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Abstract

In the realm of event prediction, temporal
knowledge graph forecasting (TKGF) stands
as a pivotal technique. Previous approaches
face the challenges of not utilizing experience
during testing and relying on a single short-
term history, which limits adaptation to evolv-
ing data. In this paper, we introduce the Online
Neural-Symbolic Event Prediction (ONSEP)
framework, which innovates by integrating dy-
namic causal rule mining (DCRM) and dual his-
tory augmented generation (DHAG). DCRM
dynamically constructs causal rules from real-
time data, allowing for swift adaptation to new
causal relationships. In parallel, DHAG merges
short-term and long-term historical contexts,
leveraging a bi-branch approach to enrich event
prediction. Our framework demonstrates no-
table performance enhancements across diverse
datasets, with significant Hit@k (k=1,3,10) im-
provements, showcasing its ability to augment
large language models (LLMs) for event predic-
tion without necessitating extensive retraining.
The ONSEP framework not only advances the
field of TKGF but also underscores the poten-
tial of neural-symbolic approaches in adapting
to dynamic data environments.

1 Introduction
Event prediction is a widely researched topic (Zhao,
2021; Benzin and Rinderle-Ma, 2023) since ac-
curate prediction of future events allows one to
minimize losses associated with certain future
events. To model large amounts of real-world
event data that represent complex interactions
between entities over time, the temporal knowl-
edge graph (TKG) has been introduced (Ding
et al., 2023; Yuan et al., 2023). TKG is used
to represent structural relationships among enti-
ties through timestamped quadruples (s, r, o, t),
where s and o are entities, r is a binary relation
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Figure 1: Comparison of ONSEP and ICL Frameworks
for Event Prediction with Schematic Overview of ON-
SEP’s Core Components and Operational Processes.

between them, and t specifies the time when the
event (s, r, o) occurs. For example, the quadruple
(Angela Merkel, visit, China, 2014/07/04) in-
dicates that Angela Merkel visited China on July 4,
2014. In this task, temporal knowledge graph fore-
casting (TKGF) aims to predict future events of the
graph by inferring missing entities in a quadruple
for a future time. This involves generating predic-
tions for either the object entity (s, r, ?, t+k) or the
subject entity (?, r, o, t+ k) by utilizing historical
data from previous snapshots, where k represents
the number of time steps or intervals into the future
beyond the current time t. Existing research stud-
ies have provided theoretical methodologies for
time-sensitive applications such as recommenda-
tion systems (Wang et al., 2022; Zhao et al., 2022),
financial analysis (Li, 2023), and social crisis early
warning systems (Gastinger et al., 2023).

Traditional approaches (Jin et al., 2020; Zhu
et al., 2021; Li et al., 2021; Han et al., 2020;
Sun et al., 2021; Li et al., 2022) involve convert-
ing event data into TKGs and combining graph
neural networks (GNNs) and recurrent neural net-
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works (RNNs) capture evolving entity relationships
through embeddings. However, these methods
must perform model training on specific datasets,
which is resource-intensive. With the proven un-
derstanding and generative capabilities of large
language models (LLMs), recent studies have ex-
plored methods on LLMs (Tao et al., 2023; Lee
et al., 2023; Shi et al., 2023b). The method pro-
posed by (Lee et al., 2023) offers a more adaptable
method for TKGF with in-context learning (ICL)
on LLMs, allowing LLMs to adapt to TKGF by
using examples in the context, without fine-tuning.

Nevertheless, due to limitations in the length
of history of LLM inputs, this approach may not
fully capture long-term trends among events and
cannot effectively leverage past insights, such as
causal relationships between events. Imagine a
TKG scenario that relates to everyday life. An
example quadruple could be: ‘(Sarah, Consult,
Dr. Smith, 2022/04/10)’, indicating that Sarah
consulted Dr. Smith on April 10, 2022. In this
case, the ICL method may use static key val-
ues like ‘Sarah’ and ‘(Sarah,Consult)’ to ex-
tract historical events. However, this method may
not account for Sarah’s tendency to begin con-
sultations with phone calls months before meet-
ing in person, This is evident in events such as
‘Discuss by telephone’ being a preceding cause,
for example, ‘(Sarah, Discuss by telephone,
Dr. Smith, 2022/01/08)’. This long-standing
pattern of initiating consultations with a call is a
crucial piece of historical context that short-term
data analysis could miss. Without considering
these longer-term causal interactions, the LLM-
based method may not make accurate future predic-
tions. Besides, in datasets like ICEWS (Boschee
et al., 2015), the distribution of data containing en-
tities and relations is dynamically changing. The
emergence of new relations during test time poses
challenges for traditional ICL methods, which rely
on fixed keyword-key value matching and cannot
adapt over time. This highlights the need for meth-
ods that can dynamically capture and apply updates
in real-time, enhancing adaptability in event pre-
diction.

To overcome these limitations, this paper
proposes the Online Neural-Symbolic Event
Prediction (ONSEP) framework. It enhances both
accuracy and adaptability in event prediction by
addressing inadequate long-term causal relation-
ship capture and enabling real-time adaptability

for self-improvement without fine-tuning. Figure
1 illustrates a comparison of the ONSEP and ICL
approaches. By contrast, ONSEP mainly has two
novel components: 1) Dynamic causal rule min-
ing (DCRM): Utilizing LLMs’ external knowledge,
DCRM semantically detects cause-effect links and
dynamically constructs causal rules. This enables
ONSEP to quickly adapt to new data and causal re-
lationships, facilitating real-time updates and lever-
aging past experiences without extensive retraining.
2) Dual History Augmented Generation (DHAG):
DHAG employs the long short-term bi-branch
retriever (LSBBR) and a hybrid model inference
(HMI) strategy to merge short-term and long-term
historical contexts. The latter benefits from causal
rules derived during the DCRM phase, enabling a
broader event to be captured within the limits of his-
torical input length. Inspired by the multi-branch
fusion inference technology described in (Shi et al.,
2023a), the HMI strategy applies weighted fusion
to balance the contributions from both dual histor-
ical contexts. These innovations address the limi-
tations of context length constraints in LLMs and
improve the retrieval of relevant historical events
over extended periods.

ONSEP shows significant performance gains
on various datasets using InternLM2-7B model,
achieving Hit@1 improvements over ICL of 9.63%,
9.35%, and 16.28% at history length 100, and
8.14%, 8.64%, and 15.25% at 200, and achieved
competitive performance of embedding-based mod-
els trained on specific datasets. To summarize, our
main contributions include:

• We introduce DCRM, an innovative real-time
adaptive causal learning module for LLMs that
automatically updates the rule base at the snap-
shot level during testing.

• We develop the DHAG module, which uses LS-
BBR and HMI strategies, allowing LLMs to ef-
fectively use historical data from different time
scales for causal analysis.

• Our framework includes an adaptive RAG solu-
tion that improves historical event retrieval and
achieves self-improvement.

• We demonstrate ONSEP’s effectiveness across
various models and datasets, showcasing its abil-
ity to enhance black-box LLM inference without
the need for fine-tuning or manual annotations,
thereby providing a robust and adaptable solution
for diverse event prediction tasks.

6336



2 Preliminaries

2.1 Temporal Knowledge Graph Forecasting

A temporal knowledge graph (TKG) is structured
as a time-sequenced series of multi-relational di-
rected graphs. The TKG up to time t is repre-
sented as T KGt = {G1,G2, . . . ,Gt}, where each
Gt = (V,R, Et) represents a snapshot of the graph
at time t. Here, V denotes the set of entities, R
the set of relations, and Et comprises timestamped
facts as quadruples (s, r, o, t), with s, o ∈ V and
r ∈ R. TKGF aims to predict future states of the
graph by inferring missing entities in a quadruple
for a future time. This involves generating predic-
tions for either the object entity (s, r, ?, t + k) or
the subject entity (?, r, o, t + k) using historical
data from previous snapshots T KGt.

2.2 ICL for Temporal Knowledge Graph
Forecasting

ICL enables LLMs to adjust to new tasks through
contextual examples, without the need for fine-
tuning. Specifically, in TKGF, ICL harnesses the
adaptability of LLMs for forecasting by leverag-
ing historical data. For a query of future event
q = (sq, rq, ?, tn), where sq is an entity and rq is
a relation at timestamp tn, this method employs
static keys, such as entity sq or the pair (sq, rq), to
retrieve the historical event chain Hn(q), a set of
quadruples, from previous snapshots T KGn−1 =
G1:n−1. Then the method constructs a prompt θq
based on Hn(q). The prediction yq is generated
by leveraging the LLM’s probability distribution
yq ∼ PLLM (yq|θq), employing ICL to generate
forecasts without further training.

To effectively handle multi-word entity and rela-
tion names, a numeric mappingMent andMrel as-
signs unique labels to entities and relations. For ex-
ample, candidate entities like [South Africa, China,
New England] are mapped to numerical values [0,
1, 2] to align the outputs from the LLM with these
candidates. During in-context learning, LLMs per-
form a forward pass to produce logits s for next-
token predictions. These logits are then trans-
formed into a probability distribution D using the
softmax function, representing the likelihood of
each candidate being the target entity or relation.

2.3 Causal Rules in TKG

Causal rules1 in TKG capture cause-and-effect
links between events, denoted as CR(re, rc) :
(X, re, Y, T2) ← (X, rc, Y, T1), where X and Y
represent anonymized entities, and T1 and T2 are
timestamps, with T1 < T2 ensuring the correct
temporal sequence from cause to effect.

Extending this, we define a causal rule base
(CRB) as a set of tuples, each comprising a
causal rule (CR) and its confidence score (conf ).
The CRB for effect re at timestamp tn is de-
noted as: CRBn(re) = {((X, re, Y, T2) ←
(X, rci , Y, T1), conf

n
i ) | 1 ≤ i ≤ m}, where rci

indicates the cause relation, re denotes the resulting
relation influenced by rc, and confn

i is the confi-
dence score for the i-th causal rule at timestamp tn,
a real number within [0, 1]. Here, m represents the
total number of causal rules considered in the rule
base.

3 Method
The ONSEP framework (Figure 2) aims for event
prediction via two key modules: (1) DCRM, which
adaptively adjusts to changing data distributions
during single-step prediction testing without requir-
ing extensive training data, and (2) DHAG, which
integrates patterns from short-term historical events
with causality from long-term event developments.
Detailed explanations are provided in the following
sections.

3.1 Dynamic Causal Rule Mining

The dynamic causal rule mining (DCRM) phase is
crucial for identifying causal relationships within
temporal knowledge graph. This phase utilizes a
semantic-driven rule learning algorithm to discover
causal rules. It is followed by a dynamic update
module that updates the causal rule base (CRB),
which is closely followed by a mechanism for rule
filtering and sorting by confidence.

3.1.1 Semantic-Driven Rule Learning

This module is designed for the reflective learning
of causal rules, structured around three core steps:
candidate causes filter, causality assessment, and
causal rule construction. Initially, it retrieves his-
torical contextHn for all queries from Gn and real-
time feedback Oy, which is the verified outcome
for a query obtained when the system receives new

1In this work, we use "causal" to intuitively convey the role
these rules play in identifying and retrieving events with po-
tential causative relations during real-time analysis, differing
from the strict definition in statistical causal inference.
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Figure 2: Detailed structure of ONSEP framework with two phases: (1) Dynamic causal rule mining(§ 3.1) and
(2) dual history augmented generation(§ 3.2). Specially, the DCRM phase employs a semantic-driven algorithm(§
3.1.1) to identify causal rules and dynamically updates the rule base(§ 3.1.2), incorporating a filtering and sorting
mechanism(§ 3.1.3). (2) The DHAG phase utilizes a long short-term bi-branch retriever(§ 3.2.1) alongside a hybrid
model inference (§ 3.2.2) strategy to improve prediction accuracy.

data, to filter potential reason events. In the causal-
ity assessment phase, these candidates are then
evaluated using a LLM to determine the most plau-
sible cause event rc. Finally, the identified cause
event, along with the query’s effect event re forms
the basis for constructing a causal rule CR(re, rc).
The algorithm of semantic-driven rule learning is
outlined in Appendix A.
Candidate Event Filter In the candidate event fil-
tering phase, we utilize historical context and real-
time feedback related to the query to filter potential
causal events. Given a query q = (Sq, Re, ?, tn) at
time tn, we define the contextHn(Sq) as a histori-
cal sequence of events associated with subject Sq,
expressed asHn = {(Sq, r, o, t) ∈ Gn}. We select
candidates based on the criterion that the object o
is the same as the target Oy, thereby forming a set
of candidate reason eventsHc, formalized as:

Hc(q) = {(S, rc, ô, t̂) ∈ Hn(Sq) | ô = Oy}.

Here, rc represents a potential causal relation, ô is
the filtered object that matches the target Oy, and

t̂ is the timestamp associated with the event. This
methodology aims to pinpoint potential causative
relations corresponding to re within the event se-
quence that links the query’s subject S to the target
entity.

For each distinct causative event rc within the
candidates of reason events, we first extract the set
of quadruples from Hc that contain rc, which we
denote as Trc :

Trc = {(s, r, o, t) | r = rc, (s, r, o, t) ∈ Hc(q)}.

We then compute the support number supp(rc) as
the count of quadruples of this set: supp(rc) =
|Trc |. Subsequently, we calculate the coverage rate
cove(rc) for each event rc using:

cove(rc) =
supp(rc)

|Hc(q)|
. (1)

This coverage rate aids in assessing the confidence
level of causal rules and supports the review and
selection of causal event candidates by the LLM.
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LLM-based Causal Event Selection

Your task is selecting the most appropriate reason
for the result event. The result event is { r_e }.
Below is a list of possible reasons:
{ candidate causal events: [label]. [candidate] }
The most appropriate reason is:

Table 1: Causal Event Selection Prompt Template.

Causality Assessment In this step, the causal eval-
uation utilizes the powerful semantic understand-
ing capabilities of the LLM to assess the degree
of causal association between a set of potentially
causal events. This evaluation aims to select the
causal rules that are most relevant to the current
query and feedback goals. A pivotal aspect of our
methodology involves the formulation of a struc-
tured prompt θ1 (Table 1), designed to direct the
LLM towards discerning the most pertinent causal
link between a given result event (re) and poten-
tial causes within the candidate reason events set
Hc(q). The selection mechanism utilizes LLM to
obtain the logits L for numerically mapped candi-
date reasons, as same as the way how to generate
an output for each test query. These logits represent
the preliminary evaluation of each candidate’s like-
lihood to be the true causal event. To convert these
logits into normalized probabilities, we apply the
softmax function, yielding the probability prci for
each candidate reason rci , mapped to label idi us-
ingMrel, reprented as s = LLM(θ1(re,Hc(q))),
where s are the logits produced by LLM, The proba-
bility of each candidate reason rci is then computed
by:

p(rci) =
es[idi]∑

j∈Mrel

es[idj ]
. (2)

Based on these probabilities, the top-k candi-
dates are selected. The confidence conf t

i for each
causal rule at timestamp t is determined by combin-
ing the probability p(rci) with the coverage score
cove(rci), can obtained as:

conf t(rci) = α · p(rci)+ (1−α) · cove(rci) (3)

where α is a tuning parameter that balances the
contribution of the probability p(rci) and the cover-
age score cove(rci), integrating the causal assess-
ment with historical occurrence insights.
Causal Rule Construction Following the causal-
ity assessment step, a set of selected causal
events (rc) and their corresponding confidence

scores at the current time step (tn) are obtained.
These causal rules are formalized in a struc-
tured format, with each rule at timestamp t rep-
resented as CRt(re, rc) = (X, re, Y, T2) ←
(X, rc, Y, T1), accompanied by a confidence value
conf t(CR(re, rc)), can be obtained by conf t(rc).

3.1.2 Dynamic Update
The dynamic update module for the causal rule
base adds new rules directly and updates existing
ones by adjusting their confidence levels. It assigns
a confidence score ct to each causal rule CR, link-
ing a pair of relations, and this score is dynamically
updated at each time step t. This score merges the
previous confidence ct−1 with the current confi-
dence conf calculated at time t, effectively updat-
ing the confidence for each pair of relations within
the causal rule.

It uses a smoothing factor (θ) to stabilize con-
fidence adjustments, and a growth factor (β) to
incrementally evaluate the reliability of the circular
verification rules, but the historical confidence can-
not exceed 1. The update formula of the existing
rules is:

ct = θ · fg(ct−1) + (1− θ) · conf (4)

fg(ct−1) = min(ct−1 · (1 + β), 1) (5)

where ct is the updated confidence, conf the cur-
rent evaluated confidence of CR, and ct−1 the pre-
vious confidence, fg represent the grow function
with the growth factor β.

This approach ensures continuous optimization
of the rule base, allowing for adaptability in light
of distribution changes over time.

3.1.3 Rule Filter and Sort by Confidence
In the final module of the DCRM, rules falling be-
low a predefined confidence threshold, denoted as
confmin, are filtered out to ensure the usability of
the causal rule base. Subsequently, the remaining
rules are sorted based on their confidence levels,
allowing rules with higher confidence to take prece-
dence in the subsequent reasoning phase.

3.2 Dual History Augmented Generation
DHAG, an innovative RAG variant, introduces a
long short-term bi-branch retriever (LSTBBR) cou-
pled with a hybrid model inference (HMI) strategy.
DHAG synergizes short-term historical event pat-
terns with long-term causal trajectories, ensuring
a comprehensive historical context. Unlike previ-
ous methods that model long and short-term his-
tories through data associations, DHAG provides
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a more robust handling of low-frequency events,
unaffected by irrelevant noise in long histories.

3.2.1 Long Short-Term Bi-Branch Retriever

The long short-term bi-branch retriever (LSTBBR)
within the DHAG framework incorporates a dual
retrieval strategy to enhance the predictive model
with a rich historical context, comprising both
short-term and long-term historical events. For
each prediction query q = (Sq, Re, ?, tn+1),
LSTBBR extracts two distinct historical contexts:
Hs representing the short-term history event chain
and Hl representing the long-term causal event
chain. This dual approach ensures a comprehen-
sive understanding of the immediate events as well
as the underlying long-term causal influences. The
short-term history event chain (Hs) focuses on cap-
turing the most recent events that are temporally
proximate to the prediction query, providing an
immediate context that reflects the latest develop-
ments. To constructHs, the system retrieves events
fromHn(Sq), sorting them by timestamp and trun-
cating to include only the L most recent events.
This truncated list of events forms Hs, which is
directly associated with the query’s subject Sq,
thereby providing a snapshot of the most imme-
diate historical backdrop relevant to the query.

On the other hand, the long-term causal event
chain (Hl) is designed to uncover the broader
causal dynamics that have shaped the subject S
over a more extended period. This is achieved by
initially retrieving cause rules from CRB(re) us-
ing a RECALL mechanism, which employs a key-
value approach where the effect relation re is used
as the key to efficiently extract associated causal
rules.

Subsequently, cause events are filtered to con-
struct the long-term cause event chain Hl from
Hn(Sq). The events in Hl are determined by the
criteria: (Sq, Rci , oi, ti) where CR(Re, Rci) ∈
CRB(Re) and (S,Rci , oi, ti) ∈ Hn(Sq), with
ti < tn+1. Similar to Hs, Hl is truncated to in-
clude only the most recent L events since limited
by the max length of model input.

3.2.2 Hybrid Model Inference

Before inference, a numerical label mapping tech-
nique preprocesses multi-word entities to prepare
them for integration into the model, similar to the
causality assessment in DCRM. The essence of the
hybrid model inference (HMI) strategy involves
merging the query q with the short-term history

event chain Hs and the long-term causal event
chain Hl. This allows the LLM to produce dis-
tinct probabilities for each context, which are then
combined using a weighted ensemble approach.

For the short-term context, the logits s1 are ob-
tained by s1 = p(y|q ⊕ Hs), where ⊕ symbol-
izes concatenation. The logits s1 are then nor-
malized using the softmax function to produce a
probability distribution D1 = softmax(s1). Sim-
ilarly, for the long-term context, the logits s2 are
derived by s2 = p(y|q ⊕Hl), and the correspond-
ing probability distribution D2 is obtained by ap-
plying the softmax function to s2, resulting in
D2 = softmax(s2). The integration strategy in-
volves a weighted ensemble of D1 and D2, formu-
lated as:

D = D1 · (1− λ) +D2 · λ. (6)

Here, λ is a tuning parameter that balances the
contributions of short-term and long-term contexts.
This unified distribution D ranks candidate entities
by their relevance to q, leveraging the nuanced in-
sights from bothHs andHl. By doing so, the HMI
strategy enhances the LLM’s accuracy in entity
predictions, grounded in a comprehensive under-
standing of dual historical contexts.

4 Experiments
4.1 Experimental Settings

Datasets Our experimental evaluation is carried
out on a subset of the integrated crisis early warn-
ing system (ICEWS) dataset, which includes ver-
sions such as ICEWS14 (García-Durán et al.,
2018), ICEWS05-15 (García-Durán et al., 2018),
and ICEWS18 (Jin et al., 2020). These datasets
are composed of timestamped records of political
events, making them highly suitable for conducting
temporal analysis. They are widely recognized as
benchmark datasets on TKGF. Each event is rep-
resented as a tuple, such as (Barack Obama, visit,
Malaysia, 2014/02/19), capturing diverse political
activities across various time periods.
Evaluation Metrics To evaluate our method’s ef-
ficiency in ranking event candidates, we use link
prediction metrics like Hit@k (where k = 1, 3, 10).
This measures the precision of our model in fore-
casting future events within the top k predictions.
Higher Hit@k values indicate more accurate rank-
ings, which, in product recommendations, translate
to better purchase predictions and greater economic
benefits.
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Baselines We primarily compare ONSEP with the
ICL method. Additionally, we have selected sev-
eral traditional supervised models based on em-
bedding methods for performance comparison, in-
cluding RE-NET (Jin et al., 2020), CyGNet (Zhu
et al., 2021), RE-GCN (Li et al., 2021), xERTE
(Han et al., 2020), and TITer (Sun et al., 2021) in
TKG. We also compare our method with a variety
of LLMs.

Further information about the datasets, eval-
uation metrics, LLMs used and implementation
specifics can be found in the Appendix B.

4.2 Performance Comparison

To evaluate whether ONSEP surpasses the previ-
ous best event prediction method based on LLMs,
ICL, we conduct experiments with historical inputs
of 100 and 200, using InternLM2-7B for all meth-
ods. As Table 2 shows, our method outperforms
ICL across all three datasets. Specifically, with
a history length of 100, ONSEP achieves Hit@1
improvements of 9.63%, 9.35%, and 16.28%, and
with 200, the gains are 8.14%, 8.64%, and 15.25%.
These results confirm ONSEP’s capability to ex-
ceed the performance of the previous ICL method.
These results underscore ONSEP’s superior perfor-
mance over ICL, particularly in Hit@1 accuracy,
indicating a notable enhancement in precision.

While ONSEP trails behind some trained embed-
ding models in Hit@10 due to the LLM’s reliance
on ranking candidate entities from the input his-
tory rather than all entities, it achieves top perfor-
mance in Hit@1 for the ICEWS14 and ICEWS05-
15 datasets. Additionally, it shows closely compet-
itive results in other metrics. This highlights ON-
SEP’s capability to significantly enhance accuracy.
For a detailed exploration of ONSEP’s operational
dynamics and its real-world applicability, see the
ICEWS14 case study in Appendix C.

4.3 Inductive Setting and the Effectiveness of
DCRM

To assess the transferability of causal rules mined
during test-time iterations, we conduct experiments
where rules learned from ICEWS14 are applied to
predictions on ICEWS18, with findings presented
in Table 3. There are significant temporal spans and
differences in data distribution between ICEWS14
and ICEWS18. For example, ICEWS18 includes
entities such as Donald Trump, who served as the
President of the United States from 2017 to 2021,
which are not present in ICEWS14.

With only a 20.3% overlap (see Table 5) in enti-
ties between the two datasets, our inductive experi-
mental setup demonstrates performance improve-
ments. Comparing the ICL method without pre-
loaded rules (i) to the approach using ICEWS14-
derived rules (iv), we observe a significant per-
formance boost in the latter, indicating that the
DCRM-mined causal rules are generalizable across
datasets with similar relational structures, thereby
improving inference.

Further analysis on the DCRM module’s impact
shows that incorporating DCRM (iii) versus not
incorporating it (iv) leads to enhanced performance
across all metrics, including a notable 9.52% in-
crease in Hit@1. This underscores DCRM’s effec-
tiveness in improving the accuracy and recall of
inference.

Interestingly, real-time rule mining with DCRM
without pre-loaded rules (ii) is slightly higher than
that of the inductive setting (iii) (i.e., with pre-
loading the rules learned from Gtest1), suggesting
that relying on potentially outdated rules may hin-
der adaptation to new data. Due to the smoothing
setup in dynamic updates, the old rule set may intro-
duce some interference, hindering rapid adaptation
to the new test set. This emphasizes the need for
dynamic rule updates to ensure model relevance
and effectiveness across varying datasets with dy-
namically changing distributions.

4.4 Effectiveness of DHAG

To assess the DHAG module’s impact, we explored
how blending short-term and long-term history con-
texts affects performance on the ICEWS14 dataset,
with similar findings observed on other datasets.
We vary the Weighted Fusion Ratio from 0 to 1, as
shown in Figure 3, with details in Appendix D.2.

Our findings indicate a clear pattern: a λ value
of 0, which effectively uses only short-term history
chain akin to the baseline ICL method, leads to
lower performance. Conversely, a λ of 1, relying
solely on long-term reasoning, also underperforms
compared to a balanced approach. The optimal per-
formance at a fusion ratio of 0.1 indicates that the
model primarily utilizes short-term dynamic his-
tory for reasoning, while also incorporating long-
term causal knowledge acquired during test time to
improve its effectiveness.
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ICEWS14 ICEWS05-15 ICEWS18

Model Train Hit@1 Hit@3 Hit@10 Hit@1 Hit@3 Hit@10 Hit@1 Hit@3 Hit@10

RE-NET ✓ 0.301 0.440 0.582 0.336 0.488 0.627 0.197 0.326 0.485
CyGNet ✓ 0.274 0.426 0.579 0.294 0.461 0.616 0.172 0.310 0.469
RE-GCN ✓ 0.316 0.472 0.617 0.373 0.539 0.685 0.224 0.368 0.527
xERTE ✓ 0.327 0.457 0.573 0.378 0.523 0.639 0.210 0.335 0.465
TITer ✓ 0.328 0.465 0.584 0.383 0.528 0.649 0.221 0.335 0.448

InternLM2-7B-ICL (L=100) ✗ 0.301 0.432 0.560 0.353 0.507 0.647 0.172 0.289 0.434
InternLM2-7B-ONSEP (L=100) ✗ 0.330 0.464 0.570 0.386 0.546 0.662 0.200 0.324 0.443

∆ Improve 9.63% 7.41% 1.79% 9.35% 7.69% 2.32% 16.28% 12.11% 2.07%

InternLM2-7B-ICL (L=200) ✗ 0.307 0.443 0.567 0.359 0.520 0.659 0.177 0.300 0.447
InternLM2-7B-ONSEP (L=200) ✗ 0.332 0.465 0.577 0.390 0.551 0.668 0.204 0.333 0.453

∆ Improve 8.14% 4.97% 1.76% 8.64% 5.96% 1.37% 15.25% 11.00% 1.34%

Table 2: Performance comparison among LLM-based ICL and traditional embedding-based methods on three
datasets with time-aware metrics (Hit@k). The highest performance is highlighted in bold. ∆ Improve represents
the percentage improvement of ONSEP over ICL. The results of the embedding-based models are excerpted from
(Li et al., 2022).

Method (InternLM2-7B) Hit@1 Hit@3 Hit@10

(i) ICL 0.156 0.265 0.382

(ii) ONSEP 0.186 0.305 0.424

(iii) ONSEP - inductive 0.184 0.302 0.422

(iv) ONSEP w/o DCRM (ICL
w/ DHAG) - inductive

0.168 0.292 0.416

Table 3: Analysis on DCRM module under inductive
setting. Utilizing causal rules derived by ONSEP from
the test graph Gtest1 (ICEWS14, with a history input
length of L=50) and applying them to a different test
graph Gtest2 (ICEWS18, with a history input length of
L=30).

4.5 Performance Comparison of Different
Model Scale and Series

Our analysis reveals that model performance im-
proves with increased parameter scale, with the
20B models outperforming the 7B models, align-
ing with the scaling law. However, the performance
gain from increasing the model size from 7B to 20B
is less pronounced and comes with higher compu-
tational costs. The ONSEP method enhances per-
formance across different model scales and series,
demonstrating its adaptability and effectiveness.
Detailed comparisons across model series indicate
that ONSEP’s improvements are consistent, with
InternLM2-7b showing the most significant gains.
Further in-depth analysis and discussions are pro-
vided in Appendix D.1.

4.6 Hyperparameter Sensitivity Analysis

Our hyperparameter sensitivity analysis highlights
the critical role of selecting the right history length
L, rule selection thresholds k, and fusion ratios α
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Figure 3: Performance of ONSEP in terms of Hit@1
across various DHAG ensemble weights λ of DHAG.
The underlying LLM is InternLM2-7B, processing input
histories of length 100. λ represents the weight given
to long-term causal event chains. This illustrates how
varying λ influences the integration of short-term and
long-term reasoning contexts within ONSEP.

for causal rule confidence scores. Finding the right
balance between the length of historical input and
computational efficiency is essential for optimal
model performance. Similarly, precise calibration
of rule selection thresholds and fusion ratios is vi-
tal for the effective application and updating of
causal rules, taking into account factors such as
the smoothing factor θ and growth factor β. These
parameters collectively influence the model’s abil-
ity to adapt and perform accurately over time. A
more detailed discussion on these findings and their
implications is provided in the Appendix E.
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5 Related Work
5.1 Temporal Knowledge Graph Forecasting

In TKGF, traditional embedding-based methods
(Jin et al., 2020; Zhu et al., 2021; Li et al., 2021;
Han et al., 2020; Sun et al., 2021; Li et al., 2022)
learn representations of the quadruple, showing
efficacy in supervised learning. Recent efforts ex-
plore LLMs for event prediction. For example,
Xu et al. (Xu et al., 2023) use a masking strategy
to make the forecasting task similar to predicting
missing words. LAMP (Shi et al., 2023b) utilizes
LLMs as a cause generator to reorder candidate
outcomes, while ICL has been applied in TKGF
(Lee et al., 2023), transforming forecasting into a
sequence generation task. Besides, GenTKG (Liao
et al., 2023) leverages few-shot parameter-efficient
instruction tuning of LLMs using the training set to
enhance inference capabilities. These approaches
hold promise for improved generalization and con-
textual understanding. However, their effectiveness
in dynamic real-world scenarios warrants further
investigation.

On the other hand, rule-based approaches like
Tlogic (Liu et al., 2022) focus on interpretability
and generalization by learning symbolic rules from
TKGs. Despite their strengths, these methods strug-
gle with large search spaces, can’t incorporate tex-
tual semantics of relations, and rely on static rule
sets, limiting their adaptability.

5.2 Retrieve Augmented Generation

Retrieval-augmented generation (RAG) signifi-
cantly enhances LLMs by integrating dynamic ex-
ternal knowledge retrieval (Lewis et al., 2020), mit-
igating common challenges like hallucinations and
slow information updates. Advancements like RE-
PLUG (Shi et al., 2023a) and AAR (Yu et al., 2023)
further enhance RAG. REPLUG refines retrieval
models with supervised feedback from language
models. AAR, on the other hand, is a versatile plug-
in trained with a single source LLM but adaptable
to various target LLMs. These adaptive mecha-
nisms of RAG could be particularly beneficial in
LLM-based TKGF, improving semantic alignment
between queries and retrieved history context.

5.3 Self-Improving on LLMs

Researchers have recently proposed methods by
using LLM’s inherent knowledge as an external
database to let LLMs self-improve without an-
notated datasets and parameter updates. Frame-
works like ExpNote (Sun et al., 2023), HtT (Zhu

et al., 2023), and MoT (Li and Qiu, 2023) facilitate
learning from experience, rule induction, and high-
confidence thought generation. However, their
application to tasks with temporal dimensions re-
mains to be explored. Following this idea, we pro-
posed an ONSEP framework to enable the model to
induce rules in real-time during the testing process
and then use them for future predictions.

6 Conclusion

In this paper, we introduce a novel online neural-
symbolic framework, ONSEP, that integrates
LLMs with TKGs to achieve adaptive and precise
event forecasting in a dynamic online environment.
To overcome the challenges of not utilizing expe-
rience during testing and relying on a single short-
term history, which limits adaptation to new data,
we propose a dynamic causal rule mining module
and a dual history augmented generation module
within the ONSEP framework. This design allows
LLMs to access the most recent history to iden-
tify patterns, as well as causal relationships from
a broader range of past events. Extensive experi-
ments conducted on three benchmark datasets have
proven the efficacy of ONSEP in TKGF, surpass-
ing previous methods and demonstrating its broad
applicability across diverse LLMs. Our framework
shows great potential for future applications in fi-
nancial forecasting, public sentiment monitoring,
and recommendation systems.

Limitations

Our method requires multiple uses of large models,
leading to increased inference time (see Appendix
F) and higher computational costs compared to
simpler models. The effectiveness of the model is
influenced by the length of the input context; longer
contexts are only useful for LLMs designed to han-
dle them. The method also faces interpretability
challenges due to unclear reasoning paths, which
can be particularly evident in applications like cam-
paign strategy analysis with the ICEWS dataset.

Additionally, the method’s potential to improve
performance is limited for data that lacks a rich
semantic understanding or detailed relationships
needed to extract comprehensive causal rules.
Since there is an upper limit on the length, the
model inference uses indexing for the cue words
and does not use the lexical setting, ignoring the
effect of entity semantics on the results.
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A Algorithm of Semantic-Driven Rule
Learning

In this section we introduce the Semantic-Driven
Rule Learning algorithm in DCRM. The pseudo
code can be found at algorithm 1.

B Experimental Details
In the experiment, we used the ICEWS data sets,
including ICEWS14, ICEWS05-15 and ICEWS18,
we use the training and validation sets to build his-
torical graphs, which then serve to test our model’s
predictive accuracy. The specific parameters are
shown in the table 4.

B.1 Datasets

Dataset # Ents # Rels Train Valid Test Interval

ICEWS14 7,128 230 74,845 8,514 7,371 24 hours
ICEWS05-15 10,094 251 368,868 46,302 46,159 24 hours
ICEWS18 23,033 256 373,018 45,995 49,545 24 hours

Table 4: Statistics of the datasets.

ICEWS14 and ICEWS18 have significant differ-
ences in data distribution. Specifically, the num-
ber of entities in ICEWS18 far exceeds that in
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Algorithm 1 Semantic-Driven Rule Learning

Require: Historical contextHn at time tn, Query
(Sq, Re, ?, tn), target Oy

Ensure: Causal Rules CRBn(Re)
1: Initialize: Hc ← ∅, CRBn(Re) ←
CRBn−1(Re), supp← ∅, cove← ∅

2: for each event (Sq, rci , oi, ti) inHn do
3: if oi aligns with Oy then
4: Hc ← Hc ∪ {(Sq, rci , oi, ti)}
5: supp[rci ]← supp[rci ] + 1
6: end if
7: end for
8: for each rci inHc do
9: pi ← LLM-Causality-Assessment(rci , Re)

10: Compute covei ← supp[rci ]

|Hc|
11: end for
12: Hctopk ← Select top-k rci based on pi
13: for each rci inHctopk do
14: Compute confn

i ← α · pi+(1−α) · covei
15: CRn(Re, rci) ← (X,Re, Y, T2) ⇐

(X, rci , Y, T1)
16: CRBn(Re)← CRBn(Re) ∪ CRn(Re, rci)
17: end for
18: return CRBn(Re)

ICEWS14. This can be clearly demonstrated in
the dataset statistics:

Dataset Entities Relations Time Span

ICEWS14 7,128 230 2014
ICEWS18 23,033 256 2018
Overlap 4,685 226 -
Overlap (%) 20.3% 88.3% -

Table 5: Overlap statistics between ICEWS14 and
ICEWS18. The "Overlap (%)" shows the percentage
of entities and relations in ICEWS18 that overlap with
ICEWS14.

B.2 Evaluation Metrics

To assess ONSEP’s ability to rank candidates for
event prediction without recalling all entities, we
use link prediction metrics like Hit@k (where k=1,
3, 10). Hit@k is an evaluation metric that mea-
sures how often the model correctly places entities
within the top k positions of the ranking list for a
given query. Our evaluation specifically focuses on
a time-aware setting, where we apply filtering to re-
move valid candidates not pertinent to the specific
query.

B.3 Baselines

All large models used in the paper’s experiments
are shown here, and the series and parameters are
reported, as shown in Table 6.

Model Family Model Name # Params

Qwen (Bai et al., 2023) qwen-7b 7B
Baichuan2 (Yang et al., 2023) baichuan2-7b 7B
LLaMA2 (Touvron et al., 2023) llama-2-7b 7B
InternLM2 (Team, 2023) internlm2-7b 7B

internlm2-20b 20B
GPT-NeoX (Black et al., 2022) gpt-neox-20b 20B

Table 6: LLMs Used in the Study.

B.4 Implementation Details

The experimental setup for the ICL method aligns
with that of TKG-ICL (Lee et al., 2023), except
for a change in the model. The input provided to
the model is based on indexing rather than lexical
content. For the 20B model, due to computational
resource constraints, we employed a 4-bit quantiza-
tion approach for loading the model and perform-
ing inference. All experiments were conducted on
GeForce RTX 3090 GPU with 24GB Memory.

C Case Study

This section delves into the ICEWS14 case study,
demonstrating ONSEP’s innovative approach in
event prediction. The aim is to showcase the
method’s operational dynamics and its practical
relevance.

C.1 Operational Setup and Input Scenarios

Initially, consider an input history length limit
of 5 events. For the query scenario involv-
ing a hypothetical entity Thief engaged in
Use unconventional violence , ONSEP’s task

is to predict potential outcomes based on past
events. The ICL method, serving as a compara-
tive baseline, identifies only a short-term history
sequence. In contrast, ONSEP extends the analysis
both short-term and long-term historical data as
Figure 4 shows.
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7968: [Thief, Use unconventional violence, 0.Citizen]
7968: [Thief, Fight with small arms and light weapons, 0.Citizen]
7992: [Thief, Use unconventional violence, 1.Men]
7992: [Thief, Use unconventional violence, 0.Citizen]
7992: [Thief, Fight with small arms and light weapons, 0.Citizen]
8016: [Thief, Use unconventional violence,

7560: [Thief, Fight with small arms and light weapons, 0.Citizen]
7824: [Thief, Fight with small arms and light weapons, 1.Employee]
7920: [Thief, Fight with small arms and light weapons, 0.Citizen]
7968: [Thief, Fight with small arms and light weapons, 0.Citizen]
7992: [Thief, Fight with small arms and light weapons, 0.Citizen]
8016: [Thief, Use unconventional violence,

（a） the Short-Term History Event Chain

（b） the Long-Term Causal Event Chain

Figure 4: Example of short-term and long-term histori-
cal event chains used by ONSEP.

C.2 Causal Analysis and Predictive Accuracy

ONSEP employs learned causal rules to en-
hance prediction accuracy, for instance, in-
ferring that Use unconventional violence
may evolve from Fight with small arms and

light weapons with a confidence score (conf :
0.76). This analysis is dynamically derived from
both the LLM’s assessment and observed data fre-
quencies.

When multiple rules apply, ONSEP retrieves rel-
evant causative events from the historical graph for
each rule and contextualizes them chronologically.
This process leverages direct and precise causal
relationships and enables ONSEP to integrate a
broader range of historical insights, extending fur-
ther back in time than baseline models. As the
temporal dataset grows, ONSEP’s rule repository
continuously evolves, improving the accuracy of
historical context retrieval and updating the confi-
dence levels of relational rules.

D Additional Experiment Results
D.1 Performance Comparison in Different

Model Series

Model Scale To analyze the impact of the model
parameter scale on performance, we selected the
7B and 20B models from the InternLM2 series
as the foundation models for ONSEP, with an in-
put length of 100. As shown in Table 7, the 20B
model performs better than the 7B model on the
ICL method, consistent with our expectations and
in line with the scaling law. The ONSEP method
demonstrates significant improvements across both
model scales, but the growth on the 20B model is
relatively lower than on the 7B, and it is more time-

consuming. The improvements in Hit@1 are 9.63%
and 2.45% for the 7B and 20B models, respectively.
This also proves that larger parameter LLMs have
advantages in feature capturing, enabling better
reasoning performance, but it’s important to con-
sider the balance between performance gains and
computational costs.

Model Hit@1 Hit@3 Hit@10 Time

InternLM2-7b-ICL 0.301 0.432 0.560 -
InternLM2-7b-ONSEP 0.330 0.464 0.570 2 h 32 min
∆ Improve 9.63% 7.41% 1.79%
InternLM2-20b-ICL 0.326 0.455 0.57 -
InternLM2-20b-ONSEP 0.334 0.467 0.571 7h 10 min
∆ Improve 2.45% 2.64% 0.18%

Table 7: Comparative Analysis of Performance En-
hancement Across Varied Model Sizes.

Model Series To compare the performance of dif-
ferent models under two scenarios and demon-
strate ONSEP’s improvement over ICL, we use
7B models from the InternLM2, Qwen, LLaMA2,
and Baichuan2 series. Figure 5 compares the
performance of each model under ONSEP and
ICL conditions. The comparison reveals that
InternLM2-7b outperforms others with ICL and
shows the most significant improvement with
ONSEP, leading among models of similar size.
While Qwen, LLaMA2, and Baichuan2 have sim-
ilar performances with ICL, LLaMA2 and Qwen
exhibit greater improvements with ONSEP than
Baichuan2.

For the 20B models, we examine GPT-NeoX and
InternLM2, as indicated in Table 8.

The performance differences may stem from
variations in vocabulary, tokenization, training data,
decoding strategies, and BPE encoding specifics
(Sennrich et al., 2016) among the different model
series. InternLM2, with its innovative pre-training
and optimization, excels in long-context tasks by
capturing long-term dependencies. InternLM2’s
superior performance may be due to a progressive
training approach, starting with 4k tokens and ex-
tending to 32k tokens. ONSEP consistently en-
hances the performance across these models, show-
casing the methodology’s generalizability. Addi-
tional metrics and detailed data are available in
Appendix D.1.

Table 9 shows the ICL methods for four differ-
ent series of models of comparable size and the
proposed ONSEP method. It is observed that In-
ternLM2 performs the best in terms of various indi-
cators and improvements. For Hit@1 and Hit@3,
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Model Hit@1 Hit@3 Hit@10

GPT-NeoX-20b-ICL 0.314 0.446 0.560
GPT-NeoX-20b-ONSEP 0.320 0.454 0.563

∆ Improve 1.91% 1.79% 0.54%
InternLM2-20b-ICL 0.326 0.455 0.57

InternLM2-20b-ONSEP 0.334 0.467 0.571
∆ Improve 2.45% 2.64% 0.18%

Table 8: Comparison of performance across two 20B
parameter model series, highlighting the percentage im-
provement ONSEP achieves over ICL.

InternLM2-7b qwen-7b LLaMA2-7b Baichuan2-7b
Models
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Figure 5: Performance comparison across various model
series under ONSEP and ICL methods with the percent-
age improvement indicated in red above the green bars.

the performances of the other three models are
similar, ranked in the order of Hit@1 as Qwen,
Baichuan2, and Llama2. In terms of the improve-
ment in Hit@10, the method achieved a 13.41%
increase on Llama2. The pre-training data distri-
bution and tokenization methods of these different
open-source models vary, which impacts the per-
formance.

Model Hit@1 Hit@3 Hit@10

InternLM2-7b-ICL 0.301 0.432 0.560
InternLM2-7b-ONSEP 0.330 0.464 0.570

∆ Improve 9.63% 7.41% 1.79%
Qwen-7b-ICL 0.290 0.421 0.530

Qwen-7b-ONSEP 0.300 0.440 0.560
∆ Improve 3.4% 4.51% 5.66%

LLama2-7b-ICL 0.289 0.412 0.440
LLama2-7b-ONSEP 0.299 0.438 0.499

∆ Improve 3.5% 6.31% 13.41%
Baichuan2-7b-ICL 0.290 0.416 0.530

Baichuan2-7b-ONSEP 0.296 0.437 0.552
∆ Improve 2.06% 5.05% 4.15%

Table 9: Performance Comparison and Improvement
Across Models.

D.2 Ensemble Weight in DHAG
Table 10 demonstrates the effect of adjusting
the ensemble weight λ within the Dual History

Augmented Generation (DHAG) of the ONSEP
model on performance metrics Hit@1, Hit@3, and
Hit@10. The data reveals that the optimal result
for Hit@1 is achieved at λ = 0.1, while the highest
coverage rate for Hit@10 is observed at λ = 0.5,
indicating improvements in both metrics. Extreme
values of λ (degenerating to the ICL method) lead
to suboptimal outcomes, highlighting the dual con-
text’s ability to enhance both accuracy and cover-
age, as well as the importance of balancing short-
term and long-term historical contexts.

As λ increases, accuracy decreases, while the
answer coverage remains constant, suggesting that
DHAG enhances model performance by slightly
increasing the probability of selecting the target
(Hit@1).

Ensemble Weight λ Hit@1 Hit@3 Hit@10

0 0.301 0.432 0.560

0.1 0.330 0.464 0.570

0.2 0.328 0.462 0.571

0.25 0.327 0.462 0.572

0.5 0.321 0.460 0.573

0.75 0.314 0.456 0.572

1 0.312 0.445 0.552

Table 10: Results for different choices of ensem-
ble weight of DHAG. The LLM based in ONSEP is
InternLM2-7B with a history length of 100.

E Hyperparameter Sensitivity Analysis
This section looks into how different hyperparam-
eters affect our method. We use the ICEWS14
dataset and the InternLM2-7B model for this anal-
ysis, but we find similar patterns in other datasets
too.

The set of tested hyperparameter ranges and best
parameter values for ONSEP are displayed in Table
11. The best hyperparameter values are chosen
based on the Hit@1.

Hyperparameter Set Best

Ensemble Weight λ {0, 0.1, 0.2, 0.25, 0.5, 0.75, 1} 0.1

History Length L {10, 30, 50, 100, 150, 200} 200

Select rules num k {0, 1, 3, 5, 10, 20} 20

Causality Ratio α {0, 0.1, 0.2, 0.25, 0.5, 0.75, 1} 0.1

Smooth Factor θ {0, 0.25, 0.5, 0.75, 1} 0.25

Growth Factor β {0, 0.1, 0.15, 0.2 0.25, 0.3, 0.5, 0.75, 1} 0.2

Table 11: Overview of hyperparameters.
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Figure 6: How History Length Affects Performance and
Prediction Time.

E.1 History Length

We assess the impact of varying historical lengths
on performance metrics (Hit@N) and the model’s
inference time, as shown in Figure 6. Increasing
historical length generally leads to better perfor-
mance but also longer inference times. The most
significant improvements occur up to a history
length of 100; after that, the benefits level off, in-
dicating an optimal balance between performance
gains and computational efficiency is necessary.

Table 12 demonstrates the impact of different
history lengths L on model performance. As the
history length increases, all performance metrics
(Hit@1, Hit@3, and Hit@10) improve, but the
growth saturates with longer L. If computational
resources are limited or fast inference is required,
L should be appropriately reduced to balance per-
formance and efficiency.

History Length L Hit@1 Hit@3 Hit@10

10 0.289 0.416 0.528

30 0.316 0.450 0.557

50 0.321 0.455 0.563

100 0.330 0.464 0.570

150 0.330 0.466 0.574

200 0.331 0.467 0.576

Table 12: Results for different choices of history length
L.

E.2 Maximum Number of Rules Selected

In the DCRM module, we experiment with chang-
ing the upper limit, K, of optimal rules selected
after causality evaluation by the LLM. This param-
eter shows how selective we are in filtering causal-
ity semantics and influences the causal rule set size.

As K increases, Hit@N performance improves, up
to a certain point. Setting K to infinity (meaning
no selection) causes a slight drop in performance
from the optimum, suggesting that a larger rule set
helps, but keeping high causality confidence is es-
sential to minimize noise and avoid rule application
disruption.

The results of selecting the maximum number of
rules k, as shown in 13, indicate that the model’s
performance increases with the number of rules
selected, reaching a saturation point. The last row
suggests that not selecting rules after LLM evalu-
ation results in slightly lower performance, high-
lighting the importance of optimal rule selection
for achieving peak model effectiveness.

Select rules num k Hit@1 Hit@3 Hit@10

0 0.318 0.454 0.561

1 0.327 0.461 0.569

3 0.328 0.462 0.570

5 0.329 0.462 0.570

10 0.330 0.464 0.570

20 0.329 0.462 0.570

Table 13: Results for different choices of Select rules
num k.

E.3 Fusion Ratio of Causal Rule Confidence
Scores

We experiment with various fusion ratios α, mixing
large model predicted probabilities p and coverage
cove from contextual frequencies to see their effect
on performance. A balanced α setting achieves
optimal performance, highlighting the importance
of both predicted probabilities and contextual cov-
erage in determining causality confidence.

Regarding the fusion ratio of causal rule confi-
dence scores α, the table illustrates how adjusting
α affects model performance. The data in Table 14
show that the model performs best at Hit@1 with
α = 0.5 and reaches peak performance at Hit@3
with α = 0.75. This indicates that an appropriate α
value can balance the model’s prediction accuracy
and coverage range. Too high or too low α values
may degrade performance on certain metrics.

E.4 Causal Rule Confidence Update Function

In DCRM’s dynamic update process, adjusting
causal rule confidence through factors like smooth-
ing and growth is crucial for adapting to new data
and trends. A balanced smoothing factor θ setting
works well to incorporate both historical and new
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Causality Assessment Ratio α Hit@1 Hit@3 Hit@10

0 0.325 0.460 0.568

0.25 0.327 0.461 0.569

0.5 0.329 0.462 0.570

0.75 0.327 0.464 0.570

1 0.323 0.461 0.566

Table 14: Results for varying Causality Assessment
Ratio α.

data, with larger values improving performance on
the ICEWS dataset, suggesting stability is needed
in dynamic data distributions. On the other hand,
a careful setting of the growth factor β improves
performance. It shows the importance of slowly
increasing focus on rules that have worked in the
past without making their confidence scores too
high too quickly.

smooth factor The results for the smooth factor
θ in the causal rule confidence update function (
15) suggest that a moderate θ value balances his-
torical and new information effectively. With a
smooth factor of 0, the confidence scores are up-
dated solely based on new samples, while a factor
of 1 retains the initial confidence assessments. A
slightly higher θ may be preferable for stable rule
adaptation in dynamic data scenarios, whereas a
lower value could be suitable if there are significant
intervals between samples.

Smooth Factor θ Hit@1 Hit@3 Hit@10

0 0.325 0.462 0.570

0.25 0.330 0.464 0.570

0.5 0.327 0.463 0.570

0.75 0.327 0.462 0.571

1 0.324 0.461 0.566

Table 15: Results for different smooth factor θ in the
confidence score function.

growth factor Table 16 shows that appropriately
setting the growth factor β can optimize model
performance without being excessively high. A
cautious, lower growth factor can incrementally
increase attention to historically effective rules, en-
hancing their confidence scores. Conversely, too
high a β may introduce more noise, adversely af-
fecting performance.

Growth Factor β Hit@1 Hit@3 Hit@10

0 0.328 0.465 0.571

0.1 0.328 0.464 0.570

0.15 0.328 0.464 0.571

0.2 0.330 0.464 0.570

0.25 0.325 0.461 0.568

0.3 0.325 0.461 0.568

0.5 0.324 0.458 0.565

0.75 0.320 0.457 0.567

1 0.323 0.457 0.566

Table 16: Results for different growth factor β in the
confidence score function.

F Inference Time
Our tests on an RTX 3090 showed that ONSEP’s
inference time (see Table 17) is about twice that
of ICL due to multiple LLM calls, but it’s still
suitable for scenarios like the ICEWS dataset where
immediate real-time responses aren’t crucial.

Model ICEWS14 ICEWS05-15 ICEWS18

InternLM2-7B-ICL (L=100) 4.16 it/s 3.14 it/s 3.37 it/s

InternLM2-7B-ONSEP (L=100) 1.94 it/s 1.47 it/s 1.66 it/s

Table 17: Inference times comparison for different meth-
ods on ICEWS datasets.
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