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Abstract

Defeasibility in causal reasoning implies that
the causal relationship between cause and ef-
fect can be strengthened or weakened. Namely,
the causal strength between cause and effect
should increase or decrease with the incorpora-
tion of strengthening arguments (supporters) or
weakening arguments (defeaters), respectively.
However, existing works ignore defeasibility in
causal reasoning and fail to evaluate existing
causal strength metrics in defeasible settings.
In this work, we present δ-CAUSAL, the first
benchmark dataset for studying defeasibility in
causal reasoning. δ-CAUSAL includes around
11K events spanning ten domains, featuring de-
feasible causality pairs, namely, cause-effect
pairs accompanied by supporters and defeaters.
We further show that current causal strength
metrics fail to reflect the change of causal
strength with the incorporation of supporters or
defeaters in δ-CAUSAL. To this end, we pro-
pose CESAR (Causal Embedding aSsociation
with Attention Rating), a metric that measures
causal strength based on token-level causal re-
lationships. CESAR achieves a significant 69.7%
relative improvement over existing metrics, in-
creasing from 47.2% to 80.1% in capturing the
causal strength change brought by supporters
and defeaters. We further demonstrate even
Large Language Models (LLMs) like GPT-3.5
still lag 4.5 and 10.7 points behind humans in
generating supporters and defeaters, emphasiz-
ing the challenge posed by δ-CAUSAL.

1 Introduction

Causality (Pearl, 2009; Pearl and Mackenzie,
2018), a fundamental concept of artificial intel-
ligence, describes the relationship between two
events where one event, namely the cause, results
in the occurrence of another event, namely the ef-
fect. Understanding causality enhances decision-
making in various areas such as medicine (Kuipers
and Kassirer, 1984; Michoel and Zhang, 2022), dis-
ease treatment (Rizzi, 1994; Me and Struchiner,

Cause 
A heavy earthquake
hits this populated
city.

Supporter: It requires a lot of funding to
reconstruct a city hit by a disaster. 

Defeater: Months later, lots of neighboring
countries provide enough support for this country's
post-disaster construction. 

Effect
Years later, this country's
economy suffers as a huge
budget goes to post-
disaster reconstruction.-

+

Figure 1: A motivational example of defeasibility in
causal reasoning. It consists of a cause-effect pair, a
supporting argument (supporter), and an opposing argu-
ment (defeater) for the causal relationship.

1995), finance (Koonce et al., 2011; Tiffin, 2019),
and law (Foot, 1963; Liu et al., 2021).

Despite the importance of causality, establishing
a definite causal relationship between two events
is inherently challenging as uncertainties can in-
fluence the strength of the causality between the
cause and the effect. As the time interval between
the cause and the effect widens, these uncertainties
tend to increase. These uncertainties include incom-
plete or unseen factors, changing situations, and
contextual information. However, existing works
on causal reasoning (Qin et al., 2019; Feng et al.,
2021; Zhang et al., 2022; Wang et al., 2023) mainly
focus on definite causality while ignoring the un-
certainties inherent in causal relationships.

Motivated by this blank, we introduce the con-
cept of defeasibility in causal reasoning. Formally,
defeasibility in causal reasoning refers to situations
wherein the causal relationship between the cause
and the effect is justified, but supplementary infor-
mation might strengthen or weaken these justifica-
tions. As the example shown in Figure 1, a sup-
porter argument that “It requires a lot of funding to
reconstruct · · · ” strengthens (+) the causal relation-
ship between “the earthquake” and “the country’s
economic decline”. On the other hand, a defeater
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argument that “Months later, lots of neighboring
countries provide enough support · · · ” weakens (–)
the causal relationship. With the capacity to under-
stand defeasibility, humans can clearly perceive the
change in the causal strength brought by supporters
and defeaters.

However, prior benchmarks (Roemmele et al.,
2011; Ning et al., 2018; Sloman, 2005) on causal
reasoning mostly focus on definite relationships,
often overlooking the defeasibility of cause-effect
pairs when uncertainties arise. To bridge this gap,
we contribute the first benchmark for investigat-
ing defeasibility in causal reasoning: δ-CAUSAL.
As depicted in Figure 1, each sample in δ-CAUSAL
consists of a cause-effect pair, accompanied by its
supporter argument (A) and defeater argument (D).
A and D reinforce and undermine the causal re-
lationship between the cause and the effect, re-
spectively. We construct δ-CAUSAL from exam-
ples across ten domains: environment, business,
science, health, work, politics, education, sports,
entertainment, and travel, and use our new bench-
mark to test how well existing large language mod-
els (LLMs) can generate supporters and defeaters
for causal pairs. Our experiments reveal that state-
of-the-art pre-trained models, including GPT-3.5,
lag behind humans by up to 4.5 and 10.7 points in
generating correct supporters and defeaters, respec-
tively, which emphasizes the significant challenges
brought by δ-CAUSAL.

Furthermore, due to the lack of appropriate
benchmarks, it is difficult to determine whether ex-
isting metrics on qualifying causal strength can cap-
ture the change of causal strength brought by sup-
porters and defeaters or not. An ideal metric should
reflect the increase (or decrease) in causal strength
with the incorporation of supporters (or defeaters).
With the presence of supporters and defeaters,
δ-CAUSAL serves as an ideal touchstone for assess-
ing the efficacy of existing metrics in capturing the
causal strength change brought by supporters and
defeaters. Our experiments demonstrate that exist-
ing cutting-edge metrics like ROCK (Zhang et al.,
2022) and CEQ (Du et al., 2022), whose accuracy
are both below 50%, fail to accurately capture the
causal strength change.

To address this limitation, we propose a robust
and versatile metric for measuring causal strength,
known as CESAR, based on Causal Embedding
aSsociation with Attention Rating (CESAR). CE-
SAR builds upon a transformer-based model (De-
vlin et al., 2019) with causal embeddings. The

causal strength given by CESAR is calculated
as a weighted aggregation of token-level causal
strength, which is the association score between
a token’s causal embedding in the cause and its
counterpart in the effect. The learned weighted co-
efficients guide CESAR to prioritize strong causal
pairs like “fire” and “burn”. From the experimen-
tal results, CESAR achieves a significant 69.7%
improvement in quantifying changes in causal
strength resulting from supporters and defeaters.
It also attains state-of-the-art performance with an
11.9% improvement in distinguishing the correct
hypotheses from incorrect ones, underscoring CE-
SAR’s versatility in various causal tasks.

In summary, we make four key contributions:

• We contribute δ-CAUSAL, the pioneering
benchmark that emphasizes the often
overlooked aspect of causal reasoning:
defeasibility. It paves the road to sys-
tematically exploring defeasibility in
causal reasoning. δ-CAUSAL is available
at https://github.com/cui-shaobo/
defeasibility-in-causality.

• With the presence of the supporters and de-
featers, δ-CAUSAL serves as a valuable yard-
stick for evaluating existing metrics on causal
strength. We highlight the limitations of cur-
rent causal strength metrics in capturing the
changes in causal strength resulting from sup-
porters and defeaters.

• We propose CESAR, a robust and versatile
metric for measuring causal strength. CE-
SAR outperforms existing metrics like ROCK
and CEQ, exhibiting a remarkable 69.7% im-
provement in capturing the changes of causal
strength brought by supporters and defeaters.

• Using δ-CAUSAL, we assess the ability of ex-
isting LLMs to comprehend defeasibility in
causal reasoning. The results show that even
GPT-3.5 falls significantly short, lagging be-
hind humans by 4.5 and 10.7 points in gen-
erating accurate supporters and defeaters, re-
spectively. This underscores the significant
challenges brought by δ-CAUSAL.

2 Related Work

Comparison of δ-CAUSAL with Related Datasets.
We present the comparison between δ-CAUSAL and
related datasets in Table 1. Most commonsense
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Annotation
Unit

Size Always
Causality

#Causality
pairs

Defeater Supporter Touchstone for causal
strength metrics

Commonsense causal reasoning datasets
COPA (Roemmele et al., 2011) Sentence 1,000 1
TCR(Ning et al., 2018) Sentence 172 1
e-CARE(Du et al., 2022) Sentence 21,324 1

Counterfactual commonsense reasoning datasets
ART(Bhagavatula et al., 2020) Sentence 20,000 1
TimeTravel(Qin et al., 2019) Paragraph 29,849 2

Defeasible inference datasets
δ-NLI (Rudinger et al., 2020) Sentence 9,986 N/A

δ-CAUSAL Sentence 11,245 2

Table 1: Comparison of δ-CAUSAL and related datasets. means supported and means not.

causal reasoning datasets like COPA (Roemmele
et al., 2011) and TCR (Ning et al., 2018) focus on
definite causality, ignoring the uncertainties inher-
ent in the causal relationship. δ-CAUSAL introduces
defeasibility to cover uncertainties, enhancing its
capacity to test models in defeasible causal reason-
ing. Counterfactual datasets like TimeTravel (Qin
et al., 2019) and ART (Bhagavatula et al., 2020)
often lack consistently valid causal relationships,
presenting causality pairs based on counterfactual
events and lack the capacity to test the perfor-
mance of existing causal strength metrics. In con-
trast, δ-CAUSAL incorporates both supporters and
defeaters and thus makes itself an idea touchstone
for causal strength metrics. Lastly, while Rudinger
et al. (2020) define defeasible inference in natu-
ral language without always implying causality,
δ-CAUSAL emphasizes the causal relationship’s de-
feasibility.
Existing Evaluation Metrics on Causal Strength.
Previous literature (Luo et al., 2016b; Du et al.,
2022; Zhang et al., 2022) study the causal strength
from different perspectives. Du et al. (2022) pro-
pose a metric named Causal Explanation Qual-
ity (CEQ) score based on word co-occurrence to
measure if a given explanation could increase the
causal strength between the cause and the effect.
Zhang et al. (2022) propose a theoretical frame-
work named ROCK to measure the causal strength
from the causal inference perspective. Details
about existing causal strength metrics are present
in Appendix E.

3 Task

Research Questions. In this paper, we study
two research questions to understand defeasibility:

• Research Question I: How to estimate the
strength of causality in the setting of defea-

sible causal reasoning? Specifically, can ex-
isting metrics on causal strength accurately
capture the changes brought by supplemen-
tary information like supporters or defeaters
in defeasible causal reasoning?

• Research Question II: Can language mod-
els generate correct defeasible arguments for
given causal facts that can make the causality
less justified or more justified? Specifically,
we explore whether existing models can gen-
erate supporters or defeaters correctly.

We answer Research Question I in §5 and Research
Question II in §6.
Estimating Causal Strength for Studying Re-
search Question I. The causal strength between
event C and event E, denoted as CS(C → E), falls
in [0, 1]. It measures the intensity of the event C
causing/leading to the occurrence of event E. We
present the overall causal relationship of defeasible
causal reasoning in Figure 2.

In the context of defeasible causal reasoning, an
ideal metric on causal strength should meet the
following requirements: (i) the estimated causal
strength given by this metric should increase with
the incorporation of supporters; (ii) the estimated
causal strength given by this metric should decrease
with the incorporation of defeaters.
Supporter and Defeater Generation for Study-
ing Research Question II. Defeasibility is a
fundamental concept in many fields. In legal rea-
soning, defeasibility means a legal principle can be
overridden by a competing principle. Defeasibility
in causal reasoning implies that the validness of
causality can be less or more justified by additional
information like supporters and defeaters. With the
definition of causal strength, the defeasibility in
commonsense causal reasoning is represented as
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Figure 2: The overview of the causal relationships in
δ-CAUSAL. The symbol + indicates that the supporter A
strengthens the causal relationship between the cause C
and the effect E, while – signifies that the defeater D
weakens this relationship. The variable ∆t denotes the
time interval between the cause C and the effect E. To
ensure the practicality of identifying defeaters, this time
interval is set to long time durations.

two constraints:
{
CS(C → E)− CS((C ⊕A) → E) < 0

CS(C → E)− CS((C ⊕D) → E) > 0
(1)

where ⊕ means the combination of two events.
A and D represent supporters and defeaters, re-
spectively. The first constraint requires that the
causal strength between the cause and the effect
is strengthened by the supporter, while the second
constraint requires that the defeater should weaken
the causal strength.

Given the cause and the effect, we ask the model
to generate a supporter A or a defeater D that re-
inforces or diminishes the causal relationship be-
tween C and E as much as possible. Namely,
{
A = argmaxA[CS((C ⊕A) → E)− CS(C → E)]

D = argmaxD[CS(C → E)− CS((C ⊕D) → E)]
. (2)

4 δ-CAUSAL

4.1 Overview of δ-CAUSAL
Each instance in δ-CAUSAL consists of four compo-
nents: (1) a domain label from 10 domains includ-
ing Environment, Business, Science/Technology,
Health, Work, Politics, Education, Sports, Enter-
tainment, and Travel; (2) a cause-effect pair that is
presented with a cause, its effect, and the time inter-
val between the cause and the effect; (3) a defeater
argument that reduces the validness of or totally in-
validates the causal relationship between the cause
and the effect; (4) a supporter argument that makes
the causal relationship between the cause and the
effect more justified.

4.2 Annotation of δ-CAUSAL
Figure 3 illustrates the data annotation and refine-
ment pipeline. Initially, we gather keywords for

ChatGPT GPT-3.5

2,000 keywords
10 domains Domain+Keyword

Domain ONLY    

Cause
Effect
Time interval

Defeater
Supporter

Domains, Keywords

Cause-Effect
Pairs Defeasibility

Business
finance,

marketing,
...

Health
nutrition,
exercise,

...

... ...

Collection of cause-
effect pairs Collection of

supporters &
defeaters

Refinement

domain label
keywords

cause
time interval
effect

defeater
supporter

Figure 3: Pipeline of the annotation and refinement
procedures of δ-CAUSAL.

each domain, which guide the annotation of cause-
effect pairs on Amazon Mechanical Turk (AMT).
We also collect supporters and defeaters for these
pairs on AMT. Each annotation step is paired with
a refinement phase.
Phase I: Annotation of Cause-Effect Pairs. With-
out Keyword Hints. Annotators begin by selecting
from ten domains, as detailed in Figure 4. Within
the chosen domain, they first annotate a cause-
effect pair. To ensure the feasibility of identifying
defeaters, we impose restrictions on the selection
of time intervals to relatively long-term periods.
This practice is taken because short time intervals
often make it challenging for annotators to identify
and annotate potential defeating events effectively.
Longer time intervals provide a broader temporal
scope, allowing for the observation and annota-
tion of more complex interactions and changes that
might influence or negate the initial cause-effect
relationship. This methodological choice enhances
the richness and reliability of the annotated data
by capturing a wider range of possible outcomes
and influences over extended periods. Specifically,
annotators must specify a time interval for the ef-
fect, with options including months later, years
later, decades later, and centuries later.
For more details on time labels, see Appendix C.2.
With Keyword Hints. Our AMT data collection re-
vealed limited topic variety within domains without
keyword hints. For example, the Health domain of-
ten linked exercise to weight loss. To diversify our
benchmark, we used GPT-3.5 to generate 200 key-
words per domain (100 each from text-davinci-003
and ChatGPT) listed in Appendix C.3. Annotators
then receive a keyword as a hint and craft a related
cause-effect pair within the domain.
Phase II: Annotation of Supporters and De-
featers. We ask annotators to write the supporter
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Figure 4: The distributions of time intervals and do-
mains in δ-CAUSAL. Different colors represent different
time intervals (inner circle) and domains (outer circle).
Detailed values and proportions are provided in Ap-
pendix C.2.

and the defeater simulataneously. The supporter
can be a conceptual explanation or fact that sup-
ports the causal relationship, while the defeater
should provide evidence for the opposite thesis of
the effect or evidence that undercuts the effect (Pol-
lock, 1987). A defeater can also be an event or a
circumstance that makes the causality between the
cause and the effect unjustified or less justified.

4.3 Refinement of δ-CAUSAL

We enhance the benchmark quality through sys-
tematic refinement stages. Initially, we eliminate
samples written randomly: several annotated ex-
amples either contain repetitive wording or merely
echo the instructions. Subsequently, we undertake
two Mechanical Turk (AMT) refinement phases:
refining cause-effect pairs and refining supporters
and defeaters.
Phase III: Cause-Effect Pair Refinement. We
task annotators to assess the validity and timing of
the cause-effect relationships. Each cause-effect
pair is judged by three annotators. To ensure the
quality, each assignment includes a gold cause-
effect pair with a known label. Any assignments
whose gold examples are incorrectly labeled are
disregarded. We retain annotations if: (i) No an-
notation is discarded and a majority deem it true;
(ii) one annotation is discarded for misjudging the
gold example, while the remaining two validate the

evaluated sample.
Phase IV: Refinement of Supporters and De-
featers. Three annotators determine whether
the supporter/defeater enhances or diminishes the
causal connection. Each task has a defeasibility
pair with a known label and another for assessment.
Similarly, as in Phase III, we only keep the assign-
ments whose majority of the filtered votes are true.

4.4 Overall Quality of δ-CAUSAL

In order to assess the quality of δ-CAUSAL, we ran-
domly select 200 samples from δ-CAUSAL and ask
three NLP experts (see details in Appendix D.3) to
assess the validity of these samples from the fol-
lowing three perspectives: validness of causality,
supporter, and defeater. The assessment result is
shown in Table 6. We achieve an average accu-
racy Accuracy ≥ 92% with a high agreement. This
shows that δ-CAUSAL is of good quality.

4.5 Statistics of δ-CAUSAL

The statistics of δ-CAUSAL are shown in Table 2.
More details are in the Appendix. Specifically,

Statistics

Overall
# Causality pairs 8,080
# Supporters 11,245
# Defeaters 11,245
Train/Dev/Test 7,000/2,276/1,969

Length of utterances
Average length of causes 9.50
Average length of effects 9.60
Average length of supporters 9.10
Average length of defeaters 10.39

Table 2: Statistics of δ-CAUSAL. More details about
δ-CAUSAL are shown in Appendix C.

Appendix A is the qualification rules for annota-
tors. Appendix B elaborates the gold examples
and guidelines we use during dataset collection.
Appendix C is more about statistics of δ-CAUSAL.

5 Estimating Causal Strength

In this section, we address Research Question I on
causal strength. We first highlight the limitations
of current metrics in § 5.1. Then, we detail the def-
inition, comparison with other metrics, versatility,
and case study of CESAR from § 5.2 to § 5.5.

5.1 Limitations of Existing Metrics

δ-CAUSAL works as a solid touchstone to test ex-
isting metrics for evaluating causal strength. As
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Figure 5: The shifts in causal strength distributions facilitated by CEQ (left), ROCK (middle), and CESAR (right)
with the incorporation of supporters and defeaters are illustrated in δ-CAUSAL. These curves utilize kernel density
estimation (Parzen, 1962) to depict the data distribution as a continuous probability density curve. Notably, only
CESAR effectively captures the variations in causal strength triggered by the inclusion of supporters and defeaters;
specifically, the causal strength distribution shifts to the right with supporters and to the left with defeaters.

mentioned earlier, in δ-CAUSAL, a supporter is ex-
pected to increase the causal strength between the
cause and the effect, while a defeater is expected to
decrease the causal strength, as depicted in Equa-
tion (1).

Supporter Defeater Geometric
mean

CEQ 83.1 17.5 38.1
ROCK 32.5 68.6 47.2

CESAR (ours) 84.6 75.8 80.1

Table 3: Accuracy of causal strength metrics on
δ-CAUSAL: For supporters, correct predictions occur
when the metric assigns a higher score to the cause-
supporter combination. For defeaters, predictions are
correct if the metric assigns a lower score to the cause-
defeater combination. The geometric mean is calculated
based on the accuracy of supporters and defeaters.

The accuracy of metrics on δ-CAUSAL for cap-
turing causal strength changes by supporters and
defeaters is detailed in Table 3. CEQ sees 83.1%
of supporters as strengtheners, but wrongly views
82.5% of defeaters as such. Conversely, ROCK
incorrectly sees 67.5% of supporters as weakeners.
These results highlight the limitations of existing
metrics and emphasize the need to develop more
robust evaluation metrics for causal strength.

5.2 CESAR: Causal Embedding ASsociation
with Attention Rating on Causal Strength

Motivation: Causality-aware Embedding and
Attention. The causal strength between two
events can be quantified as the weighted aggre-
gation of the causal relationship between tokens
within these events (Luo et al., 2016b). For in-
stance, in events “Fire starts” and “House burns”,
“fire” and “burns” drive a causal relationship. In-
spired by BERTScore (Zhang et al., 2020), we

fine-tune BERT embeddings to capture token-level
causality so that tokens delivering a strong causal
relationship, like “fire” and “burns”, have embed-
dings that are highly associated. The motivation for
the attention mechanism is that we wish to place
less attention on pairs that consist of causality irrel-
evant words(e.g., stop words) and more attention
on pairs involved in a strong causal relationship
like “fire” and “burns”.
Attention Computation. On top of the BERT
model, we add a customized attention layer that
identifies the important token pairs for evaluating
the causal strength. The attention scores for token
pairs are calculated through a specifically adjusted
cross-attention layer on the top of the BERT model.
Let d be the dimension of BERT model; C and E
be tokenized to n and m tokens respectively, i.e.,
C ∈ Rn×d and E ∈ Rm×d. We compute query
vectors as Q = CWq and key vectors as K =
EWk, where Wq,Wk ∈ Rd×d. Then, the matrix
of attention scores for token pairs is calculated as
A = softmax

(
QKT

)
, where A ∈ Rn×m, and

softmax is performed over all values of the matrix,
i.e., softmax(Aij) =

exp (Aij)∑
i,j exp (Aij)

.
Weighted Average of Causal Embedding Asso-
ciation. We propose the following formula for
computing the causal strength between C and E:

CS(C → E) =

n∑

i=1

m∑

j=1

aij
|cTi ej |

∥ci∥∥ej∥
(3)

where c1, c2, . . . , cn and e1, e2, . . . , em are
causal embeddings of tokens in C and E, respec-
tively. These embeddings are generated by the last
hidden layer of fine-tuned BERT. The weight aij
is the attention put on each token pair of ci and
ej such that

∑
i,j aij = 1. We compute the abso-

lute cosine similarity between causal embeddings
for each pair of tokens and calculate the score as
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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Figure 6: We define three matrices based on Equation (3). (i) Causal Embedding Association Matrix (M) in
the left column: Mij measures the causal association between embeddings ci and ej as Mij =

|cTi ej |
∥ci∥∥ej∥ . (ii)

Causality-Aware Attention Matrix (A) in the middle column: A stores the attention weights of each token pair
given by Aij = aij . (iii) Causal Strength Matrix (S) in the right column: S is the Hadamard product between

M and A. That is, Sij = MijAij = aij
|cTi ej |

∥ci∥∥ej∥ . The upper row of this figure shows the values of M, A, and S

derived from the cause-effect pair wherein the cause is “Fire starts.” and the effect is “House burns.” Conversely,
the lower row presents the values of M, A, and S when the cause is “Fire does not start.” and the effect is “House
burns.”. The y-axis denotes cause tokens, and the x-axis represents effect tokens. The causal strength, calculated
from Equation (3), is shown in the title of the rightmost matrices for both pairs.

the average of these token-level causal associations
weighted by the learned attention.

Training Procedure. We train the CESAR metric
on the augmented e-CARE dataset (Du et al., 2022).
It contains cause-effect pairs with a conceptual ex-
planation designed to increase the pair’s causal
strength. Specifically, we set CS(C → E) to 0.7
and CS(C ⊕H → E) to 1.0 where H is the expla-
nation for the causal relationship between C and
E. For pairs with no causal relationship, we set the
causal strength to 0.0. Further, we use ChatGPT to
generate opposites of the conceptual explanations
provided in e-CARE and set CS(C ⊕ ¬H → E)
to 0.2 where ¬H is an opposite of the conceptual
explanation for C and E. We train CESAR for 4
epochs with AdamW optimizer (Loshchilov and
Hutter, 2019) with a linear scheduler, learning rate
1e-5, and MSE loss.

Experimental Results. The experimental results
are shown in Table 3. It is evident that CESAR
outperforms CEQ and ROCK significantly on both
supporters and defeaters, achieving an accuracy of

84.6% and 75.8%, respectively. Furthermore, we
use the geometric mean of the accuracy achieved in
supporters and defeaters as the index of the overall
performance for each metric. From Table 3, we can
see that both CEQ and ROCK attain a geometric
mean accuracy of less than 50%, In contrast to this
poor performance, our proposed CESAR obtains a
superior accuracy of 80.1%.

5.3 Shift of Causal Strength Distributions
with Supporters and Defeaters

In Figure 5, we plot the shift of causal strength
distribution with the incorporation of supporters
and defeaters for CEQ, ROCK, and CESAR (ours).
For CEQ in Figure 5a, both supporter and defeater
distributions shift rightward. This means CEQ per-
ceives any supplementary information as support-
ing the original cause-effect relationship, regardless
of its actual impact on causal strength. For ROCK
in Figure 5b, both distributions lean left, suggest-
ing ROCK sees all supplementary information as
opposing the original cause-effect relationship.

For CESAR, the supporter distribution shifts
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right while the defeater distribution shifts left.
This is the anticipated behavior for a good causal
strength metric, capturing the contrasting effects of
supporters and defeaters.

5.4 Versatility of CESAR

To additionally investigate the versatility of CE-
SAR, we test CESAR on COPA (Roemmele et al.,
2011) and show the results in Table 4. The accuracy
reflects whether the tested causal strength metric
gives a larger value to the causal strength of true
cause-effect pairs than that of the false cause-effect
pairs. CESAR achieves an accuracy of 70.7%, once
again significantly outperforming both ROCK and
CEQ. This proves the generalness of CESAR in
estimating the causal strength.

Metrics CEQ ROCK CESAR (ours)

Accuracy 57.8 63.2 70.7

Table 4: Results of CESAR’s versatility, which is about
distinguishing the true cause-effect pairs from the false
cause-effect pairs on COPA (Roemmele et al., 2011).

5.5 Case Study of CESAR

Figure 6 illustrates the adaptation of values in
Equation (3) when the cause is altered. In the
upper row with inputs C = “Fire starts.” and
E = “House burns.”, the token causal embeddings
of “fire” and “burns” have a high association score
of 0.82. Also “starts” and “burns” demonstrate
a strong association score of 0.72. Interestingly,
a notable amount of attention is paid to the lat-
ter pair, whose association score is a key deter-
minant of the causal strength score. Using Equa-
tion (3), we obtain a causal strength of 0.72, which
signifies a strong causal relationship between C
and E. In the lower row, with a modified cause
C = “Fire does not start.” and the same effect E,
the token pair associations of “fire” and “burns”,
and “start” and “burns” remain high. However, CE-
SAR’s attention mechanism adjusts the importance
of tokens in terms of the causal relationship be-
tween two sentences in the right direction. Namely,
the causal strength undergoes a reduction of over
65%, resulting in a score of 0.25 that indicates a
weak causal relationship.

Details on setup, score computation, preparation
of the training data, and an extensive ablation study
of CESAR are in Appendix F.

6 Supporter and Defeater Generation

In this section, we answer Research Question II
about existing SOTA models’ ability in supporter
and defeater generation by extensive experiments.

Model BLEU METEOR ROUGE-L CIDEr BERT-Score

Supporter generation
BART 7.71 12.90 16.72 0.397 54.0
T5 6.92 11.89 15.94 0.360 52.5
T5-large 7.90 12.55 17.27 0.440 54.2
GPT-2 6.62 11.81 14.95 0.357 52.4
GPT-3.5 3.17 10.97 9.93 0.094 48.0

Defeater generation
BART 7.53 11.15 16.63 0.345 51.8
T5 6.83 10.89 15.83 0.279 51.5
T5-large 7.37 10.90 16.48 0.325 52.1
GPT-2 6.71 10.38 15.32 0.257 50.9
GPT-3.5 5.24 10.86 15.27 0.205 50.0

Table 5: Results of supporter and defeater generation
with different language models.

Setup. We finetune generative pre-trained lan-
guage models BART (Lewis et al., 2020), T5 (Raf-
fel et al., 2020), T5-large, and GPT-2 (Radford
et al., 2019). These models take the concatena-
tion of the cause and the effect as the input. The
output is the supporter or the defeater. See details
about the baselines and experimental setup in Ap-
pendix D. We automatically evaluate the generated
supporters/defeaters using BLEU (n = 2) (Pap-
ineni et al., 2002), METEOR (Banerjee and Lavie,
2005), ROUGE-L (Lin, 2004), CIDEr (Vedantam
et al., 2015), and BERT-Score (Zhang et al., 2020).
Results and Analysis. The results of the supporter
and defeater generation are shown in Table 5. It
shows that existing LLMs perform unsatisfyingly
in generating supporters and defeaters. Notably, we
see that even GPT-3.5 (one-shot performance) does
not achieve a high score based on existing gener-
ation metrics. This implies that existing metrics
cannot adequately address the evaluation objective.
Motivated by this, we employ a human evaluation
to assess the quality of the generated supporters
and defeaters from humans and GPT-3.5.

% validness % agreement

Quality of cause-effect pairs
94.67 89.00

Quality of supporters
Human 92.67 83.00
GPT-3.5 88.17 73.50

Quality of defeaters
Human 94.50 81.50
GPT-3.5 83.83 69.50

Table 6: Comparison between humans and GPT-3.5 on
supporter and defeater generation by human evaluation.
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Comparison between Humans and GPT-3.5 on
Defeater and Supporter Generation by Human
Evaluation. Three NLP experts (details in Ap-
pendix D.3) are asked to judge the validness of the
generated supporters and defeaters from GPT-3.5
and annotators. From the results in Table 6, we
can observe that existing large pre-trained mod-
els can not generate supporters and defeaters well.
Even the large language model GPT-3.5 still lags
behind humans by 4.5 points, i.e., 88.17% (GPT-
3.5) vs. 92.67% (humans), in generating credible
supporters. Even worse, it lags 10.7 points behind
humans, i.e., 83.83% (GPT-3.5) vs. 94.50% (hu-
mans) in generating plausible defeaters. Some-
times, the model negates the effect rather than pro-
viding supplementary information to make it less
justified. This demonstrates the challenges posed
by δ-CAUSAL.

7 Conclusions

Our paper introduces δ-CAUSAL, a pioneering
benchmark that focuses on the often overlooked
aspect of causal reasoning: defeasibility. Even
state-of-the-art models like GPT-3.5 fall signifi-
cantly short compared to human performance in
understanding defeasibility shown by δ-CAUSAL.
We further demonstrate the limitations of current
causal strength metrics in capturing causal strength
changes brought by supporters and defeaters. To
circumvent these limitations, we propose CESAR,
a robust metric that outperforms existing measures
by a remarkable 69.7% improvement in captur-
ing these changes. Our research contributes to the
advancement of causal reasoning by emphasizing
defeasibility and providing valuable insights for
improving language models’ understanding of nu-
anced causal relationships. This work establishes a
foundation for future studies on developing more
advanced defeasible causal reasoning systems.
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Limitations

Despite our work’s significant contributions, such
as providing the first benchmark dataset for defeasi-
ble causal reasoning and introducing a novel causal
strength metric, several acknowledged limitations
still need to be addressed. First and foremost, the
causal strength change resulting from supporters
and defeaters is currently described qualitatively
rather than quantitatively. This limitation hinders
the quantitative application of δ-CAUSAL as it be-
comes challenging to precisely assess the exact
magnitude of the causal strength change caused by
supporters and defeaters. Consequently, it is diffi-
cult to use δ-CAUSAL to quantify and measure the
precise impact of these factors on causal reason-
ing. Secondly, the domains covered by δ-CAUSAL
remain limited in scope. Expanding the applicabil-
ity of δ-CAUSAL to include other domains such as
medicine or chemistry would enhance its versatility
and make it more relevant to a broader range of re-
search and practical applications. By incorporating
additional domains in the future, we can evaluate
the performance and effectiveness of δ-CAUSAL in
various contexts, ensuring its robustness and gener-
alizability. In conclusion, while our work has made
notable contributions, it is essential to address these
known limitations to enhance the quantitative us-
age and domain coverage. By doing so, we can
advance the field of defeasible causal reasoning
and strengthen the practical utility of our proposed
metric on causal strength.

Ethical Considerations

We foresee no major ethical concerns for this work.
As we know, causality contains various aspects of
daily life. Bad things lead to negative results. But
we take the following steps to make sure that the
δ-CAUSAL contains harmful/toxic content as little
as possible. Firstly, a clear and understandable
guide is given for annotations. After that, all of
these annotated examples are followed up with a re-
finement process to filter out bad examples. Finally,
we manually check whether the annotations con-
tain keywords that convey harmful, toxic, violent,
or erotic meanings. However, we acknowledge
that these steps are not perfect. δ-CAUSAL is under
MIT License. Our paper involves other datasets,
including e-CARE (Du et al., 2022), which is under
MIT License, and COPA (Roemmele et al., 2011),
which is under BSD 2-Clause License.
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A Qualification of Annotators

For the collection of δ-CAUSAL, we expect it to
have diversity while maintaining good quality. To
achieve this requirement, we need to include more
annotators while ensuring the quality of their anno-
tations.

In the collection process, we set the qualification
that the annotators should have a HIT acceptance
rate greater than 97 and a number of HITs approved
greater than 10,000, which is a more general qual-
ification rule to incorporate more annotators into
our dataset collection process. This step ensures us
a diversified dataset. During the refinement step,
we maintain a group of annotators (38 annotators)
who understand our task well, we got this qualified
annotator list by doing a toy collection of over 500
samples. Additionally, to ensure that we can justify
the quality of each refinement assignment, we as-
sign each assignment to three annotators. Each as-
signment is composed of a golden example, which
we know is true or false, and the example needs
testing. Besides, as we focus on the English corpus,
we set the country of residence to the USA and
UK.

In summary, we use general qualifications in the
collection and more specific qualified groups in the
refinement. In this way, we emphasize diversity in
the collection and accuracy in the refinement.

B Details of Dataset Collection

In this section, we present the guidelines and illus-
trative examples we give the annotators in detail.

B.1 Annotation of Cause-Effect Pairs

Guideline of Annotation. Here we take the anno-
tation of cause-effect pairs with hints of keywords
as the instance. The annotation without keywords is
similar except that the keywords are not given. For
each annotating example (HIT in Amazon Turk),
we assign a domain and one keyword to the anno-
tator and ask them to write a cause and its effect.
To ensure that they write the effect, we explicitly
require them to select a time interval for the effect
from months later, years later, decades
later and centuries later.
Illustrative Examples. The illustrative examples
we give for each domain for the cause-effect pairs
are as follows 1:
Domain of Environment

1Only the cases with hints of keywords are given. The
cases without hints of keywords are similar

1. keyword: natural disaster.
Cause: A tsunami hits the west coast.
Effect: Years later, homelessness and mental
health issues arise.

2. keyword: natural disaster.
Cause: An earthquake happens in the city.
Effect: Years later, the city commemorates
earthquake victims with charity events.

Domain of Politics

1. keyword: political-party.
Cause: Tom founded this party with the hope
of leading people to a better life.
Effect: Centuries later, it becomes the world’s
oldest active political party.

2. keyword: election.
Cause: The senator made a racist remark.
Effect: Months later, the senator’s remarks
cost him an election.

Domain of Travel

1. keyword: resort.
Cause: Tourists throw rubbish everywhere at
the scenic spot.
Effect: Years later, fewer and fewer tourists go
to this scenic spot.

2. keyword: trip.
Cause: A young tourist is very happy after
visiting Lausanne.
Effect: Decades later, this tourist revisits the
old place, remembering the good old days.

Domain of Entertainment

1. keyword: art.
Cause: The artist signs a recording contract.
Effect: Years later, the artist becomes a star
and is popular among people.

2. keyword: movies.
Cause: The plot of the newly released film is
very intriguing.
Effect: Decades later, this movie has been
remade several times, and is known around
the world.

Domain of Sports

1. keyword: soccer.
Cause: The government is determined to
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make deep changes to professionalize its soc-
cer and bring players closer to the global stan-
dard.
Effect: Decades later, the soccer team won the
World Cup finally.

2. keyword: doping.
Cause: The athlete has been caught doping in
the Olympics.
Effect: Years later, the athlete falls sick and
retires from sports.

Domain of Education

1. keyword: school.
Cause: Tom’s parents decide to let Tom enroll
in a famous but expensive school.
Effect: Years later, Tom is well-educated and
is thankful for his parents’ efforts.

2. keyword: major.
Cause: Tom changes his major from mathe-
matics to computer science.
Effect: Decades later, Tom becomes a senior
software engineer in an IT company.

Domain of Health

1. keyword: lifestyle habits.
Cause: John started smoking.
Effect: Decades later, John suffers from heart
disease and stroke.

2. keyword: health problems.
Cause: John got COVID-19.
Effect: Months later, John can still recall the
bad feeling of having COVID-19.

Domain of Work

1. keyword: career success.
Cause: She has found her routine for a pro-
ductive day at work.
Effect: Years later, she gets a chance for pro-
motion because of her hardworking.

2. keyword: career change.
Cause: The company’s new launch date puts
employees under pressure.
Effect: Months later, many employees have
decided to leave.

Domain of Business

1. keyword: start-up.
Cause: This newly opened coffee shop de-
cides to attract students.

Effect: Months later, this coffee shop is the
most favorite place for students to socialize.

2. keyword: strategy.
Cause: This company decides to expand its
business overseas.
Effect: Decades later, this company is alive
and well, and it is still renowned worldwide
as the oldest company.

B.2 Annotation of Defeasibility

Guideline of Annotation. Firstly, the annotators
are asked to write a supporting argument that could
be the conceptual explanation behind the long-term
effect. For the defeated arguments, we ask the anno-
tators to note that with the defeater event, the effect
doesn’t hold any more or the effect is weakened
by this defeater event. Additionally, the annotators
have to specify the time interval after which the
defeater happens relative to the given cause.
Illustrative Examples. The illustrative examples
we give for the defeasibility annotations are as fol-
lows:

1. Cause: The soccer team receives lots of fund-
ing.
Effect: Years later, the soccer team wins the
soccer league championship.
Supporter: Soccer teams can hire excellent
coaches and players with adequate funding.
Defeater: Months later, the funding is wasted
on corruption.

2. Cause: Tourists throw rubbish everywhere at
the scenic spot.
Effect: Months later, fewer and fewer tourists
go to this scenic spot.
Supporter: Spots with rubbish are dirty, and
people don’t like dirty places.
Defeater: Volunteers pick up the trash thrown
by tourists every day to keep the site clean.

3. Cause: John started smoking.
Effect: Decades later, John suffers from heart
disease and stroke.
Supporter: The nicotine in tobacco can dam-
age the heart.
Defeater: Nicotine has been shown to soothe
the heart.

4. Cause: The artist signs a recording contract.
Effect: Years later, the artist becomes a star
and is popular among people.
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Supporter: Artists who signed contracts usu-
ally work hard to release albums.
Defeater: The artist is lazy and rests on his
laurels.

C Details of Statistics of δ-CAUSAL

In this section, we present more details about
the statistics of δ-CAUSAL, including the sentence
length distributions of supporters and defeaters (Ap-
pendix C.1), time interval distribution (Ap-
pendix C.2), and keywords (Appendix C.3).

C.1 Details of Sentence Length

We plot the comparison of distributions of sen-
tence length of supporters and defeaters in Fig-
ure 7. Compared with supporters, defeaters are
always associated with more complicated logic as
they need to provide supplementary information to
overturn or attenuate the causal relationship. How-
ever, supporters are relatively simple for human
annotators as they only need to think out the back-
ground knowledge to provide more support for the
causality relationship.
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Figure 7: Comparison of sentence length distributions
between supporters and defeaters.

C.2 Details of Time Interval Distribution in
Cause-Effect Pairs

The details of the time interval distribution in cause-
effect pairs are shown in Table 7 and Figure 8. As
we can see, most time intervals fall into months
later, years later and decades later. The
portion of centuries later is relatively small.
This is reasonable as it is difficult for annotators
to think out some causes whose effect event hap-
pens after centuries. Besides, we find each domain
has different time label distributions. For instance,
most centuries later labels fall into the domain
of Environment.

Domains Overall Months Years Decades Centuries

Environment 1,118 393 455 231 39
Business 1,094 517 487 90 0
Sci-Tech 1,013 353 496 140 24
Health 1,260 601 486 168 5
Work 1,259 795 380 83 1
Politics 1,019 538 371 96 14
Education 1,195 438 634 121 2
Sports 1,151 548 509 88 6
Entertainment 1,068 553 434 80 1
Travel 1,068 682 300 75 11

Total 11,245 5,418 4,552 1,172 103

Table 7: Statistics of time intervals in δ-CAUSAL. From
the statistics, we can observe that our dataset is even
over different domains. Besides, we found that the num-
ber of annotations for centuries later is relatively small,
which agrees with our intuition as the effect that hap-
pens centuries later is difficult to estimate and annotate.
From the distribution of δ-CAUSAL over different time
intervals, we can conclude that δ-CAUSAL is a compre-
hensive and unbiased dataset covering different domains
and agrees quite well with the temporal characteristics in
commonsense causalities of different domains. Specifi-
cally, it is more likely to obtain long-term effects in the
domain of Environment, Science and Technology, and
Politics than in other domains like Sports, which agrees
well with human commonsense.

C.3 Details of Keywords

For these keywords in § 4.2, we plot the word cloud
of each domain in Table 8. We could clearly ob-
serve that incorporating hint words into the anno-
tation process broadens the range of topics and
makes δ-CAUSAL a comprehensive dataset that cov-
ers various aspects of commonsense knowledge. It
shows the necessity of introducing keywords into
the annotation of δ-CAUSAL.

D Details of Experiments on Supporter
and Defeater Generation

In this section, we give more details about the
experiments of supporter and defeater generation.
Specifically, we present the setup in Appendix D.1.
After that, we elaborate on the training details in
Appendix D.2. Finally, we present the details of
the human evaluation, i.e., NLP experts, in Ap-
pendix D.3.

D.1 Setup

In the causal defeasibility generation experiment,
models are trained to generate either the supporter
or the defeater given the cause and the effect
(with time interval prepended). For sequence-to-
sequence models, the encoder input is to use the
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Domain Wordcloud Domain Wordcloud

Business Education

Entertainment Environment

Health Politics

Science Sports

Travel Work

Table 8: Word cloud of each domain’s keywords.
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Figure 8: The distribution of time intervals in δ-CAUSAL. We can observe that for each domain, the distribution
over time label shows some variations and similarities. For instance, in the domain of environment, the portion
of time labeled “centuries later” is relatively higher. Besides, for almost all the domains, the causalities with the
time intervals of “months later” and “years later” are the most common. Besides, we could find that the causality
is almost even distributed into different domains. This proves that δ-CAUSAL is a comprehensive dataset covering
different domains in daily life.

Model Input format

BART <s> C </s></s> E </s>
T5 Pc C </s> Pl E </s>
GPT-2 Pc C Pl E Pd

T5-large Pc C </s> Pl E </s>

Table 9: Input format of each model in causal de-
feasibility generation task. Pc = "cause:", Pl =
"long-term effect:", E is the effect prepended with the
long time interval. For example, El could be "Months
later, mental health issues arise.". C is the cause of the
effect. These models have different suggestions for in-
put format. To achieve the best performance, we follow
the official suggestions in their original papers. This
is the reason why we use different input formats for
different models.

text prefixes Pc and Pl for the cause and long-term
effect. For the causal language model GPT-2, we
use the text prefix Pd for defeasibility, which could
be either "assumption:" or "defeater:" depending
on the task. The input format for all models in-
volved is shown in Table 9. The versions of all
the packages, tools (scientific artifacts) are listed
in the requirements.txt, which is included in
our code repository. The code repository is at-
tached as the supplementary zip file. The major
tools we use include PyTorch 2 (BSD-3 License)

2https://pytorch.org/

and transformers 3 (Apache License 2.0). Our
proposed dataset δ-CAUSAL (MIT License) will be
released to the public after this paper’s acceptance.
Besides, the other datasets we use, e-CARE (MIT
License) (Du et al., 2022) and COPA (BSD 2-
Clause License) (Roemmele et al., 2011), are both
publicly available and open-source.

D.2 Training Details

We fine-tune BART-base (140M), GPT-2 (117M),
T5-base (223M), and T5-large (783M) models.
We use the Huggingface Trainer default optimizer
AdamW for training. All models are optimized
with a batch size of 32 (8 for each GPU) and fine-
tuned for 3 epochs. The learning rate is set to 1e-5
for the BART and GPT-2 models and 3e-4 for the
T5-base and T5-large models. The experiments of
generation on δ-CAUSAL are conducted by a single
run. The prompt experiments for keyword gen-
eration and CTCW are conducted with different
prompts to search for the best prompts. All of
the experiments are run with a machine with four
GPUs. All of these GPUs are NVIDIA TITAN X
(Pascal) with a memory size of 12,288MB. The ran-
dom seeds for the single run experiments in both
defeater/supporter generation and CESAR are set
as 42.

3https://huggingface.co/docs/transformers/index
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D.3 Details of NLP Experts in Our Evaluation
All of these three NLP experts are graduate students
whose major research interests are natural language
processing. All of them have taken advanced NLP
courses and have relative research experience and
two of them have papers in the domain of NLP.

E Details of Existing Causal Strength
Metrics

In this section, we mainly introduce the details of
existing metrics on causal strength.
Causal Explanation Quality (CEQ) Score. The
causal strength in CEQ (Du et al., 2022; Luo et al.,
2016a) is defined as:

CS(C → E) =
1

NC +NE

∑

wi∈C,wj∈E
cs(wi, wj)

(4)
where NC and NE are the number of words in C
and E. cs(wi, wj) is the causal strength between
these two words: cs(wi, wj) =

Count(wi,wj)
Count(wi)Countα(wj)

,
where wi is from the cause event while wj is from
the effect event. The term Count(wi, wj) denotes
the frequency with which wi and wj co-occur in
causal statements, while Count(wi) indicates the
total number of appearances in such sentences.
ROCK. ROCK (Zhang et al., 2022) defines a
causal strength metric from the perspective of
causal inference (Hernán and Robins, 2010):

CS(C → E) = Ex[P(C ≺ E|x)− P(¬C ≺ E|x)]

≈ f(C,E)− 1

|A′|
∑

A∈A′
f(A,E)

(5)

where x is the confounder of the cause event and
the effect event. ¬C is the intervention of the cause
C. f(C,E) is an estimate for P(C ≺ E), i.e.,
the probability of C happens before E. A′ is the
Lp-constrained set for the generated interventions
conditioned on confounders: A′ := {A ∈ A :
1
|X |∥q(x;A) − q(x,C)∥2 ≤ ϵ}, where the set A
contains generated interventions ¬C and X is the
set of the generated confounders x. ϵ is the thresh-
old. q(x;E) is the temporal propensity measuring
the conditional probability of the event E given an
event x.

F More Details of CESAR

In this section, we present more details of CE-
SAR. Specifically, we present its setup in Ap-
pendix F.1, its score computation pipeline in Ap-
pendix F.2, preparation of CESAR’s training data

in Appendix F.3, discussion of the concatenation
operation in Appendix F.4, and ablation study in
Appendix F.5.

F.1 Setup of CESAR
The CESAR model consists of a BERT (De-
vlin et al., 2019) model reinforced with the
causality-aware attention layer. We utilize the pre-
trained bert-large-uncased model from Hug-
ging Face (Wolf et al., 2020). This BERT model
has an embedding dimension d of 1024. Thus,
causality-aware attention has two learnable weight
matrices Wq,Wk ∈ R1024×1024. The input to the
model is the output of the respective tokenizer for
the bert-large-uncased model. Specifically, we
jointly preprocess the given cause C and the given
effect E with the tokenizer, which produces the
respective input_ids with appropriately added spe-
cial tokens. token_type_ids of C are marked with 0
and token_type_ids of E are marked with 1. atten-
tion_mask is also included so that the model avoids
attending on [PAD] tokens. Hence, the model input
consists of input_ids, token_type_ids, and atten-
tion_mask. The maximal input size for the CESAR
model is 512 tokens including [CLS] and [SEP]
which are appended at the beginning and the end
of the sequence, respectively.

F.2 Score Computation
The CESAR score is computed in several stages.

1. we extract the token embeddings from the
BERT’s last hidden layer:

(C+E) = BERT(input_ids,

token_type_ids,

attention_mask).

Since we jointly preprocess cause and ef-
fect, BERT also jointly produces embeddings
for tokens of the cause and effect. Hence,
(C+ E) ∈ R(n+m)×d, where n is the length
of the cause while m is the length of the ef-
fect. In this setting, token_type_ids suggests
to BERT which tokens belong to cause and
which belong to effect.

2. Based on token_type_ids and attention_mask,
model separates embeddings to C ∈ Rn×d

and E ∈ Rm×d. Next, embeddings are
given to the causality-aware attention layer,
where we obtain query Q = CWq and key
K = EWk vectors. These vectors give us

6449



the attention scores for token pairs as A =
softmax

(
QKT

)
where softmax is performed

over all values of the matrix (not only over a
single dimension as in the conventional atten-
tion layers).

3. The causal strength value given by CESAR is
calculated as follows,

CS(C → E) =

n∑

i=1

m∑

j=1

aij
|cTi ej |

∥ci∥∥ej∥
(6)

where ci ∈ C and ej ∈ E represent causal em-
beddings of tokens of C and E respectively,
and aij ∈ A is the attention weights put on
each pair of tokens. Please note that we keep
[CLS] and [SEP] special tokens when com-
puting the causal strength with CESAR. As
a result, the first token of cause representa-
tion is always a [CLS] token. See Section F.5
for more details about the roles of these two
special tokens.

F.3 Preparation for Training Data

Training Data. We train the CESAR metrics on
the augmented e-CARE dataset (Du et al., 2022).
We consider both the dev and train parts of e-
CARE and combine them into a single dataset.
This dataset contains causal-effect sentence pairs
with a conceptual explanation for each cause-effect
pair. Accordingly, with the conceptual explana-
tion, the causal strength between the cause and
the effect increases. Motivated by this fact, we
set the causal strength as CS(C → E) = 0.7 and
CS(C⊕H → E) = 1.0 where H is the conceptual
explanation for why C leads to the occurrence of E.
The dataset also includes pairs of sentences with
no causal relationship, we set the causal strength of
these non-causal event pairs to 0.0. Lastly, in order
to replicate the decreasing effect that defeater has
on causal strength as proposed in the δ-CAUSAL, we
use ChatGPT to generate semantic opposites from
the conceptual explanations provided in e-CARE
and set CS(C ⊕¬H → E) = 0.2 where ¬H is an
opposite of the conceptual explanation for C and
E. ¬H is generated by ChatGPT and the prompt
given to ChatGPT to generate this semantic oppo-
site is shown in the next paragraph. The training
dataset constructed in this manner consists of a to-
tal of 68,220 examples. The discussion about the
impacts of these various types of data samples is
described in Appendix F.5.

Data Augmentation with ChatGPT. As de-
scribed in the aforementioned part, in order to
imitate the decreasing effect of the defeaters in
δ-CAUSAL, we use ChatGPT to generate sentences
that have opposite meanings from the conceptual
explanation provided in the e-CARE dataset. To
be more specific, we use OpenAI’s API 4 and the
gpt-3.5-turbo model with a temperature set to 0.9.
The prompt provided to the gpt-3.5-turbo model
stands as follows:

You are a helpful assistant that helps to
find the opposite of the given sentence.
The real truth is not important just
the resulting sentence must be of
the opposite meaning, negating the
information that the given sentence
tries to convey. Try to not give a
simple negation. Output ONLY the
resulting sentence, nothing else. For
example for the prompt: "Friends
join communities.", the output should
be: "Friends avoid communities."
Also for the prompt: "Sulfonamides
cause hemolysis less commonly.", the
output should be "Sulfonamides cause
hemolysis more commonly.". Another
example would be that for the prompt:
"Homelessness greatly increases the
likelihood of a suicide attempt.", the
output is: "Homelessness greatly
decreases the likelihood of a suicide
attempt." The last example is that
for the prompt: "Production occurs
in dense regions.", the output must
be: "Production occurs only in sparse
regions.

"Products cause slow growth."

The resulting response to the above prompt is:
"Products promote rapid growth". For most cases,
we observe that the model generates the satisfying
negation. However, there are examples where it
applies the double negation such that the second
negation nullifies the first thus resulting sentence is
not semantically opposite to the initial input. For
instance, for the prompt "Attempts yield results",
the output is "Not attempting ensures no results",
or for "The sun sets early in December", we get
"The sun rises late in December". We believe that

4https://openai.com/blog/chatgpt
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doubly negated sentences incorporated in the train-
ing set and generated as defeaters, but not effec-
tively acting as such, introduce extraneous noise,
thereby impeding the model’s performance in iden-
tifying defeaters. Accordingly, our model demon-
strated superior results in supporters as compared
to defeaters. In addition, despite an instruction
to avoid simplistic negation by the mere introduc-
tion of "not" in input sentences, the gpt-3.5-turbo
model continues to do so in a considerable number
of examples. All of this leads us to the conclu-
sion that we could improve the performance of our
model if we would generate the opposites of con-
ceptual explanations from e-CARE more reliably
and correctly, e.g., by using human labor instead of
automatic rendering.

F.4 Formulation of Concatenation Operation

To validate the expected behavior of CESAR, it is
necessary to demonstrate the capacity of CESAR
to capture the causal strength changes after inte-
grating supporters and defeaters with respective
causes. In order to do that, we need to first for-
mulate the concatenation operation ⊕ between two
statements. Since we use the BERT model as our
backbone model when implementing CESAR, we
define concatenation as follows

C ⊕A/D = C [SEP] A/D (7)

where C is the cause that we wish to concatenate
with either supporter A or defeater D, and [SEP] is
BERT’s special token that helps BERT know that
C, A/D, and E are separate sentences (entities).

F.5 Ablation Study

There are many techniques contributing to the suc-
cess of CESAR in capturing the causal strength
changes such as causality-aware attention, special
tokens like [CLS] and [SEP], data augmentation,
and backbone model selection. To validate the ef-
fectiveness of these techniques, we conducted a
comprehensive ablation study. In Table 10, we
display the results with various ablations from the
best CESAR model. From the results, we have the
following observations:

• w/o causality-aware attention: our results
demonstrate the pivotal contribution of the
causality-aware attention layer in enhancing
metrics stability and performance in scenar-
ios involving defeating information. Notably,

Supporter Defeater Geometric
mean

CESAR 84.6 75.8 80.1

w/o causality-aware attention 91.2 64.4 76.6
w/o [CLS] & [SEP] 80.2 76.0 78.0
w/o data augmentation 64.2 63.6 63.9
w/ imbalanced data augmentation 89.0 24.4 46.6
w/ bert-large-cased 76.8 78.0 77.9
w/ bert-base-uncased 78.6 79.8 79.2

Table 10: Performance on 500 samples from δ-CAUSAL
by different variations of the CESAR metrics. The ac-
curacy on supporters and defeaters is calculated in the
same ways as that described in Table 3. For more clarity,
we employ the abbreviation "w/o" to indicate the exclu-
sion of a specific component from the CESAR build-up.
Therefore, we conduct experiments by removing the
causality-aware attention layer, as well as the [CLS]
and [SEP] tokens. Furthermore, we train CESAR with-
out using the augmented dataset containing supporters
and defeaters. Conversely, we employ the abbreviation
"w/" to denote that a particular component has been
substituted from the original CESAR build-up. Besides,
we explore imbalanced data augmentation, where only
conceptual explanations are augmented as supporters,
without generating their opposites. Finally, we eval-
uate the usage of alternative BERT models including
bert-large-cased and bert-base-uncased instead
of the original bert-large-uncased.

with the incorporation of causality-aware at-
tention, we observe a substantial improve-
ment in accuracy—from 64.4% to 75.8%—
on defeaters. Specifically, this layer en-
ables redirection of focus (attention) from
word pairs with strong causal relationships
to those with weaker associations following
the introduction of the defeaters. One in-
teresting phenomenon here is that the ab-
lated version of CESAR in this setting, i.e.,
w/o causality-aware attention, achieves an
accuracy of 91.2% in capturing the causal
strength change brought by supporters, which
is even better than CESAR. However, this ab-
lated version struggles in capturing the causal
strength changes with defeaters, with an accu-
racy of 64.4%. In other words, the causality-
aware attention mechanism makes CESAR
a more comprehensive evaluation metric on
causal strength, which can not only capture
the supplementary information that increases
the causal strength but also can capture the
counterpart that decrease the causal strength.

• w/o [CLS] & [SEP]: we observe highly unsta-
ble training once we attempt to remove [CLS]

6451



and [PAD] tokens when computing the causal
strength score. Specifically, the loss during
training exhibits high fluctuations with our de-
fault learning rate of 1e − 5. If the learning
rate is decreased, the optimizer has trouble
finding a satisfying local minimum, and train-
ing is slow. Hence, we incorporate [CLS]
and [PAD] tokens when calculating the causal
strength. The introduction of these special
tokens is due to considerations for training
stability. Also, using these tokens can also
enhance the performance a bit: from 80.2% to
84.6% on supporters.

• w/o data augmentation: there are four kinds
of data samples for CESAR’s training: (a)
True cause-effect pairs with a causal strength
value of 0.7, i.e., CS(C → E) = 0.7. (b)
False cause-effect pairs that do not have a
causal relationship with a causal strength
value of 0.0. (c) cause-explanation-effect
triples with a causal strength value of 1.0, i.e.,
CS(C⊕H → E) to 1.0 where H is the expla-
nation for the causal relationship between C
and E. (d) cause-opposite_explanation-effect
triples with a causal strength value of 0.2, i.e.,
CS(C ⊕ ¬H → E) to 0.2 where ¬H is an
opposite of the conceptual explanation for C
and E. ¬H is generated by ChatGPT. For
the ablation case w/o data augmentation, we
only use the data samples of type (a) and (b).
We can clearly notice that data augmentation
plays a crucial role as the accuracy decreases
from 84.6% to 64.2% in capturing the causal
strength changes brought by supporters, and
from 75.8% to 63.6% on defeaters. It shows
the data augmentation with explanation and its
opposite is a necessary component for the suc-
cess of CESAR. It can be explained that the
CESAR is provided with more fine-grained
examples in understanding different levels of
intensity of causal strength.

• w/ imbalanced data augmentation: for the ab-
lated case w/ imbalanced data augmentation,
we only use data samples of type (a), (b), and
(c). We observe that without the generated op-
posites of explanations ¬H , CESAR becomes
overly biased as it seems to learn to always
increase causal strength once the new infor-
mation is attached to the cause. The accuracy
on defeaters decreases from 75.8% to 24.4%.

It proves that the opposites of conceptual ex-
planations play a critical role in CESAR.

• w/ bert-large-cased: we experiment with
a BERT variant that distinguishes cased and
uncased words, which decreases the overall
performance, presumably due to heightened
complexity and little value added to the met-
ric. Note that our CESAR is built upon a
bert-large-uncased model.

• w/ bert-base-uncased: we assess the
efficacy of CESAR based on alternative
backbone models. As one can observe
in Table 10, it indicates that the employ-
ment of bert-base-uncased yields com-
parable results to its larger counterpart,
bert-large-uncased. Strikingly, the former
option, i.e., bert-base-uncased, attains the
best defeater score compared to all other con-
figurations, thereby suggesting its utility as
a viable alternative in resource-constrained
settings.
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