and
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ν = (1/n, . . . , 1/n). The binary matrix Γ can
be obtained by replacing the cost matrix C with
the matrix P ∗ in Eq. 1 and Eq. 2, followed by per-
forming element-wise multiplication on the resul-
tant matrices. It is important to note that standard
OT strictly requires the use of marginal constraints
on µ and ν, which enforce the alignment of each
source or target word. Therefore, computing for-
ward and reverse alignments is crucial for perfor-
mance, as these computations implicitly model null
alignments. This necessity arises because standard
OT-based word alignment assumes that there is
a one-to-one mapping between each word in the
source sequence and a corresponding word in the
target sequence, and vice versa.

3.3 Partial Optimal Transport
The one-to-one mapping assumption of standard
OT is not always applicable, particularly in tasks
with unbalanced source-target word alignments,
such as monolingual text summarization. In re-
sponse, Arase et al. (2023) introduce partial op-
timal transport (Peyré et al., 2016; Chapel et al.,
2020) word aligner that relaxes the one-to-one map-
ping assumption, explicitly allowing for source or
target words to remain naturally unaligned. In their
setting, the transport map P can be found by solv-
ing the optimization problem as in Eq. 4 but with
different constraints:

U (P ) = {P ∈ Rm×n
+ : P1n ≤ µ,

P⊤1m ≤ ν,
∑

i,j

Pi,j = m} (5)

where µ and ν are uniform distributions, m ∈
(0, 1) is a hyperparameter controlling how many
source and target words are aligned. Then, a thresh-
old τ is used to obtain the binary alignment ma-
trix Γ from the matrix P . Although the partial
OT-based drops the strong assumption of the stan-
dard OT, it requires extensive search over the hy-
perparameters m and τ to determine whether a
source and target word are considered aligned or
not. Furthermore, the conditions in Eq. 5 favor the
alignment of closely similar words, because the
marginal constraints for either side are not guaran-
teed. Consequently, this promotes a high recall for
alignments at the expense of precision when source
and target words are not highly similar.

3.4 OTTAWA
Accurately identifying unaligned words in the tar-
get text is crucial for detecting MT hallucina-

tions. Similarly, identifying unaligned words in
the source text enhances the detection of omissions.
We propose explicitly handle null alignments as a
mapping to special null words, denoted as sm+1

and tn+1, which are appended to the source s and
target t sequences, respectively. We denote the
embeddings corresponding to sm+1 and tn+1 as
e
(s)
m+1 and e

(t)
n+1, respectively. Our approach ad-

dresses forward and reverse alignments separately,
yet employs the same method for both. Therefore,
we describe how Γ(R) is obtained, as Γ(F ) can be
derived analogously. It is important to note that
in performing a reverse alignment, only e

(s)
m+1 is

appended to E(s), while E(t) remains unchanged,
and vice versa for forward alignment.

Let esm+1 be denoted as e(∅) hereafter for sim-
plicity. So far, e(∅) can be any vector but to make
the OT problem meaningful, we need to impose
constraints on the distance between e(∅) and the
target word vectors E(t). Firstly, e(∅) should be
equidistant to every target vector to avoid bias. In
addition, these equal distances should be of the
same scale as the average pair-wise distances be-
tween the source and target vectors to avoid aggres-
sive alignment to e(∅).

To this end, we extend the cost matrix C to
C̄ ∈ R(m+1)×n, where C̄i,j = Ci,j for i ∈ [1,m]
and C̄m+1,j = d, where d is the distance between
e(∅) and the target word representations (by our
assumption, it is the same for all target words). One
can define d in multiple ways. For example, a natu-
ral choice is to use the mean of pair-wise distances
between the source and target vectors. However,
we choose to use the median over the mean to avoid
the influence of the outliers. It is also based on the
intuition that e(∅) should serve as a centric point,
which is not biased during the computation of the
optimal transport map.

For e(∅) to be realizable in the vector space RD,
the equal distance d has a lower bound dmin (see
Appendix A). We finally define d = max(dmin, c),
where c is the median of all pair-wise distances be-
tween the source and target words. We reformulate
the optimization problem for the transport map in
Eq. 4 by replacing the cost matrix C with C̄ and
relaxing the constraints as follows:

U (∅,R) = {P ∈ R(m+1)×n
+ : P1n ≤ µ′,

P⊤1m+1 = ν}
(6)

where µ′ = (µ, 1) allows e(∅) to have a maximum
marginal of 1, and to be aligned with any number
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of target vectors. We denote the solution of this
optimization problem as P (∅,R). The reverse align-
ment matrix Γ(R) is computed as in Eq. 2 by replac-
ing C with P (∅,R). The forward alignment matrix
Γ(F ) is computed analogously. The final alignment
matrix Γ is obtained by taking the element-wise
product between Γ(F ) and Γ(R).

Our optimization problem in the set of Eq. 6 is
a special case of partial optimal transport, it com-
bines the properties of Eq. 4 and Eq. 5. For ex-
ample, in the computation of Γ(R), we relax the
marginal constraint on the source side, a necessity
given that the marginal for e(∅) can range between
0 and 1. As a result, the model has the freedom
to adaptively decide whether or not to make null
alignment based on our defined median distance d.
Conversely, the marginal constraint on the target
side remains unchanged, ensuring that each target
vector is compared with the centric point e(∅).

To apply word alignment for hallucination and
omission detections, we propose to analyze the
number of non-aligned words from the final align-
ment matrix Γ. For both source and target sen-
tences, we obtain the ratio of the misaligned words,
given by:

r(R) =
1

m

m∑

i=1

I




n∑

j=1

Γi,j > 0


 (7)

r(F ) =
1

n

n∑

j=1

I

(
m∑

i=1

Γi,j > 0

)
(8)

where I(·) is the indicator function. Further, we
accumulate the transported mass to e(∅) as the con-
fidence of missing alignments, given by:

c(R) =
1

n

n∑

j=1

P
(∅,R)
m+1,j ; c(F ) =

1

m

m∑

i=1

P
(∅,F )
i,n+1

The combined score r(R) + c(R) is used to detect
hallucinations, and r(F ) + c(F ) is for omissions.

4 Experimental Setup

4.1 Datasets and Evaluation Metrics

We conducted experiments using the recently pro-
posed HalOmi benchmark (Dale et al., 2023b),
which contains manually annotated data for MT
hallucination and omission detection across 18
language pairs. It is constructed by pairing En-
glish sentences with translations in 5 high-resource
languages (ar:Arabic, ru:Russian, es:Spanish,

de:German, and zh:Mandarin) and 3 low-
resource languages (ks:Kashmiri, mni:Manipuri,
and yo:Yoruba), and a one zero-shot3 Spanish-
Yoruba pair. Each language pair includes between
145 to 197 examples, totaling 2,865 overall. Each
example is annotated with 4 labels: no, small, par-
tial, and full hallucination, with a similar scheme
applied for omissions. Therefore, we utilized
the multi-class ROC AUC variant, as defined in
HalOmi (Dale et al., 2023b).

4.2 Baselines and Models

We conduct experiments to compare internal
and external approaches for detecting hallucina-
tions and omissions in MT, alongside our newly
proposed word aligner-based approach. More
precisely, consider Seq-Logprob, ALTI, ALTIT,
and ATT-OT (originally proposed by (Guerreiro
et al., 2023b)). Similarly, for external approaches,
we report results from MT quality estimators
LaBSE (Feng et al., 2022) and BLASER-QE (Bar-
rault et al., 2023), as they are the best performers
in this category according to (Dale et al., 2023b).
We refer the readers to (Dale et al., 2023b) for a
detailed of these baselines.

4.3 Implementation Details

Our implementation is based on PyTorch (Paszke
et al., 2019), and we use the POT library4 for all the
Optimal Transport-based methods. For the entropy-
regulized O (including the standard OT and partial
OT), there is a regularization parameter ϵ that con-
trols the sparsity of the OT solution, where 0.1 is
the default value. In our experiments, we set ϵ to a
low value of 0.05 to encourage the confidence of
the sovler. However, we observed that the perfor-
mance is not sensitive, but an overly small ϵ may
lead to numerical instability.

In all experiments, we adopt a word-level repre-
sentation approach which is consistent with stan-
dard practices in word alignment task (Sabet et al.,
2020; Azadi et al., 2023). Specifically, we first
generate token-level representations for each token
in the sequence and establish a token-to-word in-
dex mapping. Then, we apply mean pooling to
average the tokens representations corresponding
to the same word, resulting in word-level repre-
sentations. In our main experiment uses the repre-
sentations of the last layer of LaBSE (Feng et al.,

3The MT system utilized for generating the data was not
trained on Spanish-Yoruba parallel corpora.

4https://pythonot.github.io/
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Source Lang
Hallucination Omission

I1 I2 I3 I4 E1 E2 Our I1 I2 I3 I4 E1 E2 Our
H

ig
h

R
es

ou
rc

e

en-ar 89 78 54 36 84 90 93 63 44 76 64 79 85 79

ar-en 83 75 72 51 88 94 90 56 49 82 72 83 77 70

en-ru 95 36 37 61 86 89 91 53 56 79 75 85 84 85
ru-en 86 76 56 55 83 92 99 59 52 86 76 76 80 89
en-es 87 85 69 59 88 85 88 39 31 89 89 86 80 87

es-en 92 89 67 37 94 87 87 61 50 59 66 73 71 73
en-de 85 97 69 55 97 87 88 50 46 77 74 66 85 81

de-en 90 80 59 65 95 97 96 48 38 82 83 70 70 74

en-zh 88 82 47 60 86 78 88 60 51 73 67 69 88 92
zh-en 89 88 65 46 88 87 86 73 61 77 64 75 73 77

Avg. High Resource 88 78 59 53 89 89 91 54 46 78 74 76 80 81

L
ow

R
es

ou
rc

e

en-ks 68 71 74 54 76 81 78 50 52 90 81 76 77 84

ks-en 59 67 65 65 57 73 56 36 50 64 63 59 45 70
en-mni 68 81 49 54 80 83 59 45 52 80 73 82 80 69

mni-en 70 64 49 56 56 78 64 42 33 68 63 52 74 77
en-yo 77 74 59 65 56 79 80 77 50 70 72 65 67 86
yo-en 78 72 54 43 66 80 65 68 60 65 55 66 56 68

Avg. Low Resouce 70 71 57 56 66 79 67 53 49 73 68 67 67 76

Zero-
Shot

yo-es 60 65 47 44 56 57 54 62 47 85 69 62 66 76

es-yo 61 66 52 55 66 68 65 68 50 83 60 69 67 80

Avg. Zero-Shot 60 66 49 49 61 63 59 65 48 84 65 66 67 78

Avg. HalOmi 79 75 57 53 78 83 79 56 48 77 70 72 74 79

Table 1: Methods performances (ROC AUC) on hallucination and omission detection across HalOmi’s high-resource,
low-resource, and zero-shot sets. Bold entries describe the best results among all methods, which we categorize
under 3 approaches: Internal , External , and Our word alignment . I1, I2, I3, I4 : Seq-Logprob, ALTI,

ALTIT, and ATT-OT. E1, E2 : LaBSE and BLASER-QE MT quality estimators. Our : OTTAWA using LaBSE
token embeddings. All scores are scaled within the range of [0, 100] following (Dale et al., 2023b).

2022). When experimenting with other models,
we use the hidden representation of the 8th layer
of mBERT (Devlin et al., 2019) and XLMR (Con-
neau et al., 2020), respectively, following (Dou and
Neubig, 2021; Chi et al., 2021; Azadi et al., 2023).

Our OTTAWA, PMIAlign, and the standard OT
do need extra hyper-parameters to determine word
alignments. However, for partial OT, we set m =
0.5 and tested a few thresholds. Specifically, we set
τ to 0.1, 0.05, and 0.025 of the maximal value in
marginal µ and ν, given by max(1/m, 1/n), and
used the best threshold 0.05 to report the scores. To
obtain the hallucination and omission, all baseline
aligners use the reverse missing alignment ratio

Eq. 7 to estimate hallucination and use Eq. 8 to
obtain omission scores.

5 Results

5.1 Sentence-Level Detection
Table 1 shows the performances of methods across
3 approaches for hallucination and omission detec-
tion across HalOmi’s 18 language pairs: 4 meth-
ods representing the internal approach, 2 for the
external approach, and 1 showcasing our newly
introduced word alignment approach. The latter ap-
proach employs our OTTAWA word aligner, which
leverages LaBSE to obtain token-level representa-
tions.
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Although our method performs best on only 5
out of 18 language pairs for hallucination and 7 out
of 18 for omission, it outperforms other methods
in terms of overall average performance. More
precisely, we outperform all baselines in high-
resource languages for both hallucination and omis-
sion detection. However, we underperform in low-
resource languages (except for omission detection)
and zero-shot language pairs. Overall, although we
underperform by 4% compared to BLASER-QE
(E2) on average hallucination detection across the
18 language pairs, we surpass that model by 5% on
omission. It is worth mentioning that BLASER-QE
is a strong baseline, it is an MT quality estimator
that leverages the SONAR (Duquenne et al., 2023)
sentence embeddings. It was carefully tuned on
123.4k source-translation pairs, derived from out-
puts of 24 MT systems and covering 62 language
pairs, all manually labeled by humans for MT qual-
ity estimation.

However, our method significantly improves
upon LaBSE (E2), another MT quality estima-
tor. While we report close tight (1% gain on
HalOmi average) on hallucination, we significantly
outperform it by 6% on omission. These results
demonstrate that LaBSE’s token-level representa-
tions contain more expressive information for de-
tecting omissions compared to the scalar values
generated for MT quality estimation.

Finally, we observe that our method provides
consistent and balanced performance in detect-
ing both hallucinations and omissions compared
to internal methods. For instance, although Seq-
Logprob (I1) matches our method on hallucina-
tions, it significantly underperforms compared to
us by 23% on omissions. Similarly, ALTIT (I3) has
the smallest gap (2%) with our method on omission
but performs poorly, achieving only 57% compared
to our method’s 79%, on hallucination.

5.2 Ablation Study

We conduct ablation studies on our approach, test-
ing variants that modify its two key components:
the Embedding vector representation model and
the word Aligner. Table 2 presents the average
scores for both HalOmi high-resource (HR) and
low-resource (LR) language pair clusters, along
with the overall average. The complete results
across the 18 language pairs are presented in Ta-
ble 5 in Appendix B.

Hallucination Omission
HR LR Avg HR LR Avg

Embedding
mBERT 87 56 73 81 69 76
XLMR 88 53 71 78 64 72
LaBSE 91 67 79 81 76 79

Aligner
SimAlign 47 55 51 70 62 66
PMIAlign 81 61 72 82 71 78
OT 81 60 72 82 74 79
POT 64 52 57 73 60 68
OTTAWA 91 67 79 81 76 79

Table 2: Hallucation and omission detection average
AUC scores on HalOmi’s high-resource (HR) and low-
resource (LR) languages. Embeddings refer to the
results obtained by testing OTTAWA with token em-
beddings from various models. Aligner are the results
when employing different word aligners, all utilizing
LaBSE embeddings.

Embedding We conduct experiments with OT-
TAWA, utilizing embeddings derived from unsu-
pervised pre-trained models such as mBERT (De-
vlin et al., 2019) and XLM-R (Conneau et al.,
2020). These models are commonly used in cross-
lingual word alignment (Sabet et al., 2020; Azadi
et al., 2023). We notice that OTTAWA with LaBSE
representations significantly outperforms the best-
unsupervised representation baseline (mBERT) by
6% and 3% on the overall HalOmi average score on
hallucination and omission, respectively. This is ex-
pected given that LaBSE representations are more
task-specific than those from unsupervised models,
having been extensively fine-tuned for translation
pair quality estimation using carefully curated data
for low-resource languages.

Consequently, the performance gap between
LaBSE and models such as mBERT is larger in
low-resource languages (11% and %3 on omis-
sions) compared to high-resource languages (4%
and 0% on hallucinations). Overall, the results are
promising, demonstrating that hallucinations and
omissions can be detected even without access to
the MT system or a robust MT quality estimator.
This approach serves as an acceptable alternative,
particularly in high-resource settings. However,
its performance in low-resource languages necessi-
tates further investigation.

Aligner We compared OTTAWA with state-of-
the-art word aligner methods, including SimA-
lign (Sabet et al., 2020) (Itermax), PMI-
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Align (Azadi et al., 2023), standard OT (Chi et al.,
2021; Dou and Neubig, 2021), and POT (Arase
et al., 2023), all utilizing LaBSE representations.

We first observe that the standard alignment
methods work reasonably well on detecting omis-
sions but not hallucinations. This is an understand-
able outcome, which can be explained as follows:
1) the hallucinated translations often contain a sig-
nificant amount of "detached" words. For example,
the word "cat" may be translated to "dog". This
is particularly problematic for standard alignment
methods as they assume the word "cat" should have
a corresponding word in the translation, resulting
in aligning "cat" to "dog" nevertheless. 2) the omis-
sion errors in the HalOmi dataset are often early
terminated translations. In this case, the translated
words are still mapped to the source words, and the
standard methods are still able to align the existing
words and detect the omission errors.

However, only our method works well in the de-
tection of both hallucinations and omissions, where
there is a 7% overall average improvement over
both PMIAlign and standard OT in hallucination
errors. This outcome is consistent with our motiva-
tion that the common assumption among standard
word-alignment tools, which is that a mapping ex-
ists between all source and target words, prevents
them from effectively identifying all errors.

5.3 Distinguish Hallucination and Omission
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Figure 2: LaBSE cosine similarity score (y-axis) of sam-
ples, aggregated across 10 high-resource datasets, with
either hallucination (red triangles) or omission (blue cir-
cles) as gold labels. The x-axis shows the sample count
index.

Figure 2 shows LaBSE cosine similarity scores
for samples with either hallucination or omission

labels, aggregated from the 10 high-resource lan-
guage pairs datasets. We only focus on high-
resource languages, given that the performance
of all methods significantly diminishes with low-
resource ones. The primary goal of this experiment
is to study the models’ abilities to differentiate be-
tween types of errors. Although LaBSE quality
estimator can effectively detect both hallucinations
and omissions, the figure clearly shows that it fails
to distinguish between them. The majority of sam-
ples for both hallucinations and omissions exhibit
cosine similarity scores below −0.8.
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Figure 3: Hallucination scores (x-axis) and Omission
scores (y-axis) produced by our OTTAWA across the
same samples used in Figure 2. The dotted green line
simply illustrates the diagonal.

Figure 3 shows the hallucination (x-axis)
and omission (y-axis) scores produced by OT-
TAWA(using LaBSE embeddings), on the same
samples used in Figure 2. The figure demonstrates
that our approach effectively distinguishes between
omission and hallucination errors, with omission
errors concentrated below the diagonal, and halluci-
nation errors concentrated above it. In most cases,
our word alignment approach, which operates with-
out any supervision signal, accurately distinguishes
omissions from hallucinations, and vice versa. This
unique feature offered by our approach can help re-
searchers to precisely diagnose and comprehend er-
ror types in MT systems, thereby facilitating more
efficient development and the implementation of
targeted solutions.

5.4 Word-Level Detection
Following the experimental setup in (Dale et al.,
2023b), we evaluate our OTTAWA for word-level
hallucination and omission detection. Table 3 com-
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pares its performance with the best internal ap-
proach baselines identified in their study: LogProb
(the Stand. variant) and ALTI (the sum variant). It
is worth noting that the LogProb and ALTI base-
lines are different from those in Table 1 despite
the name resemblance. Specifically, ALTI is a
combination of two baselines from Table 1: ALTI
(hallucination results), and ALTIT (omission re-
sults). Conversely, the LogProb baseline is ob-
tained by processing the sentence pairs through the
MT model twice (once for the source and once for
the target), unlike SeqLogProb in Table 1, which
involves only one pass.

Hallucination Omission
HR LR Avg HR LR Avg

LogProb 73 66 70 84 71 78
ALTI 87 69 78 86 69 78
OTTAWA 78 59 70 79 60 71

Table 3: Word-level hallucination and omission results,
evaluated using the word-level ROC AUC score as de-
fined by (Dale et al., 2023b).

Additionally, (Dale et al., 2023b) conducted ab-
lations with these baselines, creating two variants
for each: Standard and Contrastive for LogProb,
and Mean and Max for ALTI. In Table 3, we report
only the results for the best-performing variant of
each baseline. Results indicate that word-level de-
tection poses a greater challenge for our approach,
which significantly under-performs compared to
the best baseline (ALTI) by 8% and 7% in the over-
all average for hallucination and omission detec-
tion, respectively. However, we find the results
encouraging when considering that unsupervised
world-level detection with current state-of-the-art
methods was not feasible without white-box access
to the MT system, as external approaches operate
on sentence level only.

5.5 Word Alignment

We run experiments on cross-lingual word align-
ment using 6 datasets, as in SimAlign (Sabet
et al., 2020) and PMIAlign (Azadi et al., 2023),
with gold word alignment labels. We includes
English-Czech (en-cs) (Mareček, 2011), German-
English (de-en) (Koehn, 2005), English-Persian
(en-fa) (Tavakoli and Faili, 2014), English-French
(en-fr) (Och and Ney, 2000), English-Hindi (en-
hi) (Koehn et al., 2005) and Romanian-English
(ro-en) (Mihalcea and Pedersen, 2003) language

pairs. For evaluation metrics, we utilize the stan-
dard Alignment Error Rate (AER) (Och and Ney,
2003), and aligners use the mBERT representations.

en-cs de-en en-fa en-fr en-hi ro-en
Alignment Error Rate (AER) ↓

SimAlign 0.12 0.19 0.37 0.06 0.44 0.34
PMIAlign 0.12 0.17 0.32 0.06 0.39 0.31
OT 0.12 0.17 0.32 0.06 0.39 0.39
POT 0.13 0.19 0.37 0.06 0.44 0.34
OTTAWA 0.12 0.17 0.33 0.05 0.39 0.30

Table 4: Cross-lingual word alignment performances
(AER) across 6 language pairs for 5-word aligners.

As shown in Table 4, OTTAWA performs on
par with another state-of-the-art word aligner on
the cross-lingual alignment task. More precisely,
it matches the best-performing baselines in three
languages (en-cs, de-en, and en-hi), while slightly
outperforming them by 1% in the en-fr and ro-en
language pairs. We anticipated no significant gains
in word alignment, as the datasets for cross-lingual
word alignment are constructed from clean transla-
tions, making null alignments less concerning.

6 Conclusion and Future Work

In this work, we propose a new word alignment-
based approach for detecting hallucinations and
omissions in MT systems. We develop OTTAWA,
an innovative word aligner designed specifically
for this purpose. While experiments show promise
in MT hallucination and omission detection, this
area remains an intriguing direction for future re-
search exploration. We plan to focus on one-to-
many alignments for pathological translations.

7 Limitations

Our Optimal Transport (OT)-based word align-
ment method relies on pretrained word embeddings,
which may not be available for low and scarce re-
source languages. Also, the performance of our
word aligner on low resources heavily depends on
representations obtained from a supervised MT
quality estimator, which may not be accessible
or does not support certain languages. Another
limitation of our study is the exclusive focus on
null alignments, which are central to our task of
interest. However, we do not address other com-
plex cases such as one-to-many and many-to-many
alignments.
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A Equidistant Vector

Assume that we have vectors e1, . . . , en in RD.
Here we discuss how to find an equidistant vector
e(∅) with respect to cosine distance. For that we
need to solve a system of N − 1 equations:

dist(e∅, e1) = dist(e∅, ej)

for all j = 2, . . . , N .

Recall the definition of the cosine distance:

dist(x,y) = 1− x · y
∥x∥∥y∥ .

Hence, the system of equations we need to solve
is equivalent to the system of linear equations:

e∅ · e1
∥e∅∥∥e1∥

=
e∅ · ej

∥e∅∥∥ej∥
.

Slightly rewriting it, we get:

e∅ ·
(

e1
∥e1∥

− ej
∥ej∥

)
= 0.

Note that usually for our word alignment prob-
lems N < D, hence this system always has a so-
lution. However, we want to find the minimum
possible equal distance so that the NULL vector
is meaningful for the OT task. For that, assume
that e(∅) lies in the span of the given vectors:
e∅ =

∑N
k=1 akek. Inserting it in the previous

system, we obtain a new homogeneous system on
the coefficients ak:

Ea = 0,

where Ejk = ek ·
(

e1
∥e1∥ − ej

∥ej∥

)
is a (N −1)×N

matrix. For general positions of word representa-
tion vectors, the kernel of E is one-dimensional.
Projection onto it could be computed as IN−E+E,
where E+ is Moore-Penrose inverse and IN is
N × N identity matrix (Campbell and Meyer,
2009). In this case a will be the basis vector
for the kernel subspace. After finding a, one
can construct e∅ =

∑N
k=1 akek and compute

dmin = dist(e∅, e1). Note that there is no equidis-
tant vector with a smaller distance than dmin.

B Additional Results

We present the comparisons of different word em-
beddings and alignment methods in Table 5.
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Source Lang
Hallucination Omission

W1 W2 W3 W4 Our R1 W2 W1 W2 W3 W4 Our R1 W2

H
ig

h
R

es
ou

rc
e

en-ar 33 64 66 65 93 85 88 56 80 82 78 79 84 81

ar-en 49 83 82 69 90 85 88 71 74 67 65 70 68 63

en-ru 31 74 75 71 91 87 94 74 83 82 76 85 83 76

ru-en 51 81 80 50 99 97 91 75 87 90 80 89 85 81

en-es 54 88 86 77 88 85 84 64 88 89 70 87 88 89

es-en 60 83 88 67 87 83 83 69 79 75 65 73 73 68

en-de 40 86 86 52 88 81 83 65 78 81 78 81 82 84
de-en 62 94 95 67 96 92 94 75 79 80 64 74 75 75

en-zh 39 72 72 59 88 87 85 84 92 94 79 92 93 88

zh-en 63 85 83 53 86 87 77 61 80 77 72 77 79 66

Avg. High Resouce 47 81 81 64 91 87 88 70 82 82 73 81 81 78

L
ow

R
es

ou
rc

e

en-ks 51 62 65 47 78 62 52 62 84 78 46 84 83 71

ks-en 51 53 51 44 56 56 56 56 66 71 49 70 61 68

en-mni 55 56 56 51 59 50 52 55 63 67 65 69 60 49

mni-en 57 59 56 56 64 50 52 66 67 74 61 77 65 63

en-yo 55 77 74 60 80 67 57 69 82 85 75 86 76 72

yo-en 57 59 59 52 65 60 45 61 66 68 62 68 69 59

Avg. Low Resouce 55 61 60 52 67 56 53 62 71 74 60 76 69 64

Zero-
Shot

yo-es 51 54 54 47 54 48 45 72 76 77 80 76 76 73

es-yo 62 62 63 56 65 57 56 59 80 85 53 80 76 72

Avg. Zero-Shot 56 57 57 52 59 53 51 66 78 81 67 78 76 72

Avg. HalOmi 51 72 72 57 79 73 71 66 78 79 68 79 76 72

Table 5: Methods performances (ROC AUC) on hallucination and omission detection across HalOmi’s high-
resource, low-resource, and zero-shot language-pair clusters. Bold entries describe the best results among all
methods. OTTAWA refer to using OTTAWA word aligner with LABSE embeddings. W1, W2, W3, W4 :
SimAlign-Itermax (Sabet et al., 2020), PMIAlign (Azadi et al., 2023), OT (Azadi et al., 2023), POT (Arase
et al., 2023) word aligners with LaBSE embeddings. R1, R2 : OTTAWA with embeddings obtained from
mBERT (Devlin et al., 2019) and XLMR (Conneau et al., 2020).
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