@inproceedings{bahrainian-etal-2024-text,
title = "Text Simplification via Adaptive Teaching",
author = "Bahrainian, Seyed Ali and
Dou, Jonathan and
Eickhoff, Carsten",
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2024",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-acl.392/",
doi = "10.18653/v1/2024.findings-acl.392",
pages = "6574--6584",
abstract = "Text simplification is the process of rewriting a piece of text using simpler vocabulary and grammatical structure in order to make the text more accessible and understandable for a larger audience. In this paper, we introduce a new text simplification model based on the notion of adaptive teaching using a teacher network and a text generation network. We name this new model Simplification via Adaptive Teaching (SAT). Our proposed model sets a new state-of-the-art performance in terms of standard simplification metrics such as SARI and D-SARI with a significant improvement over the previous state of the art on the D-Wikipedia dataset and the Wiki-Doc benchmark dataset. Moreover, we conduct a human evaluation in terms of text simplicity, correctness, and fluency to substantiate SAT`s performance."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bahrainian-etal-2024-text">
<titleInfo>
<title>Text Simplification via Adaptive Teaching</title>
</titleInfo>
<name type="personal">
<namePart type="given">Seyed</namePart>
<namePart type="given">Ali</namePart>
<namePart type="family">Bahrainian</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">Dou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carsten</namePart>
<namePart type="family">Eickhoff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Text simplification is the process of rewriting a piece of text using simpler vocabulary and grammatical structure in order to make the text more accessible and understandable for a larger audience. In this paper, we introduce a new text simplification model based on the notion of adaptive teaching using a teacher network and a text generation network. We name this new model Simplification via Adaptive Teaching (SAT). Our proposed model sets a new state-of-the-art performance in terms of standard simplification metrics such as SARI and D-SARI with a significant improvement over the previous state of the art on the D-Wikipedia dataset and the Wiki-Doc benchmark dataset. Moreover, we conduct a human evaluation in terms of text simplicity, correctness, and fluency to substantiate SAT‘s performance.</abstract>
<identifier type="citekey">bahrainian-etal-2024-text</identifier>
<identifier type="doi">10.18653/v1/2024.findings-acl.392</identifier>
<location>
<url>https://aclanthology.org/2024.findings-acl.392/</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>6574</start>
<end>6584</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Text Simplification via Adaptive Teaching
%A Bahrainian, Seyed Ali
%A Dou, Jonathan
%A Eickhoff, Carsten
%Y Ku, Lun-Wei
%Y Martins, Andre
%Y Srikumar, Vivek
%S Findings of the Association for Computational Linguistics: ACL 2024
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F bahrainian-etal-2024-text
%X Text simplification is the process of rewriting a piece of text using simpler vocabulary and grammatical structure in order to make the text more accessible and understandable for a larger audience. In this paper, we introduce a new text simplification model based on the notion of adaptive teaching using a teacher network and a text generation network. We name this new model Simplification via Adaptive Teaching (SAT). Our proposed model sets a new state-of-the-art performance in terms of standard simplification metrics such as SARI and D-SARI with a significant improvement over the previous state of the art on the D-Wikipedia dataset and the Wiki-Doc benchmark dataset. Moreover, we conduct a human evaluation in terms of text simplicity, correctness, and fluency to substantiate SAT‘s performance.
%R 10.18653/v1/2024.findings-acl.392
%U https://aclanthology.org/2024.findings-acl.392/
%U https://doi.org/10.18653/v1/2024.findings-acl.392
%P 6574-6584
Markdown (Informal)
[Text Simplification via Adaptive Teaching](https://aclanthology.org/2024.findings-acl.392/) (Bahrainian et al., Findings 2024)
ACL
- Seyed Ali Bahrainian, Jonathan Dou, and Carsten Eickhoff. 2024. Text Simplification via Adaptive Teaching. In Findings of the Association for Computational Linguistics: ACL 2024, pages 6574–6584, Bangkok, Thailand. Association for Computational Linguistics.