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Abstract

Advances in large vision-language models
(LVLMs) have led to significant progress in
generating natural language descriptions for
visual contents. These powerful models are
known for producing texts that are factually in-
consistent with the visual input. While some
efforts mitigate such inconsistencies in natural
image captioning, the factuality of generated
captions for structured visuals, such as charts,
has not received as much scrutiny. This work
introduces a comprehensive typology of factual
errors in generated chart captions. A large-
scale human annotation effort provides insight
into the error patterns in captions generated by
various models, ultimately forming the founda-
tion of a dataset, CHOCOLATE. Our analysis
reveals that even advanced models like GPT-
4V frequently produce captions laced with fac-
tual inaccuracies. To combat this, we establish
the task of Chart Caption Factual Error Correc-
tion and introduce CHARTVE, a visual entail-
ment model that outperforms current LVLMs in
evaluating caption factuality. Furthermore, we
propose C2TFEC, an interpretable two-stage
framework that excels at correcting factual er-
rors. This work inaugurates a new domain in
factual error correction for chart captions, pre-
senting a novel evaluation metric, and demon-
strating an effective approach to ensuring the
factuality of generated chart captions. The code
and data as well as continuously updated bench-
mark can be found at: https://khuangaf.
github.io/CHOCOLATE/.

1 Introduction

Large vision-language models (LVLMs) have re-
cently shown impressive capabilities in generating
natural language descriptions of visual content like
images, videos and charts (OpenAI, 2023b; Google,
2023a; Liu et al., 2023c; Wang et al., 2023). Chart

*Work was done while Kung-Hsiang was at UIUC and
Hou Pong was at the University of Macau.

captioning is particularly important for data ana-
lysts, business analysts, and journalists who rely on
accurate chart interpretations for decision-making
and reporting. However, no prior work has studied
the factuality1 of the generated captions. Given that
factuality is vital for credibility in applications of
chart captioning in news articles (Liu et al., 2021),
educational resources (Fu et al., 2022), and social
media (Monteiro et al., 2017), examining the truth-
fulness of generated captions is a critical concern.

To understand the factual errors in chart cap-
tioning models, we introduce a typology of factual
errors for the chart domain. Using this scheme, we
conduct a large-scale human annotation study to an-
alyze the distributions of various error types, such
as Value Error and Label Error, in captions from
various models, from task-specific fine-tuned mod-
els to LVLMs (see Table 1). The annotated sam-
ples are then categorized into three splits, LVLM

(Large-vision Language Models), LLM (Large
Language Models), and FT (Fine-tuned Vision-
language Models), based on the architecture and
the scale of the underlying models, and form a
dataset which we named CHOCOLATE. With this
dataset collected, we aim to answer three main re-
search questions. First, are state-of-the-art chart
captioning models able to produce factual cap-
tions? We find the answer is no (§2). Specifically,
82.06% of the generated captions are non-factual
(see Table 2). Even state-of-the-art LVLMs like
GPT-4V (OpenAI, 2023b) produce a great portion
of errors in its generated captions (see Figure 1).

The prevalence of factual inconsistencies ob-
served in the generated captions by various models
underscores the urgent need to mitigate the fac-
tual errors of such models. Hence, we introduce a
new task, Chart Caption Factual Error Correction
(§3), which presents a novel challenge of rectifying

1Factuality is also known as the faithfulness or factual
consistency between inputs and outputs
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Figure 1: Error distribution for different models on VisText and Pew. The error rates are computed per sentence.
An error rate of 0.4 indicates that 40% of the sentences in the generated captions contain such an error. Note that
a single caption may contain multiple types of errors; hence, the maximum value for a stacked bar is greater than
1.0. We show that even the most advanced LVLM, GPT-4V, generates captions with a high rate of factual error.

factual inaccuracies in chart captions generated by
LVLMs. A pertinent question that arises from this
task is: how to automatically evaluate the factual
consistency between charts and captions? To
tackle this question, we present CHARTVE, novel
visual entailment approach to assess the factual con-
sistency of chart captions. This model is trained
by repurposing existing resources from chart sum-
marization and chart question answering. Results
show that CHARTVE performs competitively with
proprietary LVLMs and outperforms the most ad-
vanced open-source LVLM, despite being 64 times
less in size.

Now that we have set up the task, we turn to the
challenge of how to effectively correct factual
errors in chart captions? We propose C2TFEC

(§4), an interpretable two-step framework that de-
composes visual reasoning into image-to-structure
rendering and text-based reasoning. C2TFEC first
transforms the input chart into a structured data
table representation. Grounded in this extracted
tabular data, the second component then identifies
and fixes any factual inconsistencies in the gen-
erated caption through an interpretable reasoning
process. Our experiments demonstrate that this ex-
plicit decomposition enables more reliable factual-
ity corrections compared to end-to-end approaches.
The intermediate symbolic representation acts as
an effective bridge between charts and captions,
enabling C2TFEC to significantly outperform com-
petitive baselines including GPT-4V (§6).

In summary, our contributions are as follows:

• We present the first analysis of factual errors in
captions produced by models of various scales
using a novel error typology, which results in the
CHOCOLATE dataset.

• We introduce the Chart Caption Factual Error
Correction task that challenges models to correct
factual errors in generated chart captions.

• We present CHARTVE, a reference-free evalua-
tion metric based on visual entailment that corre-
lates better with human judges than LVLMs.

• We propose C2TFEC, an interpretable two-stage
error correction framework that performs better
than all existing LVLMs.

2 Analyzing Factual Errors

To understand the capabilities of existing models
in summarizing key information from charts, we
conduct a large-scale analysis on six most advanced
chart captioning models on the VisText (Tang et al.,
2023a) and Pew (Kantharaj et al., 2022) datasets.
To facilitate this process, we introduce an error
typology, as illustrated in §2.1. Upon gathering
human annotations, we present a detailed analysis
of different captioning models (§2.2) and discuss
the quality of the collected data (§2.3).

2.1 Error Typology

To understand the frequency of various types of
errors made by chart captioning systems, we define
a typology of errors as detailed below and demon-
strate examples in Table 1.

Value Error A quantitative data value from the
chart is incorrectly stated in the caption. This in-
cludes numbers representing values on axes, per-
centages, or other numerical data points.

Label Error A non-numerical label, category, or
text element from the chart is incorrectly referenced
in the caption. This includes labels on axes, legend
items, categorical variables, etc.
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Chart Category Example Caption

Value Error Asians have a turnout rate of 20.4% in 1990.

Label Error Asians have the highest turnout rates across the
years.

Trend Error From 1986-2014, the turnout rates are increasing
overall.

Magnitude Error From 1986-2014, the turnout rates are sharply de-
creasing overall.

Out-of-context Error Vietnamese have the highest turnout rates among
Asians.

Nonsense Error From 1986-2014, #?sep #sep #sep #sep.

Grammatical Error The turnout rates are decrease overall.

Table 1: Typology of errors illustrated with an example chart.

Trend Error The overall direction of change
over time or comparison between groups is incor-
rectly described in the caption, such as stating an
increasing trend when it is actually decreasing.
Magnitude Error The degree or amount of
difference described for a trend is unfaithful to the
chart, such as stating an increase “sharp” when the
chart shows it is actually “smooth”.
Out-of-context Error Concepts, variables, or
any information introduced in the caption that does
not exist at all in the content of the chart. The cap-
tion contains factual statements not grounded in
the actual chart contents.
Nonsense Error The caption contains incom-
plete sentences, disconnected phrases that do not
connect logically, or sequences of words that sim-
ply do not make coherent sense.
Grammatical Error There are grammatical mis-
takes in the structure or syntax of the caption.2

2.2 Captioning Model Analysis

We consider various types of models. First,
ChartT5 (Zhou et al., 2023), MatCha (Liu et al.,
2023b), and UniChart (Masry et al., 2023) are the
most advanced task-specific models fine-tuned
with in-domain data from the VisText and Pew
datasets. Second, DePlot + GPT-4 (Liu et al.,
2023a; OpenAI, 2023a) is a LLM-based pipeline
approach. Finally, GPT-4V and Bard3 are the
strongest LVLMs. For each model and dataset, we
randomly sample 100 chart figures and generate
the corresponding captions. Invalid output
sequences, such as empty strings, are filtered out.

We compute the percentage of sentences with
factual errors for different models and datasets,

2Note that we do not consider grammatical errors as factual
inconsistency. They are analyzed for assessing fluency.

3We tested Bard before Gemini’s release (Google, 2023b).

with a breakdown of different error types. Error
rates are computed at the sentence level instead
of the caption level since different models gener-
ate captions of different lengths. A sentence-level
evaluation helps mitigate this discrepancy and fa-
cilitates a fairer comparison.

From Figure 1, we made the following observa-
tions. First, SOTA chart captioning models often
fail to produce factual captions. Additionally,
as shown in Table 2, we calculated the percentage
of non-factual captions, revealing that 82.06% of
captions contain at least one factual error. More
importantly, even models like GPT-4V and Bard,
which have demonstrated proficiency in a variety
of vision-language tasks, produce factually incor-
rect captions 81.27% of the time, as recorded in
Table 10. These findings highlight the inherent
difficulties of chart captioning tasks and the limita-
tions of SOTA vision-language models.

Second, task-specific chart captioning models
and LVLMs show opposite trends on the two
datasets. Task-specific models, including ChartT5,
MatCha, and UniChart, produce fewer errors on
the VisText dataset. Conversely, LVLMs, includ-
ing GPT-4V and Bard, generate significantly fewer
errors on the Pew dataset. The key distinctions
on these datasets are two: (1) the prevalent labeled
values on charts from Pew and (2) the simpler struc-
tures in charts from VisText. We hypothesize that
LVLMs may be better at utilizing the labeled num-
bers, while task-specific effectively interpret values
via axis alignment. We show an example to validate
this hypothesis in Figure 6.

Third, LVLMs cannot consistently outperform
task-specific fine-tuned models. Despite their
extensive training data and parameters, LVLMs
may be surpassed by task-specific models with ap-
propriate pre-training objectives and architectures.
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# Factual # Non-factual # Total

Sentence 2,561 2,762 5,323
Caption 213 974 1,187

Table 2: Statistics of the captions we analyzed. A
sentence is considered factual if and only if it does
not contain any factual error. A caption is considered
factual if all its sentences are factual.

For example, on the VisText dataset, UniChart out-
performs Bard and is comparable to GPT-4V in
terms of producing more factual captions owing to
UniChart’s various pre-training objectives for chart
comprehension, enabling better interpretation of
the relationship between data points within charts.

The dataset resulting from the analysis is named
CHOCOLATE (Captions Have Often ChOsen Lies
About The Evidence), where each instance con-
sists of a chart, a generated chart caption, and er-
ror types labeled by human annotators. Drawing
insights from Tang et al. (2023b) that factual er-
rors produced by different kinds of models may
be easier or more difficult to identify, we catego-
rize CHOCOLATE into three splits: the LVLM split,
with captions from GPT-4V and Bard; the LLM
split, featuring DePlot + GPT-4 outputs; and the FT
split, for ChartT5, UniChart, and MatCha captions.
Split details are in Appendix C.

2.3 Dataset Quality

To evaluate the quality of CHOCOLATE, we mea-
sured inter-annotator agreement by calculating
Fleiss’ Kappa κ (Fleiss, 1971) and the majority
vote agreement percentage p, in line with the met-
rics used by Pagnoni et al. (2021). We applied
these metrics across all 5,323 sentences in CHOCO-
LATE. For determining factual consistency between
chart sentences and their corresponding charts, we
achieved a Fleiss’ Kappa of κ = 0.63 and a ma-
jority vote agreement of p = 91%. For context,
Pagnoni et al. (2021) reported a Fleiss’ Kappa
of κ = 0.58 and a majority agreement level of
p = 91%. This suggests that CHOCOLATE exhibits
a quality on par with well-established benchmarks
in text-based factual inconsistency detection.

3 The Chart Caption Factual Error
Correction Task

The dataset collected in §2 enables us to study the
Chart Caption Factual Error Correction task. In
this section, we first formally provide the defini-
tion of this task (§3.1) and propose an effective
reference-free evaluation metric based on chart vi-

sual entailment (§3.2).

3.1 Task Definition

The input to our task is a chart E and chart caption
C that may or may not be factually consistent with
E . The goal of chart caption factual error correction
is to produce a corrected caption Ĉ that fixes factual
errors in C with the minimum amount of edits. If
C is already faithful to E , models should output
the original caption (i.e. Ĉ = C). Following prior
work on text-based factual error correction (Thorne
and Vlachos, 2021; Huang et al., 2023b; Gao et al.,
2023), corrections should be made with as few
substitution, insertion, and deletion operations as
possible since one can trivially achieve 0% non-
factual rate by deleting all words in a caption.

3.2 Reference-free Evaluation With Chart
Visual Entailment

There was no established metric for evaluating the
factual consistency between a chart and the cor-
responding chart caption. In addition, since our
dataset does not contain annotated reference cap-
tions4, text-based metrics cannot be adopted. As a
solution, we propose CHARTVE, a reference-free
evaluation metric based on chart visual entailment,
as detailed in the following paragraphs.

CHARTVE Overview We formulate the incon-
sistency detection problem as a chart visual entail-
ment task. Given a chart caption sentence c and
a chart E , the task is to predict whether the rela-
tionship from E to c as ENTAILMENT (factually
consistent) or NOTENTAILMENT (factually incon-
sistent). The main challenge of learning a visual
entailment model for this task is the lack of data. To
overcome this challenge, we repurpose data from
relevant tasks, such as chart QA, as positive sam-
ples. Then, we propose a table-guided negative
data generation to produce negative samples.

Positive Data Creation We consider datasets
from two tasks that are closely related to the chart
visual entailment task: chart question answering
and chart captioning. We utilize two datasets from
chart question answering: ChartQA (Masry et al.,
2022) and PlotQA (Methani et al., 2020). Using a
QA2Claim model (Huang et al., 2023b), we trans-
form the question-answer pairs into declarative
statements and pair them with the original charts

4Reference captions are not collected due to the challenges
of curating high-quality references through crowd-sourcing.
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to form positive instances (ENTAILMENT). For
chart captioning, captions from VisText (Tang et al.,
2023a) and Chart-to-Text (Kantharaj et al., 2022)
are segmented into individual sentences. Each sen-
tence is paired with the relevant chart to create a
positive instance. These methods allow us to repur-
pose existing resources for training CHARTVE.

Table-guided Negative Data Generation Gen-
erating negative training samples is achieved by
perturbing the positive instances grounded in the
underlying data tables of the charts. For a chart Ei
and its underlying data table AEi , we locate values
in AEi that matches a substring within the positive
caption c

+
i . When a match is found, the substring

in the caption is substituted with a different value
from the same column in AEi , yielding a value or
label-error infused negative sentence c

−
i , maintain-

ing relevance while ensuring inconsistency with
Ei. For trend-related errors, we replace trend-terms
found in c

+
i with their opposites, drawing on

a specific lexicon of terms like “increase” and
“decrease,” thereby creating trend-contradictory
statements. Furthermore, out-of-context errors are
crafted by pairing Ei with a mismatched caption
c
+
j from another chart, where i ≠ j. This simulates

captions filled with unrelated data.
The above process is illustrated in Algorithm

1. We use the training, development, and test sets
of the repurposed datasets for training, validating,
and testing CHARTVE. This is vital for ensuring
that CHARTVE is free from data contamination
in downstream applications. In total, we collected
over 595K instances partitioned into training,
development, and test splits with a ratio of
522:36:37, respectively.

Learning CHARTVE We selected UniChart as
our base model, given its superior performance
amongst comparable-size models5. Recognizing
that UniChart has been pre-trained on chart ques-
tion answering tasks, we employ a tailored input
template t as follows:

Does the image entail this statement:
“SENTENCE”?

In this template, SENTENCE replaces the chart cap-
tion sentence c. Taking in a chart E and template t
as input, UniChart is fine-tuned to produce the to-
ken “yes” if the chart E entails the caption sentence

5Our fine-tuning begins with this checkpoint:
https://huggingface.co/ahmed-masry/
unichart-base-960.

CHOCOLATE

Model LVLM LLM FT

SUMMAC -0.011 0.023 0.036
QAFACTEVAL 0.064 0.045 0.054

LLaVA-1.5-13B 0.002 0.057 0.214
ChartLlama 0.010 0.057 0.141
ChartAssistant-S 0.015 0.057 0.036
Bard -0.014 0.105 0.291
GPT-4V 0.157 0.205 0.215
DePlot + GPT-4 0.129 0.117 0.109

CHARTVE (Ours) 0.178 0.091 0.215

Table 3: Kendall’s Tau correlation of different ap-
proaches on the CHOCOLATE dataset.

c, and “no” otherwise using maximum likelihood
estimate. During inference time, we use the same
input format and probe the logits corresponding
to the “yes” (lyes) and “no” (lno) decoder tokens.
Following this, we apply the softmax function to
convert these logits into an entailment score s(E , c)
that ranges from 0 to 1:

s(E , c) = e
lyes

elyes + elno
. (1)

Here, e is the base of the natural logarithm. Fi-
nally, we compute the minimum of the entailment
scores for all sentences within a caption, denoted
by S(E , C), where C represents the set of all cap-
tion sentences for chart E :

S(E , C) = min
c∈C

s(E , c). (2)

Meta-evaluation of Different Evaluation Metrics
To evaluate the effectiveness of different methods
in assessing the factuality of generated captions on
the CHOCOLATE dataset, we employ Kendall’s Tau
(Kendall, 1938) to compute the correlation between
these methods and human judgments. Given the
absence of prior work on factual inconsistency
detection methods for chart captions, we compare
our CHARTVE with zero-shot capable methods,
including DePlot + GPT-4, Bard, GPT-4V, and the
leading open-source LVLMs, LLaVA-1.5-13B (Liu
et al., 2023c), ChartLlama (Han et al., 2023), and
ChartAssistant-S (Meng et al., 2024). Text-based
factuality metrics, SUMMAC (Laban et al., 2022)
and QAFACTEVAL (Fabbri et al., 2022b), which
compute the factual consistency between the
reference caption and the generated caption, are
also included. The prompts for these models are
detailed in Appendix E.

Meta-evaluation, summarized in Table 3, shows
that, overall, metrics exhibit the strongest
correlation with human judgment on the FT
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Japan has the lowest average
daily usage time, while Thailand
has the highest daily usage time.
Overall, People in Asia spend more
time on mobile web than those in
Europe. 

Input Chart CaptionInput Chart

Generated Table

Chart-to-Table Conversion

GPT-4

Generated Correction

Reasoning:
1. Indonesia has the highest daily
usage of mobile web.
2. The data does not mention
Europe countries.

Correction:
Japan has the lowest average
daily usage time, while Indonesia
has the highest daily usage time. 

Figure 2: An overview of C2TFEC. Our approach
decomposes visual reasoning into image-to-structure
rendering and text-based reasoning, allowing for
interpretability and better correction of chart captions.

split and the weakest on the LVLM split. This
pattern aligns with expectations: the FT captions
are littered with more obvious mistakes, such as
out-of-context and nonsense errors, while errors
stemming from LVLMs are harder to detect since
they often demand intricate inferences regarding
the data points’ positions relative to the axes, as
detailed in Figure 1. Importantly, Our CHARTVE
excels on the challenging LVLM split, but less
so on the LLM split, likely due to shifts in token
distribution, as DePlot + GPT-4 occasionally
employs table-centric terminology (e.g., “columns”
and “entries”) absent from CHARTVE’s training
data. Despite this, CHARTVE compares favor-
ably to proprietary LVLMs and outperforms
open-source LVLMs, despite CHARTVE being
64 times smaller in scale.

Bard and GPT-4V lead on the LLM and FT splits,
respectively. However, Bard shows a negative cor-
relation on the LVLM split, hinting at LVLMs’ lim-
itations in assessing the factuality of chart captions.
Thus, we advocate for using the best-performing
metric for each split for evaluation.

4 Methodology

In correcting factual errors in generated captions,
we propose C2TFEC, a two-step, interpretable
framework, as shown in Figure 2. C2TFEC first
transforms input charts into data tables (§4.1), then
rectifies errors in the caption using the tabular data
(4.2). This framework is motivated by our anal-
ysis on “DePlot + GPT-4”, which shows that a

notable proportion of errors in caption generation
originated from the DePlot component. To mit-
igate this, we develop a stronger chart-to-table
model based on UniChart, significantly improved
with expansive fine-tuning datasets. The advan-
tage of C2TFEC is its ability to harness the reason-
ing strengths of GPT-4 to faithfully correct errors,
boosting caption factuality.6

4.1 Chart-To-Table Conversion
The training data for our chart-to-table model is
sourced from datasets including VisText, Chart-to-
Text, ChartQA, and PlotQA, where we repurpose
original charts and underlying data tables for our
model’s training. We collected a total of 65K in-
stances with a train:dev:test split of 61:2:2. Similar
to DePlot (Liu et al., 2023a), our model is also
trained to generate chart titles, enhancing its ability
to contextualize the data represented in table form.
Let M denote our proposed model. For a given
chart figure E , the model autoregressively gener-
ates a chart title T and a corresponding table A (i.e.
T ,A = M(E)).

4.2 Table-based Error Rectification
With the input chart now converted into structured
tabular data, the second phase uses the reasoning
capacity of LLMs to address the factual inconsis-
tency between C and the generated table A. Here,
we use GPT-4 as the LLM. GPT-4 first provides an
explanatory breakdown of detected factual errors
in C based on the table contents. It then uses this
explanation to produce a corrected caption Ĉ. This
transparent process enables users to validate the
reasoning behind each correction.

C2TFEC separates the factual verification from
language generation, taking advantage of the com-
plementary strengths of separate vision and lan-
guage models tailored to their respective domains.
The symbolic table representation acts as a bridge
to enhance and validate factual consistency in chart
captions.

5 Experimental Settings

To assess C2TFECs ability in factual error cor-
rection for chart captions, we experiment on the
CHOCOLATE dataset.

Datasets Our CHOCOLATE dataset includes
1,187 chart-caption pairs with factually consistent

6Here, we do not consider approaches based on LVLMs
due to their tendency towards factual errors.
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Dataset Split → CHOCOLATE-LVLM CHOCOLATE-LLM CHOCOLATE-FT

Evaluation Metric → CHARTVE (%) Levenshtein GPT-4V (%) Levenshtein Bard (%) Levenshtein
Correction Model ↓

N/A 31.13 0.0 23.47 0.0 43.10 0.0
LLaVA 31.20 19.09 22.45 9.20 52.94 16.94
Bard 14.13 127.83 31.77 77.63 75.69 42.80
GPT-4V 33.30 31.26 52.35 50.57 76.55 30.92
DePlot + GPT-4 32.47 81.37 22.45 21.25 70.31 38.79
DePlotCFT + GPT-4 32.91 84.99 25.51 55.35 70.47 40.12

C2TFEC (Ours) 34.34 72.19 39.29 53.11 81.14 37.36

Table 4: Correction performance of different models on the CHOCOLATE dataset. CHARTVE measures factuality
by computing the entailment probability from each chart to the corresponding caption sentences. GPT-4V and Bard,
when used as evaluation metrics, rate each chart caption as factually consistent with the chart or not. Levenshtein
computes the edit distance between the corrected caption and the original caption (denoted as “N/A”). Metric scores
are shown separately for each of the three data splits based on captioning model source. The highest and second
highest performing models per evaluation metric and split are highlighted in boldface and underlines respectively.

and inconsistent captions, as detailed in §2. It is
split into LVLM, LLM, and FT, reflecting the diver-
sity of models that generated the captions.

Baselines Since CHOCOLATE does not comprise
training data, we compare C2TFEC against zero-
shot capable LVLMs and LLMs, including LVLMs,
LLaVA-1.5-13B, GPT-4V, Bard, as well as DePlot
+ GPT-4. For a fairer comparison between our ap-
proach and DePlot, we continue fine-tuning DePlot
for an additional 5,000 steps on VisText, an ap-
proach which has been shown effective for adapting
models to unseen domains (Huang et al., 2023b).
We denote this model as DePlotCFT. The prompts
used for each model are described in Appendix E.

Evaluation Metrics We assess the factual consis-
tency between corrected captions and input charts
using CHARTVE, GPT-4V, and Bard, according to
our recommendations in §3.2. In addition, since
corrections should be made with as few edits as
possible, we measure the number of edits using the
Levenshtein distance (Levenshtein et al., 1966).

6 Results

6.1 Main Results

The results in Table 4 demonstrate that our
C2TFEC achieves the best performance for factual
consistency on the LVLM and FT splits, and takes
the second place on the LLM split. This indicates
that the two-step process of first transforming
charts into structured data tables and then recti-
fying factual inconsistencies using table-caption
alignment is an effective strategy.

Additionally, we see that C2TFEC outperforms
the pipeline approaches of DePlot/DePlotCFT +
GPT-4 across the board. While both methods

utilize an intermediate tabular representation and
leverage GPT-4 for language generation/correction,
C2TFEC employs a superior chart-to-table conver-
sion model with much more comprehensive train-
ing datasets. This results in extracted tables that
more faithfully capture the underlying chart data,
better facilitating the downstream factual error cor-
rection. C2TFEC also requires a relatively small
number of edits to captions according to Leven-
shtein distance, making focused changes to im-
prove factuality while minimizing revisions. An
example output from C2TFEC is shown in Fig-
ure 4. By comparison, the proprietary LVLM Bard
produces corrected captions requiring 127.83 as
many character-level edits on average. This signals
excessive rewriting rather than targeted error cor-
rection. After manually inspecting Bard’s outputs,
we found the reason is that Bard oftentimes try to
improve the fluency of the caption by paraphras-
ing. Hence, it makes more edits to the generated
captions.

Bard’s underperformance on the LVLM split and
its negative correlation with human judgments of
factuality, as shown in Table 3, implies its unreli-
ability in detecting errors in chart captions. Ad-
ditionally, when used as an evaluator, GPT-4V
tends to assign high factuality scores to its own
corrected outputs on all three splits (see Table 12),
while other metrics show GPT-4V lagging behind
C2TFEC. This suggests GPT-4V may suffer from
the self-enhancement bias (Zheng et al., 2023),
overestimating its own performance when used for
evaluation. We thus perform human evaluations in
§6.2 to verify the effectiveness of our approach.
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Figure 3: Human evaluation results on subsets of the CHOCOLATE dataset, comparing C2TFEC and GPT-4V.
C2TFEC corrects significantly more errors compared to GPT-4V, especially Value, Label, and Trend Errors.

6.2 Human Evaluation

Our human assessments focus on comparing
C2TFEC with GPT-4V by using the same anno-
tation tasks detailed in §2 for factual error identi-
fication, with the same annotators evaluating. We
sampled 30 charts from each split of LVLM, LLM,
and FT. For each chart, human judges are presented
with a caption generated by one of the models.

Figure 3 demonstrates C2TFECs superiority in
multiple error categories, especially with a substan-
tial decrease in Value Errors, over 20% better in
the LVLM and LLM splits, and halving the overall
error rate compared to GPT-4V. C2TFEC virtually
eliminated Trend Errors, highlighting its strong er-
ror correction ability, particularly for axes-related
errors like Label, Value, and Trend errors. A rep-
resentative comparison is shown in Figure 4. GPT-
4V’s shortcomings seem to stem from its failure
to accurately infer data point values from charts as
evidenced in Figure 7.

In contrast, GPT-4V is better in addressing Out-
of-context Errors, involving information out of the
chart’s scope. However, GPT-4V seemed chal-
lenged in rectifying errors within captions gen-
erated by itself, particularly within the LVLM

split. This observation echoes recent findings
on LLMs’ inability to self-correct (Huang et al.,
2023a; Valmeekam et al., 2023), we find that
LVLMs also cannot perform self-correction.
More importantly, our human evaluation results,
combined with our findings in Table 4 and Ta-
ble 12, reflect that GPT-4V is subject to serious
self-enhancement bias. Consequently, although
GPT-4V’s capabilities are formidable, we recom-
mend not using them to assess their own outputs.

7 Related Work

7.1 Chart Captioning
Chart captioning is essential for accurately inter-
preting and communicating the information con-
veyed by chart images, particularly in news ar-
ticles and social media, where factuality is im-
perative to prevent misinformation. While cur-
rent datasets like FigureQA (Kahou et al., 2017),
DVQA (Kafle et al., 2018), PlotQA (Methani et al.,
2020), VisText (Tang et al., 2023a), and Chart-to-
Text (Kantharaj et al., 2022) offer chart image de-
scriptions and question-answer pairs to train mod-
els, advancements in vision-language models like
ChartT5 (Zhou et al., 2023), MatCha (Liu et al.,
2023b), and UniChart (Masry et al., 2023) have
largely prioritized relevance and fluency over fac-
tual accuracy. Our work provides a rigorous charac-
terization of factual errors in chart captioning and
comparisons of methods to address this gap. By
focusing on faithfulness and correction, we com-
plement the emphasis of prior work and aim to
produce more trustworthy chart captions.

7.2 Factual Error Correction
Prior research in factual error correction has mainly
targeted text summarization and fact-checking.
Within summarization, the bulk of work has been
carried out in the news domain and often involves
methods that substitute inconsistent entities from
the source text. Some studies have enhanced
this approach through entity-replacement rerank-
ing techniques (Chen et al., 2021), autoregressive
models for rewriting and perturbation filtering (Cao
et al., 2020; Zhu et al., 2021; Adams et al., 2022),
and editing strategies that focus on selective dele-
tion (Wan and Bansal, 2022). In contrast, Fab-
bri et al. (2022a) employed sentence compression
datasets to train their models. More recently, Gao
et al. (2023) have expanded the focus of these stud-
ies to include dialogue summarization.
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... The two most important issues are health and social security (47%) and the
environment, climate and energy issues (39%). The next most important issues
are the education system (26%), crime (21%), and immigration (20%). The least
important issues are government debt (1%), terrorism (2%), rising
prices/inflation/cost of living (3%), unemployment (4%), taxation (4%), pensions
(6%), and housing (11%)...

Corrected Caption by C2TFEC

Input Chart

... The two most important issues are crime (44%) and rising prices/ inflation/ cost
of living (40%). The next most important issues are immigration (32%), healthcare
and social security (30%), and the environment, climate and energy (25%). The
least important issues are unemployment (7%), terrorism (6%), pensions (6%),
taxation (5%), government debt (4%), housing (4%), and the education system
(3%)...

Original Caption

... The two most important issues are rising prices/inflation/cost of living (40%) and
crime (44%). The next most important issues are health and social security (30%),
immigration (32%), and the environment, climate and energy (25%). The least
important issues are taxation (5%), the education system (3%), unemployment
(7%), terrorism (6%), pensions (6%), housing (4%), and government debt (4%)...

Corrected Caption by GPT-4V

Generated Table

Figure 4: An example showing how decomposing the visual reasoning process into image-to-structure rendering
and text-based reasoning allows C2TFEC to accurately rectify errors in chart captions. Texts marked in red indicate
non-factual information units in the caption, whereas those marked in blue represent information units faithful to the
chart. In this instance, C2TFEC successfully corrects all Value and Label Errors presented in the original caption.
Conversely, GPT-4V fails to identify the factual inconsistencies and merely reorders the entities in the caption.

Moving to the domain of fact-checking, this
area has experienced a flurry of activity, partic-
ularly with the increased attention on combating
misinformation (Fung et al., 2021; Wu et al., 2022;
Fung et al., 2022; Huang et al., 2023d,c; Qiu et al.,
2023b; Huang et al., 2024; Qiu et al., 2024). Early
approaches train a distantly supervised model
that involves a masker and a corrector (Shah
et al., 2020; Thorne and Vlachos, 2021). Thorne
and Vlachos (2021) made significant strides by
developing the first factual error correction dataset
for fact-checking, thus enabling fully supervised
training for error correctors. Recently, Huang et al.
(2023b) propose an interpretable framework that
breaks down the process of factual error correction
into individual components. Our study builds on
these insights and extends them to a multimodal
context, which challenges models to understand
the chart images and the consistency between
different modalities.

8 Conclusion

Our study exposes the prevalent issue of factual
errors in chart captions generated by various chart
captioning models and introduces CHOCOLATE

to scrutinize these errors. We establish the Chart

Caption Factual Error Correction task to propel
the creation of trustworthy captioning systems and
present CHARTVE, an evaluation model surpass-
ing LVLMs in mirroring human assessments of
caption factuality. Our two-stage correction frame-
work, C2TFEC, provides an interpretable means
of improving caption factuality by transforming
visual data into structured tables for more faith-
ful error corrections. Our work marks an essential
step in ensuring verifiable and trustworthy chart
captions. Future directions include extending our
approach to multimodal contexts beyond charts,
developing more sophisticated error detection and
correction algorithms, and creating datasets cover-
ing a broader range of visual content.

9 Ethical Considerations

Text generation models pre-trained on information
from the Web are known to demonstrate various
biases. Despite the primary focus on models and
datasets that represent the English-speaking popula-
tion’s culture, manual examinations of the CHOCO-
LATE dataset reveal no evidence of biases related to
gender, age, race, or other socioeconomic factors
(Qiu et al., 2023a; Wang et al., 2024).

In §2 and §6.2, we recruited annotators to assess
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the factual consistency of chart captions. The an-
notators were fairly compensated for their efforts,
as detailed in Appendix B. During the annotation
process, we made provisions for open communica-
tion, allowing the annotators the flexibility to work
at their preferred pace and the freedom to withdraw
from the project at any point. Additionally, we
took measures to protect the anonymity of the con-
tributors by excluding any personally identifiable
information from the dataset.

10 Limitations

We acknowledge that our study did not rigorously
examine the sensitivity of different systems to the
variations in the prompts used. The effectiveness of
several natural language processing tasks is known
to be influenced by the design of the input prompts.
Our omission of a systematic sensitivity analysis
means that there could be a range of responses
to different prompts that we have not accounted
for, which may affect the generalization of our re-
sults. However, we did not perform prompt tuning
to craft prompts that benefit our proposed model.
Therefore, the comparisons across all models are
fair. Due to the scope of our study, we leave the
prompt sensitivity experiments for future work.

In addition, charts in the datasets we used are
mostly line plots and bar plots. Future efforts can
extend our work with additional analyses for other
types of charts, such as violin plots and distribution
plots.

Moreover, our investigation centered on the fac-
tuality of machine-generated chart captions, par-
ticularly those produced by LVLMs. We chose
not to examine captions written by humans, as our
primary objective was to highlight concerns regard-
ing the reliability of automated chart captioning, a
tool on which there is an increasing dependence for
humans. The analysis of human-generated chart
captions represents another avenue for future re-
search, which could offer valuable comparisons
and insights into the effectiveness of automated
versus human captioning practices.
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Dataset → VisText Pew

Model ↓ # Factual # Non-Factual Factual Rate (%) # Factual # Non-Factual Factual Rate (%)

ChartT5 70 197 26.22 10 123 7.52
MatCha 67 107 38.51 63 301 17.31
UniChart 88 67 56.77 62 228 21.38
DePlot 217 223 49.32 301 246 55.03
Bard 252 578 30.36 438 336 56.59
GPT-4V 361 213 62.89 632 143 81.55

Table 5: Sentence-level error counts and error rates.

Dataset → VisText Pew

Model ↓ # Factual # Non-Factual Factual Rate (%) # Factual # Non-Factual Factual Rate (%)

ChartT5 17 83 17.00 7 93 7.00
MatCha 33 67 33.00 2 98 2.00
UniChart 50 46 52.08 3 97 3.00
DePlot 10 86 10.42 17 83 17.00
Bard 1 95 1.04 6 93 6.06
GPT-4V 17 83 17.00 50 50 50.00

Table 6: Caption-level error counts and error rates.

A Further Discussions

Error Typology Our error typology was derived
from our systematic preliminary analysis of around
50 generated captions. This exploratory phase al-
lowed us to identify common error patterns and
categories emergent from the data itself. More-
over, our methodology was enriched by drawing
on insights from prior works such as Chart-to-Text,
ChartT5, and VisText.

Model Usage The GPT-4V version we used was
gpt-4-vision-preview. We query GPT-4V
via API and the cost for using GPT-4V to produce
captions for our CHOCOLATE dataset is less than
$50 USD. For the Bard model, we obtain its outputs
during October 2023. There is no cost using Bard
since we access it via its web interface. Both mod-
els are prompted in single conversation, as seen in
Figure 10.

Captioning Model Analysis In addition the find-
ings we summarize in §2.2, we also found that
the error distribution for each model differs on
different datasets. Almost all models make signif-
icantly more Nonsense Errors on the Pew dataset.
In addition, task-specific models observe a non-
negligible increase in Out-of-context Errors on the
Pew dataset. Both observations could be explained
by the fact that these models are sometimes con-
fused about the charts in Pew, which are often as-
sociated with more complicated structures.

Furthermore, in Figure 1, the error rates are
computed as the number of such errors divided

by the number of sentences. While this pro-
vides an overview of the frequency for each
error, it does not indicate the likelihood of a
value/label/trend/magnitude-related mention in the
generated captions being factual. This limitation
can result in an underrepresentation of certain error
types – for instance, the infrequent occurrence of
Magnitude Errors as shown in Figure 1 is more a
consequence of the scarcity of magnitude-related
mentions in the captions rather than an indication of
the models’ superior trend variance comprehension.
To address this, we sample 30 generated captions
for each model from each dataset and compute
another error rate as the number of sentences con-
taining such non-factual mentions over the number
of sentences containing such mentions. The results
are shown in Table 7. The outcomes corroborate
the observations in §2.2, while Table 7 offers a
supplementary perspective on model performance.

Meta-evaluation Results For the text-based
metrics presented in Table 3, they both perform
weakly in determining the factuality of the
generated caption. This is largely because charts
often contain much denser information compared
to the corresponding reference. As a result,
text-only factuality metrics are unsuitable for
assessing factual consistency between charts and
captions. Additionally, the negative values in
Table 3 signal instances where the performance
of the methods inversely correlates with human
judgments, indicating their poor effectiveness
in serving as evaluation metrics for identifying
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factual errors in generated captions. Furthermore,
we experimented with ROC AUC as an additional
meta-evaluation metric. As shown in Table 9, our
original conclusion with Kendall’s Tau still holds.

Understanding The Upper Bound We seek to
understand the performance upper bound of our
proposed two-stage framework by replacing gener-
ated tables with ground-truth data tables. Since the
ground-truth data tables in Pew are not available,
we experiment with only the instances from the
VisText dataset. The results are demonstrated in
Table 8.

Ablation Studies We compare our chart-to-table
component against DePlot, DePlotCFT, and GPT-
4V. Since the Pew split of Chart-to-Text does not
contain ground truth labels, we show performance
on the VisText test set. We use RMS-F1 proposed
in Liu et al. (2023a) as the evaluation metric. From
Table 11, we see that our Chart-to-Table component
significantly outperforms all baselines, indicating
its effectiveness in converting charts into their un-
derlying data tables.

B Annotation Details

In this section, we present the details of our human
annotation conducted in §2.

B.1 Worker Qualification
We laid out specific preliminary criteria for the
recruitment of MTurk workers with impressive per-

formance records. These prerequisites comprise a
HIT approval percentage of 99% or above, a mini-
mum of 10,000 approved HITs, and the worker’s
location within the United Kingdom, Canada, or
the United States.

Moreover, beyond these initial criteria, suitable
workers have to successfully pass two staged qual-
ification examinations focused on identifying fac-
tual errors in generated chart captions. To optimize
the qualification procedure, the authors manually
annotate two HITs, each consisting of one chart
and one caption produced by one of our chart cap-
tioning models. In every qualification round, anno-
tators are exposed to one of these annotated exam-
ples. Workers whose annotations fail to correspond
closely with ours are eliminated from the selection
procedure.

Finally, a group of 7 annotators who successfully
navigated all three stages of qualification tests were
chosen. Additionally, each HIT was meticulously
crafted to ensure that annotators could achieve an
equivalent hourly pay rate of $15 - $20, assuming
they work without interruption.

B.2 Annotation Guidelines

In this task, you will evaluate the factual errors for
a generated caption with regard to the reference
chart. To correctly solve this task, follow these
steps:

• Carefully read the generated caption and the
reference chart.

Figure 5: Human annotation interface for our data collection discussed in §2. Examples of each type of error from
Table 1 are also displayed in the annotation interface. We were not able to show these examples in this figure due to
space limits.
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Dataset → VisText Pew

Error Type → Value Label Trend Magnitude Value Label Trend Magnitude
Model ↓

ChartT5 92.31 (12/13) 64.71 (33/51) 32.00 (8/25) 100.00 (3/3) 66.67 (2/3) 100.00 (2/2) N/A (0/0) N/A (0/0)
MatCha 71.43 (5/7) 50.00 (13/26) 23.33 (7/30) 50.00 (1/2) 100.00 (2/2) 66.67 (2/3) N/A (0/0) N/A (0/0)
UniChart 33.33 (3/9) 29.41 (10/34) 0.00 (0/14) 50.00 (2/4) 51.72 (15/29) 46.67 (14/30) 100.00 (1/1) N/A (0/0)
DePlot + GPT-4 51.52 (34/66) 44.78 (30/67) 30.77 (8/26) 0.00 (0/7) 49.25 (33/67) 34.48 (10/29) 46.15 (6/13) 0.00 (0/3)
Bard 69.12 (47/69) 69.39 (34/49) 43.75 (14/32) 15.38 (2/13) 38.10 (40/105) 27.71 (23/83) 11.11 (2/18) 40.00 (2/5)
GPT-4V 40.48 (17/42) 33.33 (17/51) 20.75 (11/53) 23.53 (4/17) 8.20 (10/122) 9.02 (11/122) 16.67 (2/12) 33.33 (2/6)

Table 7: Error rates (%) are calculated by dividing the number of sentences containing such non-factual mentions
(e.g. non-factual mentions of values) by the number of sentences containing such mentions (e.g. all mentions of
values). The lower the error rate, the better the performance.

Dataset Split → CHOCOLATE-LVLM CHOCOLATE-LLM CHOCOLATE-FT

Evaluation Metric → CHARTVE (%) Levenshtein GPT-4V (%) Levenshtein Bard (%) Levenshtein
Correction Model ↓

C2TFEC 29.29 62.85 40.63 35.63 49.49 23.48
C2TFEC (w/ GT Table) 29.90 52.82 40.69 32.59 50.93 23.47

Table 8: Correction performance of different models on the CHOCOLATE dataset. CHARTVE measures factuality
by computing the entailment probability from each chart to the corresponding caption sentences. GPT-4V and Bard,
when used as evaluation metrics, rate each chart caption as factually consistent with the chart or not. Levenshtein
computes the edit distance between the corrected caption and the original caption. Metric scores are shown separately
for each of the three data splits. Note that the Bard metric corresponds to Gemini Pro (Google, 2023b) since the
experiments were conducted after its release.

CHOCOLATE

Model LVLM LLM FT

LLaVA-1.5-13B 0.501 0.566 0.670
Bard 0.488 0.617 0.743
GPT-4V 0.638 0.738 0.678
DePlot + GPT-4 0.609 0.629 0.590

CHARTVE (Ours) 0.646 0.595 0.676

Table 9: ROC AUC of different approaches on the
CHOCOLATE dataset.

• Compare the generated caption against the
reference chart and decide whether the caption
contains any factual error defined below.

• You should click/press the button if an error
occurs. A blue button indicates the caption
contains the corresponding factual error, while
a white button means the caption does not
contain such an error.

Warning: Annotations will be checked for qual-
ity against control labels, low-quality work will be
rejected.

Error definition
• Value error: A quantitative data value is in-

correct.
• Label error: A non-quantitative data value is

incorrect.
• Trend error: The direction of a trend is

wrong.

• Magnitude error: The magnitude or variance
of a trend is wrong.

• Out-of-context error: The caption introduces
concepts that are not present in the chart.

• Grammatical error: The grammar of the cap-
tion is wrong.

• Nonsense error: The caption is incomplete
or does not make sense at all.

B.3 Annotation Interface

The interface for our human annotation is shown in
Figure 5.

C Dataset Details

Table 10 presents the detailed statistics of each split
in our dataset.

D Implementation Details

D.1 Details of the Chart-To-Table Model

Our chart-to-table model takes in as input a graphi-
cal chart and outputs a linearized data table for-
mat, using \t to delimit columns and &&& for
row separation. The backbone of our approach
is UniChart (Masry et al., 2023), due to its di-
verse chart-oriented pre-training objectives that
have demonstrated strong performance on relevant
tasks.
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CHOCOLATE-LVLM CHOCOLATE-LLM CHOCOLATE-FT

# Factual # Non-factual # Factual # Non-factual # Factual # Non-factual

Sentence 1,683 1,270 518 469 360 1,023
Caption 74 321 27 169 112 484

Table 10: Dataset statistics per split. A sentence is considered factual if and only if it does not contain any factual
error. A caption is considered factual if all its sentences are factual.

The bar chart presents data on the number of prevalent cancer cases worldwide
in 2018, categorized by region and expressed per 100,000 population. The
regions from highest to lowest number of cases are: North America, Europe, Latin
America and the Caribbean, Asia, Oceania, and Africa. North America shows the
highest prevalence, with over 400 cases per 100,000 population, while Africa
shows the lowest, with fewer than 100 cases per 100,000 population. The data
suggests significant regional disparities in the prevalence of cancer cases.

Generated Caption w/o Value Labeling

The chart presents the number of prevalent cancer cases worldwide in the year
2018, categorized by region and expressed per 100,000 population. The following
observations can be made from the chart:

- North America has the highest prevalence, with 545.9 cases per 100,000
population.
- Africa has the lowest prevalence, with 43.2 cases per 100,000 population.
- Oceania also shows a high prevalence, with 518.5 cases per 100,000
population, slightly less than North America.
- Europe has the third-highest prevalence, with 435.1 cases per 100,000
population.
- Latin America and the Caribbean have a moderate prevalence rate of 145.2
cases per 100,000 population.
- Asia has the second-lowest prevalence, with 117.0 cases per 100,000
population.

Generated Caption w/ Value Labeling

Input Chart w/o Value Labeling Input Chart w/ Value Labeling

Figure 6: The impact of value labeling. We prompted GPT-4V to generate captions of two charts we created using
the Seaborn library from an underlying table sampled from the Chart-to-Text dataset, with or without labeling the
values of the bars on the chart. We see that when the labeled values are presented in the chart, GPT-4V is capable of
producing more factual captions.

D.2 Table-guided Negative Data Generation
In Algorithm 1, we depict the details of how we
generate negative data for our CHARTVE model.

D.3 Model Training
The Chart-To-Table model and CHARTVE are op-
timized using AdamW for a maximum of 20,000
and 50,000 steps, respectively. The learning rates
for both models are set to 5e-5. During inference
time, the Chart-To-Table model uses beam search
with a beam width of 4.

E Prompts

The prompts for using LVLM and LLM as evalua-
tion metrics are displayed in Figure 8 and Figure 9,
while the prompts for factual error correction are
shown in Figure 10 and Figure 11.
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Algorithm 1: Table-guided Negative Data
Generation
Input: Data table AEi for chart Ei, Positive

caption sentence c
+
i .

Output: Set of negative caption sentences
C

−
i = {c−i,value, c

−
i,trend, c

−
i,context}.

1 Initialize C
−
i as an empty set;

2 Define a lexicon of trend terms T ;
3 Define entailment threshold τ ;
4 // Generate Value and Label Errors;
5 for each cell value v in AEi do
6 if v is a substring of c+i then
7 Randomly sample a new value v

′

from the same column in AEi ;
8 Replace v in c

+
i with v

′ to get
c
−
i,value;

9 Add c
−
i,value to C

−
i ;

10 // Generate Trend Errors;
11 for each trend term t in T do
12 if t is found in c

+
i then

13 Replace t in c
+
i with its antonym to

get c−i,trend;
14 Add c

−
i,trend to C

−
i ;

15 // Generate Out-of-Context Errors;
16 Randomly select a different chart Ej where

j ≠ i;
17 Pair Ei with unrelated caption sentence c+j to

get c−i,context;
18 Add c

−
i,context to C

−
i ;

19 return C
−
i ;

Model RMS-F1

DePlot 15.97
DePlotCFT 78.23
GPT-4V 10.44

Chart-to-Table (Ours) 83.60

Table 11: Chart-to-Table performance comparison on
the VisText dataset.

Input Chart Extracted Table Using GPT-4V

Figure 7: An example showing GPT-4V cannot accurately extract tables from charts. This indicates its inability to
infer the actual value of each data point within the chart.
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Dataset Split → CHOCOLATE-LVLM CHOCOLATE-LLM CHOCOLATE-FT
Evaluation Metric → GPT-4V GPT-4V GPT-4V
Correction Model ↓

N/A 50.89 23.47 24.83
LLaVA 29.87 22.45 39.45
Bard 37.37 31.77 44.86
GPT-4V 61.34 52.35 74.79
DePlot + GPT-4 23.79 22.45 40.63

C2TFEC (Ours) 35.96 39.29 55.56

Table 12: Correction performance on CHOCOLATE using GPT-4V as the evaluation metric. GPT-4V, when used as
an evaluator, assigns significantly higher scores to its own generations. This suggests potential self-enhancement
bias of GPT-4V. Note that GPT-4V also assign a high scores to the original captions (i.e. N/A) on the LVLM split.
This is because half of these captions are directly generated from GPT-4V.

You are given a chart and a caption, you are tasked to detect whether the caption is factually
consistent with the chart.
[Start of Caption]
{caption}
[End of Caption]
You should answer 'Answer: Yes' or 'Answer: No'. Do not provide explanation or other thing.

LVLM Evaluation Prompt

Figure 8: Prompts for using GPT-4V, Bard, and LLaVA-1.5 as a evaluator.

You are given a table extracted from a chart and a caption. The table uses "<0x0A>" to
delimit rows and "|" to delimit columns. The first row is the extracted chart title. You are
tasked to detect whether the caption is factually consistent with the table.

[Start of Extracted Table]
{table}
[End of Extracted Table]
[Start of Caption]
{caption}
[End of Caption]

You should answer 'Answer: Yes' or 'Answer: No'. Do not provide explanation or other thing.

LLM Evaluation Prompt

Figure 9: Prompts for using DePlot + GPT-4 as a evaluator.
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You are given a chart and a chart caption. Your task is to correct errors in the caption based
on the given chart. You should correct factual errors in the caption by as few substitution,
insertion, and deletion operations as possible.
            
[Start of Caption]
{caption}
[End of Caption]
========

You must give your response in a structured JSON format that can be directly parsed with
json.loads. Your response should contain two fields and two fields only: 
"corrected_caption": the corrected caption based on the chart provided
"explanation": an explanation of your correction
Please follow the below rules:
1. Do not include "```json" in your response so that your output can be directly parsed with
json.loads.
2. There are likely multiple errors in the caption. Please correct all factual errors. If there is
no error, "corrected_caption" should be the same as input caption.

LVLM Correction Prompt

Figure 10: Prompts for using GPT-4V, Bard, and LLaVA as a factual error corrector.

You are given a Markdown table, a chart title and a chart caption. The linearized table is
assumed to faithfully represent the chart correpsonding to the caption. Your task is to correct
errors in the caption based on the Markdown table and the chart title. You should correct
factual errors in the caption by as few substitution, insertion, and deletion operations as
possible.
            
[Start of Table]
{extracted_table}
[End of Table]

[Start of Chart Title]
{extracted_title}
[End of Chart Title]

[Start of Caption]
{caption}
[End of Caption]
========

You must give your in a structured JSON format that can be directly parsed with json.loads.
Your response should contain two fields and two fields only: 
"explanation"; an explanation of your correction
"corrected_caption": the corrected caption based on the table provided
Please follow the below rules:
1. Do not include "```json" in your response so that your output can be directly parsed with
json.loads.
2. There are likely multiple errors in the caption. Please correct all factual errors. If there is
no error, "corrected_caption" should be the same as input caption.

LLM Correction Prompt

Figure 11: Prompts used for using DePlot + GPT-4 as a factual error corrector.
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