@inproceedings{wang-zhao-2024-tram,
title = "{TRAM}: Benchmarking Temporal Reasoning for Large Language Models",
author = "Wang, Yuqing and
Zhao, Yun",
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2024",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-acl.382/",
doi = "10.18653/v1/2024.findings-acl.382",
pages = "6389--6415",
abstract = "Reasoning about time is essential for understanding the nuances of events described in natural language. Previous research on this topic has been limited in scope, characterized by a lack of standardized benchmarks that would allow for consistent evaluations across different studies. In this paper, we introduce TRAM, a temporal reasoning benchmark composed of ten datasets, encompassing various temporal aspects of events such as order, arithmetic, frequency, and duration, designed to facilitate a comprehensive evaluation of the TeR capabilities of large language models (LLMs). We evaluate popular LLMs like GPT-4 and Llama2 in zero-shot and few-shot scenarios, and establish baselines with BERT-based and domain-specific models. Our findings indicate that the best-performing model lags significantly behind human performance. It is our aspiration that TRAM will spur further progress in enhancing the TeR capabilities of LLMs."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wang-zhao-2024-tram">
<titleInfo>
<title>TRAM: Benchmarking Temporal Reasoning for Large Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yuqing</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Reasoning about time is essential for understanding the nuances of events described in natural language. Previous research on this topic has been limited in scope, characterized by a lack of standardized benchmarks that would allow for consistent evaluations across different studies. In this paper, we introduce TRAM, a temporal reasoning benchmark composed of ten datasets, encompassing various temporal aspects of events such as order, arithmetic, frequency, and duration, designed to facilitate a comprehensive evaluation of the TeR capabilities of large language models (LLMs). We evaluate popular LLMs like GPT-4 and Llama2 in zero-shot and few-shot scenarios, and establish baselines with BERT-based and domain-specific models. Our findings indicate that the best-performing model lags significantly behind human performance. It is our aspiration that TRAM will spur further progress in enhancing the TeR capabilities of LLMs.</abstract>
<identifier type="citekey">wang-zhao-2024-tram</identifier>
<identifier type="doi">10.18653/v1/2024.findings-acl.382</identifier>
<location>
<url>https://aclanthology.org/2024.findings-acl.382/</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>6389</start>
<end>6415</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T TRAM: Benchmarking Temporal Reasoning for Large Language Models
%A Wang, Yuqing
%A Zhao, Yun
%Y Ku, Lun-Wei
%Y Martins, Andre
%Y Srikumar, Vivek
%S Findings of the Association for Computational Linguistics: ACL 2024
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F wang-zhao-2024-tram
%X Reasoning about time is essential for understanding the nuances of events described in natural language. Previous research on this topic has been limited in scope, characterized by a lack of standardized benchmarks that would allow for consistent evaluations across different studies. In this paper, we introduce TRAM, a temporal reasoning benchmark composed of ten datasets, encompassing various temporal aspects of events such as order, arithmetic, frequency, and duration, designed to facilitate a comprehensive evaluation of the TeR capabilities of large language models (LLMs). We evaluate popular LLMs like GPT-4 and Llama2 in zero-shot and few-shot scenarios, and establish baselines with BERT-based and domain-specific models. Our findings indicate that the best-performing model lags significantly behind human performance. It is our aspiration that TRAM will spur further progress in enhancing the TeR capabilities of LLMs.
%R 10.18653/v1/2024.findings-acl.382
%U https://aclanthology.org/2024.findings-acl.382/
%U https://doi.org/10.18653/v1/2024.findings-acl.382
%P 6389-6415
Markdown (Informal)
[TRAM: Benchmarking Temporal Reasoning for Large Language Models](https://aclanthology.org/2024.findings-acl.382/) (Wang & Zhao, Findings 2024)
ACL