
Findings of the Association for Computational Linguistics ACL 2024, pages 6498–6526
August 11-16, 2024 ©2024 Association for Computational Linguistics

LLM2LLM: Boosting LLMs with Novel Iterative Data Enhancement

Nicholas Lee∗1 Thanakul Wattanawong∗1 Sehoon Kim1

Karttikeya Mangalam1 Sheng Shen1 Gopala Anumanchipalli1
Michael W. Mahoney1,2,3 Kurt Keutzer1 Amir Gholami1,2

1UC Berkeley 2ICSI 3LBNL
{nicholas.lee, j.wat, sehoonkim, mangalam, s.sheng, gopala, mahoneymw, keutzer, amirgh}@berkeley.edu

Abstract

Pretrained large language models (LLMs) are
currently state-of-the-art for solving the vast
majority of natural language processing tasks.
While many real-world applications still re-
quire fine-tuning to reach satisfactory levels
of performance, many of them are in the low-
data regime, making fine-tuning challenging.
To address this, we propose LLM2LLM, a tar-
geted and iterative data augmentation strategy
that uses a teacher LLM to enhance a small
seed dataset by augmenting additional data that
can be used for fine-tuning on a specific task.
LLM2LLM (1) fine-tunes a baseline student
LLM on the initial seed data, (2) evaluates and
extracts data points that the model gets wrong,
and (3) uses a teacher LLM to generate syn-
thetic data based on these incorrect data points,
which are then added back into the training data.
This approach amplifies the signal from incor-
rectly predicted data points by the LLM during
training and reintegrates them into the dataset
to focus on more challenging examples for the
LLM. Our results show that LLM2LLM signif-
icantly enhances the performance of LLMs in
the low-data regime, outperforming both tradi-
tional fine-tuning and other data augmentation
baselines. LLM2LLM reduces the dependence
on labor-intensive data curation and paves the
way for more scalable and performant LLM so-
lutions, allowing us to tackle data-constrained
domains and tasks. We achieve improvements
up to 24.2% on the GSM8K dataset, 32.6% on
CaseHOLD, 32.0% on SNIPS, 52.6% on TREC
and 39.8% on SST-2 over regular fine-tuning
in the low-data regime using a Llama-2-7B stu-
dent model. Our code is available at https:
//github.com/SqueezeAILab/LLM2LLM.

1 Introduction

Pretrained large language models (LLMs) have
achieved impressive performance on various bench-
marks and datasets that have previously required

*Equal contribution

specialized neural network architectures. For many
of these general benchmarks (Hendrycks et al.,
2020; Zhong et al., 2023), LLMs are prompted
with custom instructions or in-context examples.

However, in various real-world applications,
these prompting strategies are not a one-size-fits-
all solution. For instance, LLMs have a limit
on the amount of input context they can process,
thus limiting the number of in-context examples
or instructions we can input to make the LLM fol-
low a certain behavior. For simple tasks that are
closely aligned with the data that the LLM was
pretrained on, extensive prompting may not be nec-
essary. However, applying LLMs to specialized
domains (e.g., a specific medical field (Nori et al.,
2023) or private data with niche protocols) can
be more challenging, often requiring prohibitively
long prompts to achieve adequate performance.
Even if the prompt length does not exceed the limit,
processing long prompts increases the latency and
cost of each inference. Additionally, LLMs also
tend to forget or ignore information in long con-
texts (Liu et al., 2023b), leading to potential accu-
racy drops even when the model can handle long in-
put prompts. While Retrieval-Augmented Genera-
tion (RAG) (Lewis et al., 2020) has been developed
to address some of these challenges, it may some-
times retrieve irrelevant passages or documents,
which can potentially degrade the generation per-
formance. Furthermore, RAG does not necessarily
solve the latency and cost issue as processing a
long input prompt may still be required.

A promising method for addressing this is fine-
tuning. With the emergence of Parameter Efficient
Fine-tuning (PEFT) (Hu et al., 2021; Mangrulkar
et al., 2022), the computational resources required
to fine-tune a task-specific LLM have decreased
significantly. However, herein lies a new prob-
lem: successful fine-tuning requires enough train-
ing data. This can be challenging for some applica-
tions, where we only have access to a small amount

6498

https://github.com/SqueezeAILab/LLM2LLM
https://github.com/SqueezeAILab/LLM2LLM

of task-specific data. Often, collecting, cleaning,
and labeling additional data can be costly and time-
consuming. So the key question is: how should we
increase the user’s training data to be enough for
fine-tuning?

Data augmentation is a known method that could
help effectively expand the training dataset. For
natural language processing (NLP) tasks, one can
use approaches such as synonym replacement, char-
acter replacement (e.g., by intentionally introduc-
ing spelling errors), random swapping, and back
translation, just to name a few (Wei and Zou, 2019;
Belinkov and Bisk, 2017; Coulombe, 2018; Zhang
et al., 2018). However, these approaches fail to
effectively expand the training data for fine-tuning
LLMs in the case of new and specialized tasks, as
we will show later in Section 4.3.

To address this, several recent papers have ex-
plored using an LLM to expand the fine-tuning
dataset (Dai et al., 2023; Kumar et al., 2020; Zhou
et al., 2023; Chen et al., 2023; Cao et al., 2023; Wei
et al., 2023; Zhu et al., 2023). This approach has
proven to be more effective than traditional data
augmentation methods. However, these approaches
often apply LLM-based data augmentation on all
of the available training dataset, without consider-
ing the LLM’s prediction accuracy on individual
training data points. We have observed that for var-
ious reasoning tasks such as arithmetic and reading
comprehension, the LLM correctly solves simpler
examples in the fine-tuning dataset, but may strug-
gle with harder examples. It will be sub-optimal to
keep augmenting data points for which the LLM is
already achieving high accuracy on.

To address these challenges, we introduce
LLM2LLM, a new targeted and iterative data aug-
mentation framework that uses a teacher LLM to
expand the training dataset, with a targeted and
iterative approach. In more detail, we make the
following contributions:

• We propose LLM2LLM, a targeted and itera-
tive LLM-based data augmentation technique
that efficiently and effectively augments small
task-specific datasets. LLM2LLM achieves this
by (1) fine-tuning a student LLM on the initial
dataset, (2) evaluating on the training data and
extracting data points which the model got incor-
rect after training, and (3) using a Self-Instruct
(Wang et al., 2023) style data augmentation to
augment these data points, which are then added
back into the training data (Section 3.1).

• We benchmark LLM2LLM on randomly sam-
pled subsets of GSM8K (Cobbe et al., 2021),
CaseHOLD (Zheng et al., 2021), SNIPS (Coucke
et al., 2018), TREC (Li and Roth, 2002) and
SST-2 (Socher et al., 2013) in order to evaluate
the effectiveness of our approach in the low-data
regime (Section 4.2). Here, we get up to a 24.2%
improvement on GSM8K, 32.6% on CaseHOLD,
32.0% on SNIPS, 52.6% on TREC, and 39.8%
on SST-2 (Table 1).

• We conduct a series of ablations studies compar-
ing LLM2LLM to several existing baselines as
well as to variants of LLM2LLM to evaluate
the effectiveness of our design decisions (Sec-
tion 4.5). We observe that both the iterative and
targeted nature of LLM2LLM are critical to im-
proving model performance.

2 Background and Related Work

2.1 Instruction Following LLMs
The earliest works (Wei et al., 2021; Longpre et al.,
2023; Chung et al., 2022; Aribandi et al., 2021;
Sanh et al., 2021; Muennighoff et al., 2023; Wang
et al., 2022b; Mishra et al., 2022; Wang et al.,
2022a; Xu et al., 2022) in instruction fine-tuning
involved gathering and processing different exist-
ing NLP datasets in order to improve the perfor-
mance of LLMs on a wide range of tasks. Self-
Instruct (Wang et al., 2023) removed the reliance
on existing datasets by introducing a framework for
bootstrapping instruction datasets with the outputs
of the model itself. Follow-up work (Ouyang et al.,
2022; Taori et al., 2023; Geng et al., 2023; Chiang
et al., 2023; Xu et al., 2023; Mukherjee et al., 2023;
Mitra et al., 2023; Kang et al., 2023; Nori et al.,
2023) took advantage of stronger models (Achiam
et al., 2023; Touvron et al., 2023a,b) in order
to fine-tune stronger general-purpose instruction-
following models.

2.2 Self-Improving LLMs
Various early works (Zelikman et al., 2023; Halupt-
zok et al., 2023; Zelikman et al., 2022; Madaan
et al., 2023; Gulcehre et al., 2023; Singh et al.,
2023) explore using self-improvement for fine-
tuning LLMs. These works generally filtered the
outputs of the model before fine-tuning it on its
own outputs. LLM2LLM differs from these meth-
ods, as we do not directly fine-tune on the outputs
of our own model, and we employ a teacher model
to provide feedback in the form of synthetic data.

6499

Step 1
Train on the dataset

Training Data

Finetune

Step 3
Generate additional data
with the wrong examples

LLM2LLM Data

Question: When the lengths of each side of a rectangle
are 12 and 5, what is the length of the diagonal?
Answer: sqrt(12 ** 2 + 5 ** 2) = 13

Question: What is the cumulative sum of all the
integers starting from 1 to 5?
Answer: 1 + 2 + … + 5 = (1 + 5) * 5 / 2 = 15

Evaluate

+

Student Model

Seed Data

Step 2
Evaluate on the dataset

Question: A right triangle has two sides of length 3 and 4.
What’s the length of the hypothenuse?
Answer: 3 + 4 = 7

Question: If Lisa has 5 apples and Tom gives her 8 more apples,
how many apples does Lisa have in total?
Answer: 5 + 8 = 13

Correct Examples

Wrong Examples

Question: What is the sum of all natural numbers from 1 to 10?
Answer: 1 + 10 = 11

LLM2LLM Data

Teacher Model

LLM2LLM

Figure 1: LLM2LLM: Boosting LLMs with Novel Iterative Data Enhancement. One iteration of LLM2LLM
begins with training and evaluating the model on the training data. Incorrect answers from the training data are
used as inputs to generate extra samples with similar styles to the teacher model. Then, a new student model is
trained using a combination of the old training data and newly generated samples. After the model is fine-tuned, we
evaluate and find questions that the model got incorrect. The teacher model is used to generate additional data points
based on the wrong examples, which test for similar concepts and ideas. These synthetic data points are folded back
into training dataset. This process then repeats, training the student model on increasingly targeted data points.

Concurrent with our work, several papers have
been recently published that use an iterative ap-
proach to improving LLMs (Chen et al., 2024;
Anil et al., 2023; Burns et al., 2023; Li et al.,
2023b; Yuan et al., 2024). These works combine
ideas from Reinforcement Learning (RL) and Self-
Play (Samuel, 2000; Tesauro et al., 1995) in order
to iteratively build stronger LLMs by fine-tuning
on the outputs of the model itself. LLM2LLM
is distinguished by how it focuses on the low-
data regime for task-specific fine-tuning of LLMs
whereas others are attempting to create stronger
general-purpose LLMs. In addition, our technique
exclusively uses the data points that the model got
incorrect during training, and it uses the teacher
model to augment these data points. Instead of
providing feedback in the form of a critique or ra-
tionale, the teacher model’s feedback is only in the
form of synthetic data points, which simplifies the
training pipeline.

2.3 Data Augmentation
Data augmentation has been long studied in NLP.
Early work augmented at the character (Belinkov
and Bisk, 2017; Coulombe, 2018) and word (Wei
and Zou, 2019) level. Notably, Easy Data Augmen-
tation (EDA) (Wei and Zou, 2019) was a popular
early method that used word level augmentations:

synonym replacement, random insertion, swap, and
deletion to augment data for text classification. We
refer the reader to (Feng et al., 2021) for a more
complete summary of data augmentation in NLP.

A popular new approach is to use LLMs them-
selves to synthesize new training data (Deng et al.,
2023a; Prasad et al., 2023; Fu et al., 2023b; Dai
et al., 2023; Ubani et al., 2023; Fang et al., 2023;
Liu et al., 2023a; Yu et al., 2023; Kumar et al.,
2020; Yoo et al., 2021; Wang et al., 2021; Ding
et al., 2023; Li et al., 2023a; Liang et al., 2023). A
noteworthy example is AugGPT (Dai et al., 2023),
which used ChatGPT to rephrase text to augment
text classification tasks.

Many of these techniques generate very large
amounts of synthetic data. Recent work (Chen
et al., 2023; Cao et al., 2023; Wei et al., 2023;
Zhou et al., 2023) found that one could replicate
the results of fine-tuning on these large datasets
with significantly smaller subsets.

3 Methodology

We assume that we are given an LLM model M
(e.g., GPT-3.5 or Llama-2-7B) that is pre-trained
on some source dataset (e.g., Common Crawl).
The goal is to adapt M (hereon called the student
model) to a new target domain by using a small

6500

Algorithm 1 LLM2LLM: Boosting LLMs with
Novel Iterative Data Enhancement. Given a seed
dataset D0, we finetune the model Mi

student, eval-
uate, and extract training set data points that the
model gets wrong. These are used to generate
new training data points using the teacher model
Mteacher for the next step.
1: procedure LLM2LLM(M0

student,Mteacher, D0)
2: i← 0
3: while i < n do
4: Mi

student ← Finetune(M0
student, D

i)
5: Ei ← Evaluate(Mi

student, D
0) ▷ Evaluate on seed data

6: W i ← Filter(Ei,D0) ▷ Keep wrong answers
7: Ai ← Generate(Mteacher, W i) ▷ Augment using teacher
8: Di+1 ←Di +Ai

▷ Append to data
9: i← i+ 1

10: end while
11: Evaluate M∗

student
12: end procedure

seed dataset D, where D potentially has unseen
characteristics, compared to the pre-trained dataset
(e.g., a medical dataset with specific terminology,
or a private database with specific characteristics).
In this case, the model’s zero-shot or fine-tuned
performance is likely to be unsatisfactory. While
strategies to address this challenge have been ex-
plored, e.g., through enhanced few-shot learning
methods as discussed in Section 2, here we strictly
focus on enriching the provided target dataset D
with an LLM. This method is orthogonal to the
aforementioned techniques, offering a complemen-
tary solution that can be applied alongside them.

To enrich D, AugGPT (Dai et al., 2023) has
introduced a promising approach that generates ad-
ditional augmented data by applying a prompted
LLM to all available data points in the target train-
ing dataset. However, this method falls short by
indiscriminately augmenting data without consider-
ing the student model’s varying performance across
different data points. For instance, the model may
easily solve the majority of the dataset, but it may
struggle with a small subset of more challenging
examples. In this case, rather than indiscriminately
expanding the dataset by replicating simpler cases,
a better augmentation strategy would be to generate
more data points that align conceptually with these
challenging examples. This is because the former
approach could lead to longer training time without
noticeable performance improvement.

Here, we propose a more general formulation
of an LLM-based data augmentation pipeline that
addresses the aforementioned limitation. To do so,

we consider the following iterative process:

Dn+1 = f(Mteacher,Mstudent, D
n, · · · , D0). (1)

In Equation (1), Mteacher is the teacher model,
Mstudent is the student model (potentially being
fine-tuned in many iterations), n refers to the nth

step of data augmentation, Dn+1 is the new train-
ing dataset at the next iteration, and f is the data-
generation algorithm. At each step, the teacher
model has access to how the student model per-
forms at the nth step (e.g., correct/incorrect labels,
or possibly prediction distributions for white-box
models), and based on that it can edit training data
points for the next iteration.

Note that LLM2LLM is different from knowl-
edge distillation (Hinton et al., 2015). Knowledge
distillation is generally applicable to cases where
the teacher model has high accuracy on the target
data. In contrast, in this case, it is possible that
the teacher model also performs sub-optimally on
the target data (e.g., in the private database case,
where the teacher lacks domain-specific knowl-
edge). However, if the teacher model has enough
reasoning capability to produce conceptually simi-
lar but semantically different examples when it is
given both the prompt and answer, then our frame-
work can improve performance.

In LLM2LLM, we consider a specific instantia-
tion of Equation (1), as discussed next.

3.1 LLM2LLM

The end-to-end algorithm of LLM2LLM is pre-
sented in Algorithm 1. Inspired by Self-Instruct
(Wang et al., 2023), we use the teacher model
Mteacher to generate synthetic data from the data
points that the model got incorrect during training
in order to target these deficiencies in the student
model. In more detail, we first train the baseline
student model Mstudent on the provided target data
D0, and we evaluate its performance (lines 4-5 of
Algorithm 1). We then filter the results and keep the
incorrect training examples that the student model
struggled to answer correctly (Ei in line 6). Then
the teacher model is prompted to create additional
training data points that are conceptually aligned
but semantically different (line 7, see Section B.4
for specifics on the prompt). The teacher model
does not necessarily need to be bigger, although
that could potentially improve performance. The
primary requirement for the teacher model is to
have reasoning capability to be able to follow the

6501

Dataset % Data # Seed Examples # Augmented
Test Accuracy (%)

Baseline LLM2LLM

GSM8K

0 0 0 0.001 N/A
1 74 391 0.99 19.56
2 149 802 1.52 25.70
5 373 1641 9.63 27.07

10 747 2573 21.27 30.93
20 1494 4028 25.70 35.03
50 3737 8252 33.89 38.67
100 7473 14925 36.01 41.24

CaseHOLD

0 0 0 12.28 N/A
0.5 225 490 33.94 66.50
1 450 751 46.25 70.97
2 900 580 69.44 74.97
5 2250 423 74.14 76.83

10 4500 505 77.03 78.21
20 9000 1100 78.00 78.97
50 22500 2709 80.39 82.92
100 45000 5805 87.94 88.14

SNIPS

0 0 0 11.86 N/A
0.5 70 38 60.14 92.14
0.8 105 109 69.71 93.71
1.0 140 91 85.43 93.86

TREC

0 0 0 11.20 N/A
1.1 60 105 26.20 78.80
1.6 90 22 80.80 90.20
2.2 120 44 81.20 91.20

SST-22

0 0 0 27.06 N/A
0.02 20 44 52.87 92.66
0.04 30 46 62.04 93.00
0.06 40 14 82.80 94.04

Table 1: LLM2LLM on datasets under evaluation. The % Data and # Seed Examples columns indicate the
percentage and number of data points respectively that were sampled from the original training data as seed data.
The # Augmented column shows the number of data points created by LLM2LLM. The last column (Test Accuracy
%) shows the baseline accuracy from fine-tuning with the original seed examples (Baseline), as well as when
training with augmented data added to the dataset (LLM2LLM). Overall, test accuracy improves significantly with
LLM2LLM, especially in low data regimes.

data augmentation instruction, and the ability to
create data points similar to the incorrect examples.
This process is schematically illustrated in Figure 1.

A subtle but important design decision in
LLM2LLM is that we only use examples from
the seed data when prompting the teacher model
to generate additional data points. This is simi-
lar to Alpaca (Taori et al., 2023), but unlike Evol-
Instruct (Xu et al., 2023). There are two main
reasons for this. First, our approach prevents data
degradation from multiple augmentation iterations.
Early experiments revealed that while the teacher
model could generate high-quality augmentations,
some examples contained logical errors. Therefore,

1The 0% here is because our prompting does not include
the formatting that we used to extract the answer with. Adding
some instructions to make sure the output format is correct
results in a 0.30% test accuracy, which is in line with the rest
of the results in Table 1.

2SST-2 has no test set, therefore we evaluate on the dev set
instead, see Section A.3.

further augmentation applied to these examples
could potentially propagate the error, degrading the
quality of the dataset over time. This is highlighted
in our ablation studies in Table 4, where using both
seed and synthetic data for data augmentation leads
to an accuracy drop.

Second, this approach limits the amount of new
data being generated overall. Suppose that the orig-
inal seed dataset is of size n, and at each iteration,
the student model gets pi proportion of the train-
ing dataset Di wrong, where 0 < pi < 1. If we
include the augmented data into the seed data for
data generation, then the size of the dataset Dj at
step j will be

|Dj | = n

j∏

i=0

(1 + pi) ≥ n(1 + pmin)
j .

This has a lower bound that grows exponentially
with each step. Limiting the input wrong answers

6502

0 500 1000 1500 2000 2500 3000
Total Data Size (Seed + LLM2LLM Data)

0

5

10

15

20

25

30
Ac

cu
ra

cy
 (%

)

LLM2LLM on GSM8K test set with varying seed data

74 (1%) seed data
149 (2%) seed data
373 (5%) seed data
747 (10%) seed data

500 1000 1500 2000 2500
Total Data Size (Seed + LLM2LLM Data)

40

50

60

70

Ac
cu

ra
cy

 (%
)

LLM2LLM on CaseHOLD test set with varying seed data

225 (0.5%) seed data
450 (1%) seed data
900 (2%) seed data
2250 (5%) seed data

Figure 2: LLM2LLM on GSM8K (left) and CaseHOLD (right) with various seed data sizes. Each line shows
the test accuracy of the finetuned Llama-2-7B model with each step of LLM2LLM with varying seed dataset
size. The first (left-most) data point on each line represents finetuning only on the seed data. Each point afterward
corresponds to the performance after one more iteration of LLM2LLM. The total data size (x-axis) represents the
total amount of seed plus LLM2LLM data that was used to train the model at that step. By applying LLM2LLM
with low amounts of seed data and iteratively improving the training dataset, we can attain significant performance
improvements. In particular, we can see that running LLM2LLM can match or even exceed the performance of
simply annotating more real data in some cases (detailed breakdown provided in Table 1).

W i during dataset generation to only data from
the original seed data allows us to bound the total
number of training data points to

|Dj | = n+

j∑

i=0

npi ≤ n(1 + jpmax),

which has an upper-bound that grows linearly with
the number of steps. The empirical evaluations
shown in Section 4.5.2 (Table 4) corroborates this.

4 Results

4.1 Experimental Setup

To evaluate the performance of LLM2LLM, we
applied our framework to fine-tune Llama-2-7B on
various target datasets, including GSM8K (Cobbe
et al., 2021), CaseHOLD (Nori et al., 2023), SNIPS
(Coucke et al., 2018), TREC (Li and Roth, 2002)
and SST-2 (Socher et al., 2013). We subsampled
these datasets with different sampling rates from
0.02% to 50% to evaluate performance across dif-
ferent low-data regimes. Our teacher model for
these results is GPT-3.5 (1106 release) unless other-
wise specified. We considered several other teacher
models, including GPT-3.5, GPT-4-Turbo, Llama-
2-70B (Touvron et al., 2023b), and Airoboros-L2-
70B (Durbin, 2023) in Section 4.4. We include
a more detailed experimental setup in Section A.
Additionally, we conducted additional experiments
(Section B.6) to ensure that the augmented data
from the teacher models differs from the test dataset

used to evaluate final model accuracy. This ad-
dresses the issue of potential test data leakage that
could have happened if the teacher model had been
trained on similar data.

4.2 Main Results

Here, we discuss LLM2LLM’s performance with
varying amount of training data by presenting re-
sults for fine-tuning Llama-2-7B on GSM8K using
GPT-3.5 as the teacher model. We then discuss how
these trends extend to different datasets (Table 1).

The final model accuracy after applying 10 iter-
ations of LLM2LLM is given in Table 1. For a
low-data regime with 74 available examples (i.e.,
1% of the GSM8K training dataset), vanilla fine-
tuning achieves only 0.99% test accuracy. However,
LLM2LLM boosts the accuracy to 19.56% by iter-
atively generating 391 additional examples based
on data points where the model makes mistakes.
With slightly more available data of 149 seed ex-
amples (i.e., 2% of the training dataset) we can
achieve 25.70% accuracy. As shown in the base-
line accuracy with 20% data in Table 2, we would
need over 10× more training data points to match
this accuracy if we only rely on vanilla fine-tuning.
We also highlight that LLM2LLM can lead to no-
ticeable gains with data-sufficient regimes (e.g.,
100% data), albeit at a smaller improvement over
the baseline compared to lower-data regimes.

We observe a similar trend for CaseHOLD,
SNIPS, TREC, and SST-2, where LLM2LLM
helps improve performance in the low-data regime.

6503

Dataset Technique # Seed Total Aug. Acc. (%)

GSM8K

Fine-tuning

100

0 1.59
EDA 500 15.16

AugGPT 500 18.12
More Data 471 19.86

LLM2LLM 471 23.73

CaseHOLD

Fine-tuning

100

0 28.78
EDA 200 62.19

AugGPT 200 63.42
More Data 198 37.11

LLM2LLM 198 64.50

SNIPS

Fine-tuning

70

0 60.14
EDA 70 91.43

AugGPT 70 89.86
More Data 70 89.00

LLM2LLM 38 92.14

TREC

Fine-tuning

60

0 26.20
EDA 120 72.40

AugGPT 120 32.80
More Data 138 89.20

LLM2LLM 135 78.80

SST-2

Fine-tuning

20

0 52.87
EDA 40 63.19

AugGPT 40 88.07
More Data 40 72.94

LLM2LLM 44 92.66

Table 2: Results of LLM2LLM compared to other
baseline methods. Column Technique refers to the aug-
mentation method used as described in Section A.3.
Column # Seed indicates the size of the initial seed
dataset. Column Total Aug. represents the total amount
of LLM2LLM data generated. For GSM8K and Case-
HOLD, we randomly sample 100 data points while for
SNIPS, TREC, and SST-2, we sample 10 samples per
class. Column Acc. indicates the final test accuracy.
Clearly, LLM2LLM outperforms all of synthetic base-
lines; even sometimes when adding in more real data
from the dataset.

Interestingly, LLM2LLM generally generates pro-
portionally more augmented data for GSM8K than
other datasets. This is because the baseline accu-
racy is lower for GSM8K overall, suggesting that
it is a more difficult dataset compared to the others.
However, in all cases, we find that LLM2LLM
helps recover a high-performing model.

In Figure 2, we also illustrate how the baseline
accuracy improves on GSM8K and CaseHOLD
with each iteration of applying LLM2LLM. We
can observe a rapid increase in test accuracy in the
first few iterations of LLM2LLM, especially in
lower-data regimes.

4.3 Comparison with Other Augmentation
Methods

In Table 2, we compare our method against other
augmentation techniques, including EDA (Wei and

Zou, 2019) and AugGPT (Dai et al., 2023). We
also compare against adding more data from the
unseen training set. The details of all augmentation
methods we used in our comparison are provided
in Section A.3.

On GSM8K, LLM2LLM outperforms naive
fine-tuning by over 20%, EDA by over 8%, and
AugGPT by over 5%. Similarly, on CaseHOLD,
LLM2LLM outperforms the fine-tuning baseline
by approximately 35%, EDA by 2.3%, and Aug-
GPT by 1.1%. These improvements, particularly
in comparison to AugGPT, can be attributed to
LLM2LLM’s capability to generate more targeted
examples based on where the model struggles, as
opposed to AugGPT which augments data indis-
criminately. This allows for more effective and
targeted use of the augmented data budget.

4.4 Choice of Teacher Model

Thus far, we have illustrated LLM2LLM’s per-
formance with GPT-3.5 as the teacher model, but
other LLMs can serve this role as well. A stronger
teacher model is expected to yield higher-quality
augmentation and, consequently, higher accuracy.
Table A.1 demonstrates the LLM2LLM’s accuracy
with GPT-4-Turbo, Llama-2-70B, and Airoboros-
L2-70B as the teacher model on GSM8K. With
74 seed data examples, LLM2LLM only achieves
11.8% accuracy with Llama-2-70B, which can be
contrasted with 15.0% with Airoboros and 19.8%
with GPT-4-Turbo. This aligns with our expec-
tation, as GPT-4-Turbo’s mathematical reasoning
is known to be better than the other models, be-
ing generally on par with that of GPT-4 (Fu et al.,
2023a; Deng et al., 2023b). The qualitative analy-
sis of augmented data using different models (Fig-
ure B.16) further supports this, showing that Llama
and Airoboros models produce less varied data than
GPT-3.5 or GPT-4-Turbo.

4.5 Ablation Studies

Here, we provide ablation studies to justify the
design decisions we made in LLM2LLM.

4.5.1 Iterative Augmentation vs One-Shot
Augmentation

We first evaluate the efficacy of iterative augmen-
tation versus adding all augmented data at once.
To evaluate this, we compare the final accuracy
achieved by augmenting data over 10 iterations
against adding the equivalent amount of data in

6504

Dataset Steps Total Aug. Acc. (%)

GSM8K 1 (one-shot) 490 16.30
10 (iterative) 471 23.73

CaseHOLD 1 (one-shot) 276 59.94
10 (iterative) 198 64.50

Table 3: Ablation on the iterative nature of LLM2LLM
with 100 seed data points. Steps refers to the total num-
ber of augmentation steps in LLM2LLM. For the case
of 1 iteration, we prompt the teacher model to generate
more samples all at once, whereas in the 10 steps case
the teacher model only generates 1 new data point per
wrong example. The results clearly show that the latter
iterative approach results in better performance.

Dataset Only Aug.
Seed Data

Total
Aug. Acc. (%)

GSM8K ✗ 4302 18.32
✓ 471 23.75

CaseHOLD ✗ 351 63.75
✓ 198 64.50

Table 4: Ablation study on whether to augment pre-
viously generated LLM2LLM data. Only Aug. Seed
Data refers to augmenting only the seed data vs. also
re-augmenting the augmented data. Total Aug. refers
to the total number of augmentations generated over 10
steps of LLM2LLM.

a single iteration, for both the GSM8K and Case-
HOLD datasets. As shown in Table 3, using a
single augmentation step with a larger amount
of augmented data significantly underperforms
the alternative of executing 10 iterative steps of
LLM2LLM with a smaller number of augmenta-
tions per iteration. In particular, on GSM8K, aug-
menting one data point per example over 10 steps
yields a 7.4% higher accuracy than augmenting
five data points per example in a single step. Simi-
larly, on CaseHOLD, iterative augmentation of one
data points per example over 10 steps results in a
4.6% improvement over a one-shot augmentation
with four data points per example. This justifies
the LLM2LLM’s iterative augmentation approach
that generates one data point per each incorrectly
answered example.

4.5.2 Data Augmentation with Seed Data vs
Augmented Data

In each iteration, LLM2LLM evaluates the stu-
dent model’s performance only on the original seed
dataset and generates augmented data from incor-
rect seed examples. However, a possible alternative
is performing evaluation and data augmentation us-
ing both seed and previously augmented data. The
latter often leads to sub-optimal performance as

Dataset From-scratch
Fine-tuning

Total
Aug. Acc. (%)

GSM8K ✗ 230 14.71
✓ 471 23.75

CaseHOLD ✗ 154 60.50
✓ 198 64.50

Table 5: Ablation study on whether to fine-tune from
scratch or to do continuous fine-tuning. From-scratch
Fine-tuning refers to whether we fine-tune the base
model from scratch vs. fine-tune the previous step’s
model. Total Aug. refers to the total number of augmen-
tated examples generated over 10 steps of LLM2LLM.

well as excessive amounts of total augmented data
points, as we demonstrate in Table 4. On GSM8K,
generating augmented data from the previous it-
eration’s augmented data yields 18.3% accuracy,
while using the seed data for further augmentation
improves the accuracy to 23.75%. We observe a
similar trend for CaseHOLD. As discussed in Sec-
tion 3.1, a potential reason for the performance
drop, when using augmented data for further aug-
mentation, has to do with a deviation from the
original data distribution.

4.5.3 From-scratch Fine-tuning vs
Continuous Fine-tuning

Another key decision for LLM2LLM is whether to
continue fine-tuning from the last iteration’s check-
point (i.e. continuous fine-tuning) or to restart fine-
tuning from the pre-trained model at each itera-
tion (i.e. from-scratch fine-tuning). Considering
the non-convex nature of the optimization target
and complex loss landscapes, this decision is not
necessarily obvious. Nevertheless, as shown in Ta-
ble 5, we observe that from-scratch fine-tuning con-
sistently and significantly outperforms continuous
fine-tuning, with up to 9% accuracy improvement.
The inferior performance of continuous fine-tuning
can be attributed to a potential overfitting to small
seed data over multiple iterations of fine-tuning,
especially in lower-data regimes where the seed
data is small. This can be alleviated by restarting
fine-tuning from scratch in each iteration with suf-
ficient augmented data appended to the seed data
to form the training dataset.

5 Conclusion

We have introduced LLM2LLM, an adaptive and
iterative LLM-based data augmentation framework
that uses LLMs to scale up smaller fine-tuning
datasets in lieu of manually generating more data.
This framework substantially reduces the amount

6505

of real data needed, and it allows us to efficiently
scale the dataset with synthetic data that can match
or even exceed the effect of hand-collecting more
data. The method is effective because of the it-
erative and targeted nature of the process, which
allows us to boost the signal from data points that
the LLM gets wrong. As a result, we were able to
achieve a 24.2% improvement on GSM8K, 32.6%
on CaseHOLD, 32.0% on SNIPS, 52.6% on TREC,
and 39.8% on the SST-2 dataset in the low-data
regime using a Llama-2-7B student model. Fu-
ture work can focus on tuning the hyperparameters
of our framework as well as incorporating our ap-
proach with other LLM techniques such as prompt
tuning and few-shot learning.

Limitations

Our results primarily reflect improvements that oc-
cur in a low training data regime, from tens of
examples to a couple thousand. However, practi-
tioners may deal with larger datasets from time to
time, in which our method may be out of scope.

Furthermore, there could be other factors that
help explain the disparity in performance between
different teacher models. Also, we have analyzed
the generated data for differences in quality, but
there may be other ways to close the gap between
open-source models and the GPT models as a
teacher model. This warrants further investigation.

Our focus primarily reflects a specific use case
where there is low training data available due to dif-
ficulty in data collection such as labor or resource
constraints. Exploring the effects of using synthetic
data to further eke out performance when there is
abundant data is a promising research direction.

Ethics Statement

LLM2LLM relies on using LLMs to augment a
training dataset in order to train another student
LLM more efficiently. This can reduce the energy
and monetary cost of experimentation and machine
learning research, as it enables those with smaller
datasets to achieve better performance on a domain-
specific task. Of course, misuse of this method may
lead to unethical data being generated, which can
lead to societal harm. This is not a concern specific
to this work, but to LLM research in general. Fur-
thermore, there are still open questions about latent
implicit biases and ethical issues surrounding the
generated output of LLMs that the authors and prac-

titioners of this method are aware of and continue
to consider throughout the whole process.

Acknowledgements

We appreciate the valuable feedback from Andrew
Aikawa. We acknowledge gracious support from
Furiosa team. We also appreciate the support from
Microsoft through their Accelerating Foundation
Model Research, including great support from Sean
Kuno. Furthermore, we appreciate support from
Google Cloud, the Google TRC team, and specif-
ically Jonathan Caton, and Prof. David Patterson.
Prof. Keutzer’s lab is sponsored by the Intel cor-
poration, Intel One-API, Intel VLAB team, the
Intel One-API center of excellence, Apple, Sam-
sung, Panasonic, as well as funding through BDD
and BAIR. We appreciate great feedback and sup-
port from Ellick Chan, Saurabh Tangri, Andres
Rodriguez, and Kittur Ganesh. Sehoon Kim would
like to acknowledge the support from the Korea
Foundation for Advanced Studies (KFAS). Amir
Gholami was supported through funding from Sam-
sung SAIT. Michael W. Mahoney would also like
to acknowledge a J. P. Morgan Chase Faculty Re-
search Award as well as the DOE, NSF, and ONR.
Our conclusions do not necessarily reflect the posi-
tion or the policy of our sponsors, and no official
endorsement should be inferred.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Rohan Anil, Andrew M. Dai, Orhan Firat, Melvin John-
son, Dmitry Lepikhin, Alexandre Passos, Siamak
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng
Chen, Eric Chu, Jonathan H. Clark, Laurent El
Shafey, Yanping Huang, Kathy Meier-Hellstern, Gau-
rav Mishra, Erica Moreira, Mark Omernick, Kevin
Robinson, Sebastian Ruder, Yi Tay, Kefan Xiao,
Yuanzhong Xu, Yujing Zhang, Gustavo Hernandez
Abrego, Junwhan Ahn, Jacob Austin, Paul Barham,
Jan Botha, James Bradbury, Siddhartha Brahma,
Kevin Brooks, Michele Catasta, Yong Cheng, Colin
Cherry, Christopher A. Choquette-Choo, Aakanksha
Chowdhery, Clément Crepy, Shachi Dave, Mostafa
Dehghani, Sunipa Dev, Jacob Devlin, Mark Díaz,
Nan Du, Ethan Dyer, Vlad Feinberg, Fangxiaoyu
Feng, Vlad Fienber, Markus Freitag, Xavier Gar-
cia, Sebastian Gehrmann, Lucas Gonzalez, Guy Gur-
Ari, Steven Hand, Hadi Hashemi, Le Hou, Joshua

6506

Howland, Andrea Hu, Jeffrey Hui, Jeremy Hur-
witz, Michael Isard, Abe Ittycheriah, Matthew Jagiel-
ski, Wenhao Jia, Kathleen Kenealy, Maxim Krikun,
Sneha Kudugunta, Chang Lan, Katherine Lee, Ben-
jamin Lee, Eric Li, Music Li, Wei Li, YaGuang Li,
Jian Li, Hyeontaek Lim, Hanzhao Lin, Zhongtao Liu,
Frederick Liu, Marcello Maggioni, Aroma Mahendru,
Joshua Maynez, Vedant Misra, Maysam Moussalem,
Zachary Nado, John Nham, Eric Ni, Andrew Nys-
trom, Alicia Parrish, Marie Pellat, Martin Polacek,
Alex Polozov, Reiner Pope, Siyuan Qiao, Emily Reif,
Bryan Richter, Parker Riley, Alex Castro Ros, Au-
rko Roy, Brennan Saeta, Rajkumar Samuel, Renee
Shelby, Ambrose Slone, Daniel Smilkov, David R.
So, Daniel Sohn, Simon Tokumine, Dasha Valter,
Vijay Vasudevan, Kiran Vodrahalli, Xuezhi Wang,
Pidong Wang, Zirui Wang, Tao Wang, John Wiet-
ing, Yuhuai Wu, Kelvin Xu, Yunhan Xu, Linting
Xue, Pengcheng Yin, Jiahui Yu, Qiao Zhang, Steven
Zheng, Ce Zheng, Weikang Zhou, Denny Zhou, Slav
Petrov, and Yonghui Wu. 2023. Palm 2 technical
report.

Vamsi Aribandi, Yi Tay, Tal Schuster, Jinfeng Rao,
Huaixiu Steven Zheng, Sanket Vaibhav Mehta, Hon-
glei Zhuang, Vinh Q Tran, Dara Bahri, Jianmo Ni,
et al. 2021. Ext5: Towards extreme multi-task scal-
ing for transfer learning. In International Conference
on Learning Representations.

Yonatan Belinkov and Yonatan Bisk. 2017. Synthetic
and natural noise both break neural machine transla-
tion. arXiv preprint arXiv:1711.02173.

Collin Burns, Pavel Izmailov, Jan Hendrik Kirchner,
Bowen Baker, Leo Gao, Leopold Aschenbrenner,
Yining Chen, Adrien Ecoffet, Manas Joglekar, Jan
Leike, Ilya Sutskever, and Jeff Wu. 2023. Weak-to-
strong generalization: Eliciting strong capabilities
with weak supervision.

Yihan Cao, Yanbin Kang, Chi Wang, and Lichao Sun.
2023. Instruction mining: When data mining meets
large language model finetuning.

Lichang Chen, Shiyang Li, Jun Yan, Hai Wang, Kalpa
Gunaratna, Vikas Yadav, Zheng Tang, Vijay Srini-
vasan, Tianyi Zhou, Heng Huang, and Hongxia Jin.
2023. Alpagasus: Training a better alpaca with fewer
data.

Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji,
and Quanquan Gu. 2024. Self-play fine-tuning con-
verts weak language models to strong language mod-
els. arXiv preprint arXiv:2401.01335.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi

Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2022. Scaling instruction-finetuned language models.
arXiv preprint arXiv:2210.11416.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. arXiv preprint arXiv:2110.14168.

Alice Coucke, Alaa Saade, Adrien Ball, Théodore
Bluche, Alexandre Caulier, David Leroy, Clément
Doumouro, Thibault Gisselbrecht, Francesco Calta-
girone, Thibaut Lavril, et al. 2018. Snips voice plat-
form: an embedded spoken language understanding
system for private-by-design voice interfaces. arXiv
preprint arXiv:1805.10190.

Claude Coulombe. 2018. Text data augmentation made
simple by leveraging nlp cloud apis. arXiv preprint
arXiv:1812.04718.

Haixing Dai, Zhengliang Liu, Wenxiong Liao, Xiaoke
Huang, Yihan Cao, Zihao Wu, Lin Zhao, Shaochen
Xu, Wei Liu, Ninghao Liu, Sheng Li, Dajiang Zhu,
Hongmin Cai, Lichao Sun, Quanzheng Li, Dinggang
Shen, Tianming Liu, and Xiang Li. 2023. Auggpt:
Leveraging chatgpt for text data augmentation.

Yihe Deng, Weitong Zhang, Zixiang Chen, and Quan-
quan Gu. 2023a. Rephrase and respond: Let large
language models ask better questions for themselves.

Yuntian Deng, Kiran Prasad, Roland Fernandez,
Paul Smolensky, Vishrav Chaudhary, and Stuart
Shieber. 2023b. Gpt-4 turbo v.s. gpt-4 com-
parison. https://github.com/da03/implicit_
chain_of_thought/tree/main/gpt4_baselines.

Bosheng Ding, Chengwei Qin, Linlin Liu, Yew Ken
Chia, Boyang Li, Shafiq Joty, and Lidong Bing. 2023.
Is gpt-3 a good data annotator? In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 11173–11195.

Jon Durbin. 2023. Jondurbin/airoboros-l2-70b-3.1.2 ·
hugging face.

Luyang Fang, Gyeong-Geon Lee, and Xiaoming Zhai.
2023. Using gpt-4 to augment unbalanced data for
automatic scoring.

Steven Y. Feng, Varun Gangal, Jason Wei, Sarath Chan-
dar, Soroush Vosoughi, Teruko Mitamura, and Ed-
uard Hovy. 2021. A survey of data augmentation
approaches for NLP. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 968–988, Online. Association for Computa-
tional Linguistics.

Yao Fu, Litu Ou, Mingyu Chen, Yuhao Wan, Hao Peng,
and Tushar Khot. 2023a. Chain-of-thought hub: A
continuous effort to measure large language models’
reasoning performance.

6507

http://arxiv.org/abs/2305.10403
http://arxiv.org/abs/2305.10403
http://arxiv.org/abs/2312.09390
http://arxiv.org/abs/2312.09390
http://arxiv.org/abs/2312.09390
http://arxiv.org/abs/2307.06290
http://arxiv.org/abs/2307.06290
http://arxiv.org/abs/2307.08701
http://arxiv.org/abs/2307.08701
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
http://arxiv.org/abs/2302.13007
http://arxiv.org/abs/2302.13007
http://arxiv.org/abs/2311.04205
http://arxiv.org/abs/2311.04205
https://github.com/da03/implicit_chain_of_thought/tree/main/gpt4_baselines
https://github.com/da03/implicit_chain_of_thought/tree/main/gpt4_baselines
https://huggingface.co/jondurbin/airoboros-l2-70b-3.1.2
https://huggingface.co/jondurbin/airoboros-l2-70b-3.1.2
http://arxiv.org/abs/2310.18365
http://arxiv.org/abs/2310.18365
https://doi.org/10.18653/v1/2021.findings-acl.84
https://doi.org/10.18653/v1/2021.findings-acl.84
http://arxiv.org/abs/2305.17306
http://arxiv.org/abs/2305.17306
http://arxiv.org/abs/2305.17306

Yao Fu, Hao Peng, Litu Ou, Ashish Sabharwal, and
Tushar Khot. 2023b. Specializing smaller language
models towards multi-step reasoning. arXiv preprint
arXiv:2301.12726.

Xinyang Geng, Arnav Gudibande, Hao Liu, Eric Wal-
lace, Pieter Abbeel, Sergey Levine, and Dawn Song.
2023. Koala: A dialogue model for academic re-
search. Blog post.

Caglar Gulcehre, Tom Le Paine, Srivatsan Srini-
vasan, Ksenia Konyushkova, Lotte Weerts, Abhishek
Sharma, Aditya Siddhant, Alex Ahern, Miaosen
Wang, Chenjie Gu, et al. 2023. Reinforced self-
training (rest) for language modeling. arXiv preprint
arXiv:2308.08998.

Patrick Haluptzok, Matthew Bowers, and Adam Tauman
Kalai. 2023. Language models can teach themselves
to program better.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2020. Measuring massive multitask language under-
standing. arXiv preprint arXiv:2009.03300.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Minki Kang, Seanie Lee, Jinheon Baek, Kenji
Kawaguchi, and Sung Ju Hwang. 2023. Knowledge-
augmented reasoning distillation for small language
models in knowledge-intensive tasks.

Varun Kumar, Ashutosh Choudhary, and Eunah Cho.
2020. Data augmentation using pre-trained trans-
former models. In Proceedings of the 2nd Workshop
on Life-long Learning for Spoken Language Systems,
pages 18–26.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, et al. 2020. Retrieval-augmented generation
for knowledge-intensive nlp tasks. Advances in Neu-
ral Information Processing Systems, 33:9459–9474.

Minzhi Li, Taiwei Shi, Caleb Ziems, Min-Yen Kan,
Nancy Chen, Zhengyuan Liu, and Diyi Yang. 2023a.
Coannotating: Uncertainty-guided work allocation
between human and large language models for data
annotation. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Process-
ing, pages 1487–1505.

Xian Li, Ping Yu, Chunting Zhou, Timo Schick, Luke
Zettlemoyer, Omer Levy, Jason Weston, and Mike
Lewis. 2023b. Self-alignment with instruction back-
translation. arXiv preprint arXiv:2308.06259.

Xin Li and Dan Roth. 2002. Learning question clas-
sifiers. In COLING 2002: The 19th International
Conference on Computational Linguistics.

Zhenwen Liang, Wenhao Yu, Tanmay Rajpurohit, Pe-
ter Clark, Xiangliang Zhang, and Ashwin Kalyan.
2023. Let gpt be a math tutor: Teaching math word
problem solvers with customized exercise generation.
In Proceedings of the 2023 Conference on Empiri-
cal Methods in Natural Language Processing, pages
14384–14396.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text Summarization
Branches Out, pages 74–81.

Bingbin Liu, Sebastien Bubeck, Ronen Eldan, Janard-
han Kulkarni, Yuanzhi Li, Anh Nguyen, Rachel Ward,
and Yi Zhang. 2023a. Tinygsm achieving 80% on
gsm8k with small language models.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2023b. Lost in the middle: How lan-
guage models use long contexts. arXiv preprint
arXiv:2307.03172.

Shayne Longpre, Le Hou, Tu Vu, Albert Webson,
Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V. Le,
Barret Zoph, Jason Wei, and Adam Roberts. 2023.
The flan collection: designing data and methods for
effective instruction tuning. In Proceedings of the
40th International Conference on Machine Learning,
ICML’23. JMLR.org.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
et al. 2023. Self-refine: Iterative refinement with
self-feedback. arXiv preprint arXiv:2303.17651.

Sourab Mangrulkar, Sylvain Gugger, Lysandre De-
but, Younes Belkada, Sayak Paul, and Benjamin
Bossan. 2022. Peft: State-of-the-art parameter-
efficient fine-tuning methods. https://github.
com/huggingface/peft.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and
Hannaneh Hajishirzi. 2022. Cross-task generaliza-
tion via natural language crowdsourcing instructions.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 3470–3487.

Arindam Mitra, Luciano Del Corro, Shweti Mahajan,
Andres Codas, Clarisse Simoes, Sahaj Agarwal, Xuxi
Chen, Anastasia Razdaibiedina, Erik Jones, Kriti
Aggarwal, et al. 2023. Orca 2: Teaching small
language models how to reason. arXiv preprint
arXiv:2311.11045.

Niklas Muennighoff, Thomas Wang, Lintang Sutawika,
Adam Roberts, Stella Biderman, Teven Le Scao,
M Saiful Bari, Sheng Shen, Zheng-Xin Yong, Hai-
ley Schoelkopf, Xiangru Tang, Dragomir R. Radev,

6508

https://bair.berkeley.edu/blog/2023/04/03/koala/
https://bair.berkeley.edu/blog/2023/04/03/koala/
http://arxiv.org/abs/2207.14502
http://arxiv.org/abs/2207.14502
http://arxiv.org/abs/2305.18395
http://arxiv.org/abs/2305.18395
http://arxiv.org/abs/2305.18395
https://aclanthology.org/C02-1150
https://aclanthology.org/C02-1150
http://arxiv.org/abs/2312.09241
http://arxiv.org/abs/2312.09241
https://github.com/huggingface/peft
https://github.com/huggingface/peft

Alham Fikri Aji, Khalid Almubarak, Samuel Al-
banie, Zaid Alyafeai, Albert Webson, Edward Raff,
and Colin Raffel. 2023. Crosslingual generalization
through multitask finetuning. In Annual Meeting of
the Association for Computational Linguistics.

Subhabrata Mukherjee, Arindam Mitra, Ganesh Jawa-
har, Sahaj Agarwal, Hamid Palangi, and Ahmed
Awadallah. 2023. Orca: Progressive learning from
complex explanation traces of gpt-4. arXiv preprint
arXiv:2306.02707.

Harsha Nori, Yin Tat Lee, Sheng Zhang, Dean Carig-
nan, Richard Edgar, Nicolo Fusi, Nicholas King,
Jonathan Larson, Yuanzhi Li, Weishung Liu, et al.
2023. Can generalist foundation models outcom-
pete special-purpose tuning? case study in medicine.
arXiv preprint arXiv:2311.16452.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul Christiano, Jan Leike, and Ryan Lowe. 2022.
instructgpt.

Archiki Prasad, Elias Stengel-Eskin, and Mohit Bansal.
2023. Rephrase, augment, reason: Visual grounding
of questions for vision-language models.

Arthur L Samuel. 2000. Some studies in machine learn-
ing using the game of checkers. IBM Journal of
research and development, 44(1.2):206–226.

Victor Sanh, Albert Webson, Colin Raffel, Stephen
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Arun Raja, Manan Dey,
et al. 2021. Multitask prompted training enables
zero-shot task generalization. In International Con-
ference on Learning Representations.

Avi Singh, John D Co-Reyes, Rishabh Agarwal, Ankesh
Anand, Piyush Patil, Peter J Liu, James Harri-
son, Jaehoon Lee, Kelvin Xu, Aaron Parisi, et al.
2023. Beyond human data: Scaling self-training
for problem-solving with language models. arXiv
preprint arXiv:2312.06585.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empiri-
cal methods in natural language processing, pages
1631–1642.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B Hashimoto. 2023. Alpaca: A
strong, replicable instruction-following model. Stan-
ford Center for Research on Foundation Models.
https://crfm. stanford. edu/2023/03/13/alpaca. html,
3(6):7.

Gerald Tesauro et al. 1995. Temporal difference learn-
ing and td-gammon. Communications of the ACM,
38(3):58–68.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023a. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Solomon Ubani, Suleyman Olcay Polat, and Rodney
Nielsen. 2023. Zeroshotdataaug: Generating and aug-
menting training data with chatgpt. arXiv preprint
arXiv:2304.14334.

Shuohang Wang, Yang Liu, Yichong Xu, Chenguang
Zhu, and Michael Zeng. 2021. Want to reduce label-
ing cost? gpt-3 can help. In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2021,
pages 4195–4205.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh
Hajishirzi. 2023. Self-instruct: Aligning language
models with self-generated instructions. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 13484–13508, Toronto, Canada. Association
for Computational Linguistics.

Yizhong Wang, Swaroop Mishra, Pegah Alipoormo-
labashi, Yeganeh Kordi, Amirreza Mirzaei, Atharva
Naik, Arjun Ashok, Arut Selvan Dhanasekaran, An-
jana Arunkumar, David Stap, et al. 2022a. Super-
naturalinstructions: Generalization via declarative
instructions on 1600+ nlp tasks. In Proceedings of
the 2022 Conference on Empirical Methods in Natu-
ral Language Processing, pages 5085–5109.

Yufei Wang, Jiayi Zheng, Can Xu, Xiubo Geng, Tao
Shen, Chongyang Tao, and Daxin Jiang. 2022b.
Knowda: All-in-one knowledge mixture model for
data augmentation in few-shot nlp. arXiv preprint
arXiv:2206.10265.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu,
Adams Wei Yu, Brian Lester, Nan Du, Andrew M
Dai, and Quoc V Le. 2021. Finetuned language mod-
els are zero-shot learners. In International Confer-
ence on Learning Representations.

Jason Wei and Kai Zou. 2019. EDA: Easy data augmen-
tation techniques for boosting performance on text
classification tasks. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 6382–6388, Hong Kong, China. As-
sociation for Computational Linguistics.

6509

https://api.semanticscholar.org/CorpusID:253264914
https://api.semanticscholar.org/CorpusID:253264914
http://arxiv.org/abs/2203.02155
http://arxiv.org/abs/2310.05861
http://arxiv.org/abs/2310.05861
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/D19-1670
https://doi.org/10.18653/v1/D19-1670
https://doi.org/10.18653/v1/D19-1670

Lai Wei, Zihao Jiang, Weiran Huang, and Lichao Sun.
2023. Instructiongpt-4: A 200-instruction paradigm
for fine-tuning minigpt-4.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. 2023. Wizardlm: Empowering large lan-
guage models to follow complex instructions. arXiv
preprint arXiv:2304.12244.

Hanwei Xu, Yujun Chen, Yulun Du, Nan Shao, Wang
Yanggang, Haiyu Li, and Zhilin Yang. 2022. Zero-
prompt: Scaling prompt-based pretraining to 1,000
tasks improves zero-shot generalization. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2022, pages 4235–4252.

Kang Min Yoo, Dongju Park, Jaewook Kang, Sang-
Woo Lee, and Woomyeong Park. 2021. Gpt3mix:
Leveraging large-scale language models for text aug-
mentation. arXiv preprint arXiv:2104.08826.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu,
Zhengying Liu, Yu Zhang, James T. Kwok, Zhenguo
Li, Adrian Weller, and Weiyang Liu. 2023. Meta-
math: Bootstrap your own mathematical questions
for large language models.

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho,
Sainbayar Sukhbaatar, Jing Xu, and Jason Weston.
2024. Self-rewarding language models. arXiv
preprint arXiv:2401.10020.

Eric Zelikman, Eliana Lorch, Lester Mackey, and
Adam Tauman Kalai. 2023. Self-taught optimizer
(stop): Recursively self-improving code generation.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah D.
Goodman. 2022. Star: Bootstrapping reasoning with
reasoning.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and
David Lopez-Paz. 2018. mixup: Beyond empirical
risk minimization. In International Conference on
Learning Representations.

Lucia Zheng, Neel Guha, Brandon R. Anderson, Peter
Henderson, and Daniel E. Ho. 2021. When does
pretraining help? assessing self-supervised learning
for law and the casehold dataset. In Proceedings
of the 18th International Conference on Artificial
Intelligence and Law. Association for Computing
Machinery.

Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo Liang,
Shuai Lu, Yanlin Wang, Amin Saied, Weizhu Chen,
and Nan Duan. 2023. Agieval: A human-centric
benchmark for evaluating foundation models. arXiv
preprint arXiv:2304.06364.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao
Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping Yu,
Lili Yu, Susan Zhang, Gargi Ghosh, Mike Lewis,
Luke Zettlemoyer, and Omer Levy. 2023. Lima: Less
is more for alignment.

Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and
Mohamed Elhoseiny. 2023. Minigpt-4: Enhancing
vision-language understanding with advanced large
language models.

6510

http://arxiv.org/abs/2308.12067
http://arxiv.org/abs/2308.12067
http://arxiv.org/abs/2309.12284
http://arxiv.org/abs/2309.12284
http://arxiv.org/abs/2309.12284
http://arxiv.org/abs/2310.02304
http://arxiv.org/abs/2310.02304
http://arxiv.org/abs/2203.14465
http://arxiv.org/abs/2203.14465
http://arxiv.org/abs/2104.08671
http://arxiv.org/abs/2104.08671
http://arxiv.org/abs/2104.08671
http://arxiv.org/abs/2305.11206
http://arxiv.org/abs/2305.11206
http://arxiv.org/abs/2304.10592
http://arxiv.org/abs/2304.10592
http://arxiv.org/abs/2304.10592

A Experimental Setup

A.1 Datasets

We evaluate LLM2LLM on five different datasets
that are either multiple-choice or classification
tasks and were widely adopted in prior works in-
cluding (Ubani et al., 2023). Our datasets are as
follows:

1. GSM8K: a grade school math work multiple-
choice dataset that consists of 7.5K train prob-
lems and 1K test problems (Cobbe et al., 2021).
Figure B.1 shows an example.

2. CaseHOLD: a multiple-choice law dataset that
requires one to choose the relevant holding (i.e.
the court’s determination) of a cited case which
backs up the proceeding argument (Zheng et al.,
2021). Figure B.2 shows an example.

3. SNIPS: a 7-way classification dataset to deter-
mine the correct user intent for a voice assis-
tant. (Coucke et al., 2018). Figure B.3 shows an
example.

4. TREC: a 6-way classification dataset where one
must classify the type of text into a category e.g.,
abbreviation, location, or numeric value (Li and
Roth, 2002). Figure B.4 shows an example.

5. SST-2: a binary classification dataset to decide
whether a sentence of positive or negative senti-
ment (Socher et al., 2013). Figure B.5 shows an
example.

For each dataset, we sample between 0.02% to
50% of the total training data and use this as the
seed data for each experiment. This allows us to
measure how effectively LLM2LLM scales up
small task-specific datasets. For consistency, we
use identical samples of seed data across different
experiments (e.g. 1% on GSM8K) to avoid intro-
ducing new randomness with different samples.

In particular, for SNIPS, TREC, and SST-2,
we always uniformly sample the same number of
examples per class, similar to (Dai et al., 2023;
Ubani et al., 2023). In Table 1, we sample 10,
15, and 20 examples per class to measure the ef-
ficacy of LLM2LLM in the extreme low-data
regime. These three tasks are relatively simpler
than GSM8K and CaseHOLD, and therefore us-
ing an extremely small amount of training data is
sufficient to achieve exemplary performance.

A.2 Models

For all of our experiments, we use Llama-2-7B
(Touvron et al., 2023b) as the student model. We
perform minimal prompt tuning for each task, only
formatting the data as necessary and not employing
many few-shot examples, which can be seen in Fig-
ure B.1 and Figure B.2. Using excessive prompting
would undermine the benefits of fine-tuning and
would muddle the evaluation of the effectiveness of
LLM2LLM. Our fine-tuning settings are described
in Section A.4.

For our main experiments, we use GPT-3.5
(1106 release) as the teacher model for data gener-
ation. In Section 4.4 and Table A.1, we show that
our framework can be extended to different teacher
models such as the more powerful GPT-4-Turbo
(1106 release) model as well as open source LLMs
such as Llama-2-70B-chat (Touvron et al., 2023b)
and Airoboros-l2-70b-3.1.2 (Durbin, 2023).

A.3 Baselines and Evaluation

To measure the efficacy of LLM2LLM, we fine-
tune the student model using samples of different
sizes from each dataset and evaluate on the valida-
tion sets of each of these datasets. We then run 10
steps of LLM2LLM, and use the validation sets to
select the best performing model. In Section 4.2,
we compare these results against basic fine-tuning
on just the seed data.

For GSM8K and TREC, since there is no devel-
opment set, we choose the best checkpoint’s test
set results to be representative for the overall im-
provement. Similarly, for SST-2, since the test set
labels are not public, we use the development set
results. For all other datasets, we record the test set
performance of the checkpoint that performs best
on the development set.

For TREC, SST-2, and SNIPS, since these
are simple classification tasks, we perform string
matching between the generated output and the
ground truth after some cleanup. For CaseHOLD,
which is a multiple choice task, we extract the let-
ter of the answer that the model generates. For
GSM8K, we use a regular expression extraction
based on the answer format that GSM8K provides.
Specifically, we extract the number after the ####
token.

In Section 4.3, we only sample 100 examples
from GSM8K and CaseHOLD. For SNIPS, TREC,
and SST-2, we sample 10 examples per class. We

6511

run an extensive ablation study against several dif-
ferent baselines:

• Fine-tuning: Standard fine-tuning on the initial
seed data.

• EDA: EDA (Wei and Zou, 2019) which uses syn-
onym replacement plus random swap, insert, and
deletion to augment text with 10% probability.
Note that we take care not to augment any spe-
cial formatting or structural elements for each
dataset.

• AugGPT: Augment our seed data using the
teacher prompts from Section 3.1 with no fil-
tering, similar to (Dai et al., 2023; Ubani et al.,
2023; Yoo et al., 2021).

• More Data: Randomly sampling new data from
unseen train data and adding to the training data.

A.4 Fine-tuning Settings

Following the example from Alpaca (Taori et al.,
2023), all models are fine-tuned with a maximum
sequence length of 1024 for 3 epochs with a batch
size of 128 examples. We use a learning rate of
2 × 10−5 with 0 weight decay and a warmup ra-
tio of 0.03 with a cosine learning rate scheduler.
These models were trained using either 4 NVIDIA
A100-80GB or 8 NVIDIA A6000s. We do full fine-
tuning for simplicity and to reduce the complexity
of our experiments, but in practice, one can also
use some form of parameter-efficient fine-tuning
method such as LoRA (Hu et al., 2021).

B LLM2LLM Details

B.1 Fine-tuning

The fine-tuning step trains a small student
model using seed data and previously generated
LLM2LLM data, if any. This LLM2LLM data
is generated by a process further detailed in Sec-
tion 3.1 that generates synthetic data targeted to-
ward data points the model got wrong. We always
fine-tune the original student model on the full
dataset (seed data + LLM2LLM data) at each step.
Our ablation study in Section 4.5.3 shows that fine-
tuning the original baseline model from scratch
on the full dataset always outperformed re-using
the already-fine-tuned model. We hypothesize that
this is because fine-tuned models have already seen
most of the data, causing them to overfit and fail to
converge to a better optimum.

B.2 Evaluation

After fine-tuning, the model needs to be evalu-
ated on the original (training) seed data to iden-
tify the examples that the model gets wrong. This
allows the LLM2LLM framework to use those
failed examples to generate targeted synthetic data
for the model to train on. For example, if the
model was unable to solve problems involving the
Pythagorean theorem as in Figure 1, these exam-
ples will be used to generate more problems with
this concept.

For many datasets, this evaluation step can be ex-
tremely costly, as traditional NLP datasets can have
more than thousands of data points. However, this
evaluation step is cost-effective and relatively quick
in the low-data regime where the seed dataset size
is small, thereby not slowing down the LLM2LLM
process.

B.3 Filtering Generated Dataset

Once the teacher model generates the synthetic
data, we need to apply simple filtering of the out-
put for quality insurance. Like in previous work
(Wang et al., 2023; Taori et al., 2023), we use regex
filters to ensure that the basic format of the output
is aligned with our expectations. We also use a
ROUGE (Lin, 2004) filter in order to enforce that
the augmented data points are sufficiently different
from previous samples. However, we use a weaker
ROUGE filter of 0.95 to filter out similar instruc-
tions, rather than the score of 0.85 used in other
works like Alpaca (Taori et al., 2023) and Self-
instruct (Wang et al., 2023). The reason we can do
this is because unlike Alpaca and Self-Instruct, we
do not require as much diversity in the generations,
as we are not targeting general-purpose instruction-
following. In fact, we would like to constrain the
generated data points to the task and domain of
the datasets as much as we can. Thus, we are able
to use a weaker filter so that we can simply filter
out exact matches during generation. In addition,
since we are augmenting each sample individually,
there is already enough inherent diversity in the
generation process.

B.4 Prompting Details

We devised simple but thorough prompts for each
task that the teacher model uses while augmenting
the dataset. Previous work in open-domain dataset
generation such as (Wang et al., 2023; Mukherjee
et al., 2023; Xu et al., 2023) used generic system

6512

Dataset # Seed Teacher Total # Aug Accuracy (%)

GSM8K

74 (1%)

Llama-2-70B 333 11.83
Airoboros 345 15.01
GPT-3.5 391 19.56

GPT-4-Turbo 388 19.79

149 (2%)

Llama-2-70B 661 17.59
Airoboros 671 19.33
GPT-3.5 802 25.70

GPT-4-Turbo 805 25.78

343 (5%)

Llama-2-70B 1308 19.33
Airoboros 1286 21.76
GPT-3.5 1641 27.07

GPT-4-Turbo 1739 28.43

Table A.1: Experiments on how the quality of teacher model affects the performance of LLM2LLM. For each
of these experiments, we only change the teacher model to measure the effect of the teacher model on the final
outcome.

instructions for generating new data points from
stronger models such as GPT-3.5 and GPT-4. This
was necessary as these approaches targeted improv-
ing the LLM over a wide range of different tasks.
However, for LLM2LLM, we are trying to im-
prove the LLM at domain-specific tasks. Thus, for
each task, the system prompt that we give to the
teacher-model differs on a per-task basis. This al-
lows the user to inject and leverage domain-specific
knowledge about the task into the dataset genera-
tion procedure, creating higher quality fine-tuning
data. In practice, we also use in-context learning
with few-shot prompting to bootstrap the teacher
model’s ability to generate relevant questions.

The detailed system prompt and in-context ex-
amples for each dataset are provided below:

1. GSM8K: System (Figure B.6) and In-Context
Examples (Figure B.7)

2. CaseHOLD: System (Figure B.8) and In-
Context Examples (Figure B.9)

3. SNIPS: System (Figure B.10) and In-Context
Examples (Figure B.11)

4. TREC: System (Figure B.12) and In-Context
Examples (Figure B.13)

5. SST-2: System (Figure B.14) and In-Context
Examples (Figure B.15)

B.5 Training and Data Generation Costs

In Table B.2, we report the training and data gener-
ation costs to perform LLM2LLM. This includes
the cost of generating new data from OpenAI as
well as the amount of GPU hours required to train
and evaluate the student models. We measured

Dataset % Data Cost ($) Time (Hours)

GSM8K
1% 0.35 3.28
5% 1.48 9.07
10% 3.64 14.54

CaseHOLD
1% 1.50 6.68
5% 0.84 16.87
10% 2.19 31.95

SNIPS
0.5% 0.02 0.85
0.8% 0.05 1.29
1% 0.05 1.40

TREC
1.1% 0.05 0.67
1.6% 0.01 0.44
2.2% 0.02 0.61

SST-2
0.02% 0.01 0.54
0.04% 0.01 0.80
0.06% 0.00 0.64

Table B.2: Training and data generation Costs of
LLM2LLM. The first and second columns indicate the
dataset and percentage of the training data used as initial
seed data for that experiment. The third column indi-
cates the total cost to generate the data from the GPT-3.5
teacher model. The fourth column shows the total time
in hours to train and evaluate the student model. As we
can see, data generation costs for LLM2LLM are rela-
tively little compared to the cost of manually curating
new data. Furthermore, fine-tuning and evaluation of
the student model finishes in a reasonable time.

these numbers using 4xA100-80GB PCIe based
NVIDIA GPUs. As we can see, generating data
for LLM2LLM costs relatively little compared to
the cost of collecting new data points manually.
Furthermore, the process of fine-tuning the student
model also finishes in a reasonable amount of time.

B.6 Decontamination Experiments

When using an LLM to generate data, there are
potential concerns of data contamination i.e., when

6513

Dataset Avg. >66% (%) Max % (Count)

GSM8K Train 52.08 11.46 81.48 (1)
GSM8K Test 26.38 0 46.67 (1)

CaseHOLD Train 31.01 0 50.42 (2)
CaseHOLD Test 25.66 0 38.46 (1)

SNIPS Train 59.94 34.21 85.71 (1)
SNIPS Test 45.90 7.89 80.00 (1)

TREC Train 47.62 17.04 80.00 (4)
TREC Test 33.47 6.67 80.00 (1)

SST-2 Train 34.35 0 57.14 (2)
SST-2 Dev 25.46 0 42.86 (1)

Table B.3: Word overlap by dataset of synthetic exam-
ples generated after 10 steps of LLM2LLM using 100
seed examples as in Section 4.3. Column Dataset indi-
cates the dataset and train split being used to compare
the synthetic data with. Column Avg. is the average
overlap percentage. Column >66% is the percentage of
examples with above 66% overlap, and column Max %
(Count) indicates the maximum overlap percentage and
the number of examples at that overlap percentage.

the teacher LLM has been trained on the test data
and thus leaks it into the student model’s training
data which would artificially inflate the student
model’s scores. To test for this we measure the
word overlap percentage between examples gen-
erated by the teacher model and examples from
the train and test set for each dataset in the same
manner as (Ubani et al., 2023).

Word overlap is computed by first removing stop
words and punctuation from each example. Then,
for each example pair, we count the number of
words that are common between the two, and divide
by the number of words in longer example. This
provides a metric for measuring how many words
are similar between the two examples.

For each dataset, we run LLM2LLM for 10
steps using the same amount of seed data as in Sec-
tion 4.3. Then, we take all the synthetic data gener-
ated for the final step and calculate our word over-
lap metric per example. We then calculate word
overlap summary statistics similarly to (Ubani
et al., 2023) which are the percentage of examples
above 66% similarity, the maximum overlap, and
the number of examples at the maximum overlap.

Looking at Table B.3, we can see varying levels
of overlap between the synthetic data and the train-
ing data. This is to be expected, as LLM2LLM
uses training data as seed data in order to generate
new synthetic examples based on that training data.

Regarding the test/dev set results, we see that
for GSM8K, CaseHOLD, and SST-2, 0% of the
generated examples have above 66% word overlap
with the test set. This indicates that the model is
not leaking test set data into the student model’s
training data. For SNIPS and TREC, we see that
the percent of examples with above 66% overlap is
still well below 10% thus indicating no large-scale
overlap.

For SNIPS and TREC specifically the maximum
overlap percentage is 80%. Upon closer inspec-
tion this is because these two datasets have very
short examples. Given the small number of such
examples we don’t believe this poses a high risk of
data contamination. (Ubani et al., 2023) came to a
similar conclusion regarding these two datasets.

6514

GSM8K Example:

Victor, Austin, and Brian made traps to catch shrimp. Victor’s trap caught 26 shrimp
and Austin’s trap caught 8 less than Victor’s. Brian’s trap caught half of Victor and Austin’s total
number of shrimp. If the boys then sold their shrimp for $7 for every 11 tails of shrimp and then
divided their earnings equally amongst themselves, how much money does each boy make?

Austin’s trap caught 26 - 8 = «26-8=18»18 shrimp.
Together, Victor and Austin’s traps caught 18 + 26 = «18+26=44»44 shrimp.
Brian’s trap caught 44/2 = «44/2=22»22 shrimp
In total, they caught 26 + 18 + 22 = «26+18+22=66»66 shrimp.
They were able to sell 66/11 = «66/11=6»6 sets of shrimp.
They made a total of 6 x 7 =«6*7=42»42
Each boy made 42/3 =«42/3=14»14
14

Figure B.1: Formatted example from GSM8K.

CaseHOLD Example:

The following context is from a judicial decision where the holding statement has been
masked out as <HOLDING>.

Context: from behind the bench in the robe is protected by the First Amendment, even
if his use of the trappings of judicial office were notprotected by First Amendment); Halleck v.
Berlinger, 427 F. Supp. 1225, 1241 (D.D.C. 1977) (applying the First Amendment in disciplinary
proceeding to comments made from the bench, but finding the particular comments outside of its
protection); Mississippi Comm’n on Judicial Performance v. Boland, 975 So.2d 882, 891-92 (Miss.
2008) (applying First Amendment to ajudge acting in her “capacity as a justice court judge” at a
conference seeking certification to start a drug court, but held that First Amendment did not apply
because judge’s insulting comments were not matters of “legitimate public concern.”); In re Rome,
218 Kan. 198, 542 P.2d 676, 684 (1975) (<HOLDING>). 11 As indicated in the Gentile syllabus,

Please select the correct holding statement from the options below.

A. holding that free speech protection of new jersey constitution requires subject to rea-
sonable restrictions privatelyowned shopping centers to permit speech on political and societal
issues on premises unlike first amendment of federal constitution
B. recognizing that code is speech
C. holding that first amendment protections apply to compelled speech as well as restrictions on
speech
D. holding that although ajudge has the right of free speech any restrictions placed by the code of
professional responsibility are acceptable limits and prevent the first amendment from exempting a
judge from discipline for proven judicial misconduct
E. holding that the first amendment limits judicial discretion to seal documents in a civil case

D

Figure B.2: Formatted example from CaseHOLD.

6515

SNIPS Example:

The following is a transcript of something someone said.
Classify the intent of the speaker into the following categories:
- AddToPlaylist
- BookRestaurant
- GetWeather
- PlayMusic
- RateBook
- SearchCreativeWork
- SearchScreeningEvent

Transcript: go to bioruby

SearchCreativeWork

Figure B.3: Formatted example from SNIPS.

TREC Example:

The following is a question.
Classify the question into the following categories:
- ABBR
- ENTY
- DESC
- HUM
- LOC
- NUM

Question: What is the full form of .com ?

ABBR

Figure B.4: Example from TREC.

SST-2 Example:

Classify the following movie review as positive or negative: dazzling and sugar-sweet ,
a blast of shallow magnificence that only sex , scandal , and a chorus line of dangerous damsels
can deliver .

negative

Figure B.5: Example from SST-2.

6516

System:

You are a educational A.I. whose purpose is to take math problems that students get
wrong and generate new problems to help them practice their mathematical skills. Your goal is to
generate a set of new math problems that reflect the different skills and techniques found in the
example problem.

Here are the requirements:
1. A GPT language model should be able to complete the problem. For example, do not ask the
assistant to create any visual or audio output. For another example, do not ask the assistant to
wake you up at 5pm or set a reminder because it cannot perform any action.
2. The math problem should be in English.
3. The output should be an appropriate response to the question. Make sure the output is less than
100 words.
4. The answer to the problem should be expressed as a number, not a fraction. For example, if the
answer is one-half, return 0.5, not 1/2 or "one half".
5. The answer to the problem should not have units i.e. if the answer is 6 cups, just write 6 as the
[ANSWER]
6. Always include some calculation to show your work for how you got your ANSWER.
7. Don’t make any mathematical mistakes of your own!
8. Try not to copy too much information from the original problem. If you must, try and replace
names and numbers so that we can test the student’s understanding, rather than their ability to
memorize previous test questions.

Always return your instructions in the form:
1. Question: [QUESTION]
Answer: [CALCULATION]
[ANSWER]

Figure B.6: System Prompt for GSM8K Generation

6517

User:

The student was given the following question:

Betty is saving money for a new wallet which costs $100. Betty has only half of the
money she needs. Her parents decided to give her $15 for that purpose, and her grandparents twice
as much as her parents. How much more money does Betty need to buy the wallet?

The answer key has this as the rationale and answer:

In the beginning, Betty has only 100 / 2 = $«100/2=50»50.
Betty’s grandparents gave her 15 * 2 = $«15*2=30»30.
This means, Betty needs 100 - 50 - 30 - 15 = $«100-50-30-15=5»5 more.
5

Please generate 1 similar question, along with the correct calculations and rationale.

Assistant:

Sure, I can help you with that! Here’s a new math question based on the same scenario,
along with the correct calculations and rationale:

1. Question: Betty is saving money for a new wallet which costs $150. Betty has al-
ready saved $30. Her parents decided to give her $20 for that purpose, and her grandparents gave
her three times as much as her parents. How much more money does Betty need to buy the wallet?
Answer: In the beginning, Betty has saved $30. Betty’s parents gave her $20. Betty’s grandparents
gave her 3 * $20 = $60. Total amount Betty has: $30 + $20 + $60 = $110. The cost of the wallet is
$150. Amount more needed: $150 - $110 = $40.
40

Figure B.7: In-Context Example for GSM8K Generation

6518

System:

You are LawGPT, an AI agent who knows everything there is to know about U.S. law.
You know the result of every court case and you know every law in the lawbook.
The user is trying to choose the correct holding of the case given the context and argument of the
court.
You are trying to give the user assistance by giving them more practice questions for the questions
that they get wrong.

Here are the requirements:
1. A GPT language model should be able to complete the problem. For example, do not ask the
assistant to create any visual or audio output. For another example, do not ask the assistant to
wake you up at 5pm or set a reminder because it cannot perform any action.
2. The context, holding, and options should be in english.
3. The questions that you generate should test for whether the user understands the case names and
their holdings and whether the user can re-frame relevant holdings to backup the argument in the
context.
4. The context should always end with a citation such as "See United States v. Newman, 125 F.3d
863 (10th Cir.1997) (unpublished) (<HOLDING>); United States v. Dodge, 846 F.Supp. 181,"
5. The citation absolutely needs to have the mask phrase <HOLDING> which is the place where
the legal holding would normally be.
6. The questions should always be multiple choice.
7. There should always be 5 options: 1 options should be a holding that backs up the argument in
the context, the other 4 should be sufficiently different. Each option has to start with the word
"holding"
8. There can only be 1 answer: A, B, C, D, or E.
9. Don’t make any mistakes matching the holdings yourself.
10. Try not to copy too much information from the original problem. You don’t want the user to
just memorize their answer.
11. Make the context similar to the context in question, make sure that the holding that is being
tested is the same.
12. The wrong answer choices can be any other reasonable holding, but it should be sufficiently
different from the correct answer.
13. Do not make your context too short. Remember, these arguments in the context are being
made by judges and should look like they were written by a judge.

Always return your instructions in the form:
1. Context: [CONTEXT]

Please select the correct holding statement from the options below.

A. [OPTION 1]
B. [OPTION 2]
C. [OPTION 3]
D. [OPTION 4]
E. [OPTION 5]
Answer: [ANSWER]

Figure B.8: System Prompt for CaseHOLD Generation

6519

User:

The following is a multiple choice question about the holding statements of a judicial decision that the user
got wrong including the correct answer from the answer sheet:

Context: Drapeau’s cohorts, the cohort would be a “victim” of making the bomb. Further, firebombs are
inherently dangerous. There is no peaceful purpose for making a bomb. Felony offenses that involve explosives qualify
as “violent crimes” for purposes of enhancing the sentences of career offenders. See 18 U.S.C. § 924(e)(2)(B)(ii)
(defining a “violent felony” as: “any crime punishable by imprisonment for a term exceeding one year ... that ...
involves use of explosives”). Courts have found possession of a’bomb to be a crime of violence based on the lack
of a nonviolent purpose for a bomb and the fact that, by its very nature, there is a substantial risk that the bomb
would be used against the person or property of another. See United States v. Newman, 125 F.3d 863 (10th Cir.1997)
(unpublished) (<HOLDING>); United States v. Dodge, 846 F.Supp. 181,

Please select the correct holding statement from the options below.

A. holding that possession of a pipe bomb is a crime of violence for purposes of 18 usc 3142f1
B. holding that bank robbery by force and violence or intimidation under 18 usc 2113a is a crime of violence
C. holding that sexual assault of a child qualified as crime of violence under 18 usc 16
D. holding for the purposes of 18 usc 924e that being a felon in possession of a firearm is not a violent felony as defined
in 18 usc 924e2b
E. holding that a court must only look to the statutory definition not the underlying circumstances of the crime to
determine whether a given offense is by its nature a crime of violence for purposes of 18 usc 16
Answer: A

Please generate 1 similar question, along with 5 different holding options and the correct answer.

Assistant:

Sure, I can help you with that! Here’s a new case holding question based on that question:

1. Context: In the case of Martinez v. State, it was determined that the act of threatening another with a
weapon, even if not used, constitutes a violent act. This is based on the premise that the mere possession of a weapon
with the intent to threaten establishes an inherent risk of physical harm. Such acts align with the definition of "violent
crimes" which can be used as grounds for stricter penalties under the jurisdiction of certain statutes. Refer to 18 U.S.C.
§ 16(b) which defines a “crime of violence” as: “any other offense that is a felony and that, by its nature, involves a
substantial risk that physical force against the person or property of another may be used in the course of committing
the offense.” In the context of this, the Jones v. Commonwealth, 279 F.3d 722 (4th Cir.2001) case had a significant
<HOLDING>.

Please select the correct holding statement from the options below.

A. holding that mere possession of a weapon without any intent does not constitute a crime of violence un-
der 18 U.S.C. § 16(b)
B. holding that using a computer to commit fraud is considered a crime of violence because of the potential harm to
victims’ financial well-being
C. holding that threatening another with a weapon, even if not used, is a crime of violence for purposes of 18 U.S.C. §
16(b)
D. holding that in terms of 18 U.S.C. § 16(b), verbal threats without the presence of a weapon do not qualify as a crime
of violence
E. holding that any crime which results in a financial penalty, irrespective of physical harm, is a crime of violence under
18 U.S.C. § 16(b)
Answer: C

Figure B.9: In-Context Example for CaseHOLD Generation

6520

System:
You are TranscriptGPT, an AI agent who knows the intent of the transcript of different questions.
You are training someone how to identify people’s intents from what they have said.
You are trying to give the user assistance by giving them more practice questions for the questions
that they get wrong.

Here are the requirements:
1. A GPT language model should be able to complete the problem. For example, do not ask the
assistant to create any visual or audio output. For another example, do not ask the assistant to
wake you up at 5pm or set a reminder because it cannot perform any action.
2. The question and options should be in english.
3. The questions that you generate should have only 1 of the following intents:
- AddToPlaylist
- BookRestaurant
- GetWeather
- PlayMusic
- RateBook
- SearchCreativeWork
- SearchScreeningEvent
4. The questions should always have 1 specific intent.
5. The intent of the question must come from the list above.
6. Don’t make any mistakes with your answer yourself.
7. Try not to copy too much information from the original problem. You don’t want the user to just
memorize the practice problems.
8. Make the intent the same as the question that the user got wrong.
9. The wrong answer choices can be any other reasonable answer, but it should be sufficiently
different from the correct answer.
10. The transcript should be something that an ASR model could output: it must sound like
something a human could say.

Always return your instructions in the form:
1. Transcript: [CONTEXT]
Intent: [INTENT]

Figure B.10: System Prompt for SNIPS Generation

6521

User:

The following is a transcript whose intent the user got wrong including the correct an-
swer from the answer key:

The following is a transcript of something someone said.
Classify the intent of the speaker into the following categories:
- AddToPlaylist
- BookRestaurant
- GetWeather
- PlayMusic
- RateBook
- SearchCreativeWork
- SearchScreeningEvent

Transcript: what s the weather here at 2 pm ’,

Intent: GetWeather

Give me another 1 similar transcripts with the same answer (GetWeather).

Assistant:

Here’s a similar transcript with the same intended answer category:

1. Transcript: Will it rain in the city this afternoon?
Intent: GetWeather

Figure B.11: In-Context Example for SNIPS Generation

6522

System:

You are QuestionGPT, an AI agent who knows the class of different question.
You are training someone how to classify different questions based on what the questions are
asking form.
You are trying to give the user assistance by giving them more practice questions for the questions
that they get wrong.

Here are the requirements:
1. A GPT language model should be able to complete the problem. For example, do not ask the
assistant to create any visual or audio output. For another example, do not ask the assistant to
wake you up at 5pm or set a reminder because it cannot perform any action.
2. The question should be in english.
3. The questions that you generate should have only 1 of the following intents:
- ABBR (Abbreviation)
- ENTY (Entity)
- DESC (Description/Concept)
- HUM (Human)
- LOC (Location)
- NUM (Number)
4. The questions should always have 1 specific class.
5. The intent of the question must come from the list above.
6. Don’t make any mistakes with your answer yourself.
7. Try not to copy too much information from the original problem. You don’t want the user to just
memorize the practice problems.
8. Make the class the same as the question that the user got wrong.
9. The question should be something that an ASR model could output: it must sound like
something a human could say.

Always return your instructions in the form:
1. Question: [CONTEXT]
Class: [INTENT]

Figure B.12: System Prompt for TREC Generation

6523

User:

The following is a question that the user was unable to classify correctly:

Classify the question into the following categories:
- ABBR
- ENTY
- DESC
- HUM
- LOC
- NUM

Question: What country do the Galapagos Islands belong to ?
Class: LOC

Give me another 1 similar question with the same class (LOC).

Assistant:

Here’s a similar question with the same class:

1. Question: What country is the Great Barrier Reef located in?
Class: LOC

Figure B.13: In-Context Example for TREC Generation

You are MovieReviewerGPT, an AI agent who knows how people review movies.
You are training someone who is classifying movies as positive or negative.
You are trying to give the user assistance by giving them more practice reviews for the reviews that
they get wrong.

Here are the requirements:
1. A GPT language model should be able to complete the problem. For example, do not ask the
assistant to create any visual or audio output. For another example, do not ask the assistant to
wake you up at 5pm or set a reminder because it cannot perform any action.
2. The review should be in english.
3. The reviews that you generate should be either positive or negative.
4. The reviews should always have 1 specific class.
5. Don’t make any mistakes with your answer yourself.
6. Try not to copy too much information from the original problem. You don’t want the user to
just memorize the practice problems.
7. Make the class the same as the review that the user got wrong.
8. The review should be something that a user on the internet could type into a movie review forum.

Always return your instructions in the form:
1. Review: [CONTEXT]
Sentiment: [SENTIMENT]

Figure B.14: System Prompt for SST-2 Generation

6524

User:

The following is a movie review that the user classified incorrectly including the correct
classification:
Classify the following movie review as positive or negative: as they come , already having been
recycled more times than i ’d care to count
Sentiment: negative

Generate 1 more similar movie review with the same class.

Assistant:

Here’s a similar question with the same class:

1. Review: Feels like a reheated plot, utterly predictable and uninspired.
Sentiment: negative

Figure B.15: In-Context Example for SST-2 Generation

6525

Seed Data Example: Katrina saw an ad that said if she signed up for her local recycling program,
she could earn $5.00. When she signed up, they told her for every friend that she referred, the
friend would receive $5.00 and she would receive another $5.00 per friend. That day, she had 5
friends sign up and another 7 friends by the end of the week. How much money in total did she
and her friends make?

GPT-4-Turbo: Michael joined a library program that rewards $4.00 for becoming a new
member. Additionally, if he recommends the program to his friends, each friend gets $4.00
and Michael also gets $4.00 for each referee. Michael got 3 friends to sign up on the first day
and another 6 friends joined the program over the next two weeks. How much money in total
did Michael and his friends earn?

GPT-3.5: Sophia saw an ad stating that if she signed up for her local fitness center, she could
receive $10 as a reward. For every friend she refers, the friend receives $10, and Sophia
receives an additional $10 per friend. On the first day, she referred 3 friends, and by the end
of the week, she referred 6 more friends. How much money did Sophia and her friends make in
total?

Airoboros: Sophie saw an ad that said if she signed up for her local recycling program, she could
earn $3.00. When she signed up, they told her for every friend that she referred, the friend would
receive $3.00 and she would receive another $3.00 per friend. That day, she had 7 friends sign up
and another 9 friends by the end of the week. How much money in total did she and her friends
make?

Llama-2-70B: Joe signed up for his local recycling program and was promised $10 for every
friend he referred. When he signed up, they told him for every friend that he referred, the friend
would receive $10 and he would receive another $10 per friend. That day, he had 3 friends sign up
and another 8 friends by the end of the week. How much money in total did he and his friends
make?

Figure B.16: Example of new training data generated by various models for the same seed data example on GSM8K.
The bold portions in each cell qualitatively highlight sentences that have been rewritten beyond simple noun or verb
replacement. GPT models rewrite the seed data to a greater degree, while Airoboros and Llama-2-70B generally
make fewer alterations to the sentence structure.

6526

