
Findings of the Association for Computational Linguistics ACL 2024, pages 7040–7051
August 11-16, 2024 ©2024 Association for Computational Linguistics

Comments as Natural Logic Pivots: Improve Code Generation via
Comment Perspective

Yijie Chen1*, Yijin Liu2, Fandong Meng2, Yufeng Chen1, Jinan Xu1†, Jie Zhou2

1Beijing Key Lab of Traffic Data Analysis and Mining,
Beijing Jiaotong University, Beijing, China

2Pattern Recognition Center, WeChat AI, Tencent Inc, China
{22120354, chenyf, jaxu}@bjtu.edu.cn

{yijinliu, fandongmeng, withtomzhou}@tencent.com

Abstract

Code generation aims to understand the prob-
lem description and generate corresponding
code snippets, where existing works generally
decompose such complex tasks into interme-
diate steps by prompting strategies, such as
Chain-of-Thought and its variants. While these
studies have achieved some success, their ef-
fectiveness is highly dependent on the capa-
bilities of advanced Large Language Models
(LLMs) such as GPT-4, particularly in terms of
API calls, which significantly limits their prac-
tical applicability. Consequently, enhancing
the code generation capabilities of small and
medium-scale code LLMs without significantly
increasing training costs is an appealing chal-
lenge. In this paper, we suggest that code com-
ments are the natural logic pivot between nat-
ural language and code language and propose
using comments to boost the code generation
ability of code LLMs. Concretely, we propose
MANGO (comMents As Natural loGic pivOts),
including a comment contrastive training strat-
egy and a corresponding logical comment de-
coding strategy. Experiments are performed
on HumanEval and MBPP, utilizing StarCoder
and WizardCoder as backbone models and en-
compassing model parameter sizes between 3B
and 7B. The results indicate that MANGO sig-
nificantly improves code pass rate based on
the strong baselines. Meanwhile, the robust-
ness of the logical comment decoding strategy
is notably higher than the Chain-of-thoughts
prompting. 1

1 Introduction

Recently, techniques on pre-trained Code Large
Language Models (Code LLMs) are rapidly de-
veloping (Zhao et al., 2023) and perform well on

* Work done when Yijie was interning at Pattern Recogni-
tion Center, WeChat AI, Tencent Inc, China.

† Jinan Xu is the corresponding author.
1The code is publicly available at https://github.com/

pppa2019/Mango.

Figure 1: An illustration of the function of code-
comment in code LLMs. The comment contributes
to breaking down intermediate steps that correspond to
the problem description and form an aligned structure
with adjacent code lines.

various code-related tasks (Roziere et al., 2023;
Chen et al., 2021). Code generation is to gener-
ate code snippets through prompting approaches
for the given natural language description and op-
tional extra information (e.g, data type, function
name, and unit test examples). Additionally, the
natural language description usually contains com-
plex logic, making direct prompting difficult to
solve hard problems. Decomposing complex prob-
lems into easier intermediate steps via the Chain-of-
Thought (Wei et al., 2022) prompting strategy has
shown promising performance in general complex
tasks. For code generation, the follow-up works
divide the planning and code synthesis process into
two stages with uni-task few-shot prompts (Jiang
et al., 2023) or intermediate steps with tree struc-
ture (Zelikman et al., 2023). In addition, constrain-

7040

https://github.com/pppa2019/Mango
https://github.com/pppa2019/Mango

ing the intermediate steps using code structure in-
formation can also further improve the coding abil-
ity (Li et al., 2023a). However, task decomposing
and planning are high-level and complex tasks that
depend on the most advanced ability of LLMs (Ze-
likman et al., 2023). Consequently, enhancing the
code generation of small to medium-sized LLMs
efficiently presents a compelling and challenging
issue.

To address the above issue, we propose the idea
for the first time that code comments serve as the
inherent logical pivot bridging natural language
and programming language. Generally, comments
within the code are commonly integral to the code
corpus. Consequently, during the pre-training stage,
training on code corpus endows the pre-trained
code models with the respective capacities for un-
derstanding and generating code comments. As de-
picted in Figure 1, code comments can decompose
the problem description using natural language,
and each comment line establishes an alignment
with the neighboring lines of code. Therefore, we
hypothesize that encouraging models to generate
comments can easily and effectively bridge the
code and complex problem descriptions. In order
to test our hypothesis, we discuss the possible in-
serting position of intermediate steps and use cross-
entropy loss to evaluate the difficulty of various
inserting style codes. According to the statistical
results, we found that code in comment style is the
easiest for various code models, which provides
evidence for the hypothesis.

Based on the above hypothesis, we propose
comMents As Natural loGic pivOts (MANGO) for
code generation with problem description decom-
position via comments. MANGO includes a logi-
cal comment decoding strategy and comment con-
trastive learning loss. Specifically, in the training
phase, we generate negative samples without com-
ments using the code data with comments in open-
source datasets to strengthen the model preference
for code with comments. During the decoding
stage, the logical comment decoding strategy is
adopted to guide the model in explaining the code
logic via inline comments.

We conduct experiments on HumanEval and
MBPP test sets using three backbone models
from 3B to 7B. The experimental result shows
that MANGO improves the pass rate consistently,
e.g., up to 7.52 pass@10 on HumanEval for
StarCoder-7B and up to 4.17 pass@10 on MBPP
for WizardCoder-7B. Our ablation studies show

that each component of the method positively con-
tributes to the performance of models, and the
method is robust on the hyper-parameter and the
various logical comment prompting styles. Further-
more, MANGO keeps consistent effectiveness in
small-size models (e.g., with pass@10 improve-
ments of up to 3.87 on 3B and 4.07 on 7B), while
CoT prompting can lead to severe decline, espe-
cially in 3B models. The error distribution and
code feature data statistics are also provided for
fine-grained analysis.

In summary, our contributions are as follows2:

• We first present that comments are pivots
bridging natural language and code language,
and conduct an analysis on comparing the dif-
ficulty of different positions of inserted de-
composition steps for complex problem de-
scriptions. To the best of our knowledge, this
is the first work that fully explores the signifi-
cant advantages of code-comments for coding
problem decomposition.

• We propose MANGO that includes the con-
trastive training method and comment prompt-
ing strategy. MANGO improved the code gen-
eration ability of the models by strengthening
the preference for code with comments and
encouraging the model to use comments.

• The comparison between the CoT prompt-
ing strategy and our method indicates the ef-
fectiveness of code comments on small and
middle model sizes. We conducted robust-
ness evaluations on CoT and logical comment
prompting strategies, respectively, and found
that LCP achieves a much better performance
with smaller standard deviations compared
with CoT prompting.

2 Preliminary Analysis: Token-level Loss
of Comment Related Code Styles

Braking difficult problems into easier intermediate
steps benefits the code generation ability of LLMs
in many existing works especially for API-based
close-source models. However, most of the task
decomposition methods can work only on the most
advanced models like GPT-4, and their applicabil-
ity to open-source models with small or middle
sizes is limited. Therefore, we hypothesize that

2We uploaded the code as support material for review and
it will be released on Github upon publication.

7041

lowering the method difficulty of decomposition
methods can benefit lowering the requirement of
the model ability, and using comment is one of the
possible methods. We define the possible styles for
code with comment explanations and quantify their
difficulties to models in zero-shot settings. First,
we utilize WizardCoder-3B and WizardCoder-7B
as backbone models, and the open-source code gen-
eration instruction tuning dataset CodeM as an eval-
uation dataset. We filtered the data with comments,
extracted the comment line, and transferred it to the
chain of thoughts. Then, given a task decomposi-
tion step is Ti and the corresponding code block is
Ci (where 1 ≤ i ≤ n, and n is the code block num-
ber), we construct three types of code, including the
code with the preceding chain of thoughts (CoT-pre,
which can be presented as {T1, ..., Tn, C1, ..., Cn}),
the following chain of thoughts (CoT-post, which
can be presented as {C1, ..., Cn, T1, ..., Tn}), and
the inline comments (Comment, which can be pre-
sented as {T1, C1, ..., Tn, Cn}). The transferred
CoT-style datasets contain equivalent information
compared with the origin comment-style dataset.

The token-level cross-entropy loss can reflect
the degree to which the model fits the specific to-
ken with the given context. Assuming the eval-
uated token is ti, and the given context is t<i =
{ti−1, · · · , t0}, the token-level cross-entropy of the
token ti is L(ti) . The L(ti) can be calculated as
Equation 1.

L(ti) = −log(exp(P (ti|t<i))) (1)

Using the token-level cross-entropy loss, we calcu-
late the mean loss of the three datasets in different
size models, including 3B and 7B. As shown in
Figure 2 comments contain equivalent information
with the lowest difficulty. We analyzed the out-
put codes and found that the loss scores of natu-
ral language tokens are usually higher than those
of programming language tokens, which is also
mentioned in Zhu et al. (2023). However, when
the intermediate steps of natural language are in-
serted in code lines as comments, their loss score
decreases obviously. In Table 1, we observe that
comment loss was significantly much lower than
different CoT data, and the gap between cot-style
and comment-style is larger when the model size
is smaller. The observations above support our hy-
pothesis that the code containing logical steps as
comments lowers decomposition task difficulties
for the models (especially for smaller models).

Figure 2: The token-level cross-entropy loss of three
code styles for a code problem example in the Wizard-
Coder3B model, and the abscissa represents the token
index of the tokenized code.

Code Type Wizardcoder 3b Wizardcoder 7b

CoT-pre 0.5318 0.4784
CoT-post 0.5606 0.5241
Comment 0.3384 0.3086

Table 1: Average cross-entropy loss for three different
code styles: code preceded with step list (CoT-pre), code
followed with step list (CoT-post), and inline comments.

3 MANGO
We proposed a simple and effective method
MANGO, including comment contrastive learning
loss and logical comment prompt.

3.1 Backgound: Supervised Fine-tuning on
Code Generation Tasks

The input of a code generation task typically in-
volves a natural language description and an op-
tional programming context. We denote such in-
put as a list of tokens x = {x1, x2, · · · , xn}.
Given x, the correspondent code snippet y =
{y1, y2, · · · , ym} is expected to be generated by
the code LLM P (y|x). In standard supervised
fine-tuning, the code LLMs are trained to predict
the next token based on cross-entropy loss Llm as
Equation 2.

Llm = −
m∑

i

logP (yi|yi−1, · · · , y1,x) (2)

3.2 Comment Contrastive Learning
In code snippets, code comments naturally assume
the role of interpreting local code lines using nat-
ural language text, where the decomposition of

7042

logic also serves as a function of comments. How-
ever, directly fine-tuning the loss function treats
all tokens as equivalent without making additional
distinctions for comments. To accommodate the
task of guiding the model to generate annotations,
we adopt a contrastive learning approach to encour-
age the model to emphasize code comments more
during the fine-tuning process.

Our approach consists of the following steps.
First, to prepare data for comment contrastive learn-
ing, we filter out examples containing comments
from the training data. Taking the open-source
dataset Code-Python as an example, this dataset
contains half of the examples with annotations. For
a code snippet ypos containing comments, we use
an open-source code parsing tool3 to remove the
comments and obtain the non-preferred contrastive
sample yneg. Then, we add a contrastive loss Lcl

by setting a margin m for the possibility of the la-
bels with comments ŷpos and without comments
ŷneg.

Lcl =max(0,m− logPθ(ŷneg|x)+
logPθ(ŷpos|x))

(3)

The final loss L is the addition of the standard cross
entropy loss Llm and the contrastive loss Lcl.

L = Llm + Lcl (4)

3.3 LCP: Logical Comment Prompt

In order to enable the model to use comments as in-
termediate steps intentionally, adding a correspond-
ing instruction in the prompt is the method with
the minimum cost. We use the logical comment
prompting strategy to guide the model in gener-
ating comments explaining the code logic in the
decoding stage. Following the standard prompt
including the problem description and instruction
for generating code in a certain programming lan-
guage, the logical comment prompt is shown in
Table 2, which adds "with comments to explain the
logic:" or similar text.

4 Experiments and Results

In this section, we conduct experiments for our
method on different benchmarks and backbone
models, and the following sections describe the
details of the experiments.

3https://github.com/pygments/pygments

4.1 Trainning Settings
We selected the state of the arts open-source back-
bone WizardCoder and StarCoder from 3B to 7B.
We use codem-python (Zan et al., 2023) as train-
ing data, which includes 9600 Python examples
distilled from GPT-4 using Evol-instruct (Xu et al.,
2023). Our training script mainly follows Wizard-
Coder (Luo et al., 2023) and trains 3 epochs (111
steps) with batch size 256; the warmup step is 15.
For the hyperparameter margin m in our comment
contrastive training loss, we set m = 0.1 for all
models in the experiments. We use DeepSpeed4

Stage 1 for distribution training. Our standard su-
pervised fine-tuning implementation results have
an error margin within 1% the Pass@1 result in
the greedy search strategy in CodeM-Python (Zan
et al., 2023), which indicates that our experiment
setting leads to consistent results compared with
the existing work.

SFT (Supervised Fine-Tuning) We construct
the standard instruction template in Wizard-
Coder (Luo et al., 2023) for the CodeM-Python
dataset, and the training objection is cross entropy.

CoT (Chain-of-Thought) As another baseline,
this setting uses zero-shot-CoT (Kojima et al.,
2022) on the standardly fine-tuned models, and
the detailed prompt is the “CoT-pre1” appended in
the Appendix C Table 13.

LCP (Logical Comment Prompt) This setting
uses LCP to guide standard fine-tuned models gen-
erating codes with comments. Table 2 shows the
detailed prompt used in experiments.

MANGO (comMents As Natural loGic pivOts)
During the training stage, MANGO trains the same
dataset in the same instruction template, and the
training objection is comment contrastive loss fol-
lowing Equation 3 and Equation 4. During the
inference stage, the logical comment prompt (LCP)
strategy will be used.

Decoding Settings We follow the setting in
CodeLLaMA (Roziere et al., 2023), using tempera-
ture T = 0.8 and nuclear sampling top_p = 0.95.
We generate n = 10 samples and calculate Pass@k,
where k = 1, 5, 10.

4.2 Evaluation Settings
Evaluate Metrics Pass@k (Chen et al., 2021)
is currently the most widely used metric in code

4https://github.com/microsoft/DeepSpeed

7043

Prompt Type Content

Standard

Instruction:
Create a Python script for this problem:
{input}
Response: Here’s the Python script for the given problem:

LCP

Instruction:
Create a Python script for this problem:
{input}
Response: Here’s the Python script for the given problem
with comments to explain the logic:

Table 2: The standard instruction-following prompt and LCP (Logical Comment Prompt), and the blue text guide
the models to generate code with comments.

setting
HumanEval MBPP

Pass@1 Pass@5 Pass@10 Pass@1 Pass@5 Pass@10

StarCoder-7B
SFT 35.93 55.69 63.01 42.79 56.41 61.13
CoT 22.40 49.39 58.95 26.45 52.27 59.87
LCP 39.17 61.91 70.12 41.11 57.68 63.27
MANGO 39.73 62.81 70.53 40.92 57.68 63.53

WizardCoder-3B
SFT 33.37 51.43 58.12 35.98 51.51 56.80
CoT 17.28 41.09 51.83 21.38 44.89 52.20
LCP 34.17 56.07 63.82 34.79 51.23 57.47
MANGO 34.47 54.55 61.99 35.53 52.04 58.27

WizardCoder-7B
SFT 52.80 69.74 74.59 42.73 56.77 62.33
COT 42.50 68.68 75.20 31.25 52.65 59.67
LCP 52.95 70.70 75.81 41.96 57.82 63.27
MANGO 54.59 72.76 78.66 46.91 62.26 67.87

Table 3: The main experiments on MANGO. The bold text is the best result in experiments or comparable settings.

generation. It means with sampling n samples, the
possibility of any code is correct in k samples.

Pass@k = EProblems

1−

(
n− c
k

)

(
n
k

)

 (5)

HumanEval HumanEval (Chen et al., 2021) is
currently the most widely used dataset for code gen-
eration. It contains 164 problems written in Python
that evaluate programming language comprehen-
sion, algorithms, and basic mathematics. For each
problem, 7.7 unit tests are contained on average.

MBPP MBPP (Austin et al., 2021) test set con-
tains 500 Python problems. The problems cover
basic programming concepts and standard library

functionality. Each problem comprises a task de-
scription, code solution, and 3 automated test cases.

4.3 Main Result

In assessing the efficacy of MANGO, we utilize
pass rates on HumanEval and MBPP as our pri-
mary evaluative measure. The principal results are
presented in Table 3. Overall, there are three main
aspects that we observed.
First, comparing the SFT baseline with MANGO,
consistent enhancements are demonstrated across
various sizes and backbones. Notably, the
StarCoder-7B exhibits a significant augmentation,
with an increase of 7.52 percentage points for Hu-
manEval in Pass@10. In the case of WizardCoder-
7B, there is a 4.17 percentage points enhancement

7044

in the Pass@10 outcome for the MBPP test set. Sec-
ondly, comparing the pass rates of the backbones in
the CoT settings, we observe a decline in model per-
formance in all instances, with a more pronounced
gap evident in the smaller 3B model. In contrast,
LCP prompting consistently contributes to enhanc-
ing model performance, demonstrating its stabil-
ity and effectiveness. Thirdly, in the ablation of
LCP and MANGO, we observed that on the Hu-
manEval and MBPP test set, a standardly finetuned
StarCoder-7B can achieve a significantly higher
score simply by prompting with LCP. This obser-
vation underscores the substantial potential of low-
cost prompting methods. For deeper and broader
analysis, we also provide the inner representation
analysis on comment contrastive learning in Sec-
tion A and the results of LCP on three larger and
latest backbone models in Section B.

Considering the convenience of providing com-
parable results on zero-shot settings, we also pro-
vide the greedy search results of Pass@1 for com-
parison with the results of existing works. Since
Pass@1 is the most strict indicator, it is more diffi-
cult to improve than Pass@10. According to results
in Table 4, the zero-shot CoT prompting persis-
tently results in diminished model performance;
however, an enhancement in Pass@1 is observable
when employing LCP prompting.

Model Pass@1 Pass@5 Pass@10

GPT-4 67.00* – –
CodeLLaMA-7B 38.40* – –
StarCoder-7B 26.83* – –
WizardCoder-7B 55.50* 76.03 82.31
WizardCoder-3B 34.80* 51.72 59.75
w/ CoT 25.61 40.05 48.78
w/ LCP 36.59 51.57 59.15

Table 4: Zero-shot performance of various backbones on
HumanEval. The Pass@1 is in greedy search decoding
and the Pass@5/10 is in sampling decoding with T=0.8.
We use * to denote the results from Achiam et al. (2023),
Roziere et al. (2023), Li et al. (2023b) and Luo et al.
(2023).

4.4 Ablation Study on the Training Method
We evaluate the efficacy of the two components
of MANGO through an ablation study conducted
on WizardCoder-7B. The test set employed is Hu-
manEval, and we adhere to the main experimental
settings with T=0.8 and p=0.95. Based on the re-
sults presented in Table 5 and Table 3, both the

comment prompt and the contrastive training loss
contribute to an increase in the Pass@10 passing
rate. Furthermore, integrating these two compo-
nents can further augment the performance in terms
of the passing rate.

Setting Pass@1 Pass@5 Pass@10

SFT 52.80 69.74 74.59
w/ LCP 52.95 70.70 75.81
w/ Lcl 55.47 71.75 76.02
MANGO 54.59 72.76 78.66

Table 5: Ablation study on the contrastive loss of
MANGO based on WizardCode-7B.

4.5 The Effect of Margin

We marginalize the representation of code with-
out comments with code LLMs, and the hyper-
parameter margin m is used to control the extent of
negative marginalization. We examine various mar-
gin settings for WizardCoder-7B on HumanEval
and follow decoding setting T=0.8. The results in
Table 6 indicate that MANGO can outperform the
baselines under margins larger than 0.05. However,
when the margin is 0.03, the performance of the
model decreases significantly both on Pass@5 and
Pass@10, which indicates the model is sensitive to
the margin value.

Margin Pass@1 Pass@5 Pass@10

0.03 53.11 70.42 75.20
0.05 53.66 72.98 78.66
0.10 54.59 72.76 78.66
0.15 53.13 73.00 79.88

Table 6: Roubustness validation on the margin hyperpa-
rameter m.

5 Analysis

5.1 The Robustness Study Against LCP and
CoT

We rephrase the prompt into several versions to
mitigate the model’s randomness in response to
different prompt styles. Initially, we manually cre-
ated three prompts each for LCP and CoT, which
served as seed prompts. Subsequently, we employ
GPT-4 to generate four additional variants for each
prompt. Furthermore, for a more nuanced anal-
ysis, we segregate CoT into two categories: the
first involves specifying the chain of thought text

7045

before generating the final code, representing the
most typical and universal form; and the second
is a freestyle CoT devoid of position-constraining
guidance. Ultimately, we have 15 prompts for each
category. The complete prompts are provided in
the Appendix 5.1. The result in Table 7 demon-
strated that LCP yields a considerably higher aver-
age performance and a lower standard deviation. It
is worth noting that the CoT without position con-
straint has higher performance than typical CoT
on average with a larger deviation. Apart from
the most commonly used independent natural lan-
guage plan before actual coding, the model can
also interpret CoT as explanatory comments for the
code. LCP proposes that intermediate steps should
be incorporated as comments, thereby stabilizing
the behavior of models and enhancing their per-
formance compared to generating code problems
directly.

Setting Pass@1 Pass@5 Pass@10

CoT-Pre
Avg 33.24 61.88 71.38
StDEV 9.21 6.45 5.43

LCP
Avg 48.65 68.85 74.76
StDEV 1.37 1.74 2.45

CoT-No-Position
Avg 40.69 65.05 72.03
StDEV 10.64 7.19 5.46

Table 7: The mean and standard deviation of three
prompt groups. CoT-Pre means the prompts request
models that generate the Chain-of-Thought first and
then generate code, while CoT-No-Position means the
prompts guide models generate code with Chain-of-
Thought only.

5.2 Statistical Features of Generated Codes

We statistic the style transformation between the
different instruction strategies and training meth-
ods, including the effective code line number and
comment line number. As Tabel 8, the CoT prompt
guides model generates intermedia steps before
generating code, leading to fewer comment lines
than the prompts without guidance. LCP induces
more code comments than the origin prompt.

We observe that the contrastive training loss Lcl

does not change the code and comment line num-
ber features. However, in model output without
contrastive learning, 12.21% of comment lines are

“ Test the function” (or similar expressions) and fol-
lowed with some unit tests, which will not help the
code’s correctness. Conversely, a mere 2.05% of
comment lines exhibit this characteristic after train-
ing by comment contrastive learning. The above
statistical results indicate that, from an effective
comment ratio perspective, comment quality is en-
hanced after training with contrastive learning.

setting #avg. code line #avg. comment line

origin 15.56 1.36
CoT 11.68 0.38
LCP 20.92 3.29
MANGO 20.80 3.33

Table 8: Statistic of code and comment line on different
settings based on WizardCoder-7B.

5.3 The Relationship Between CoT and
Contrastive Comment Loss

To investigate whether the enhancement of compar-
ative learning for comments can be directly gen-
eralized to the capability of CoT. Given the sub-
stantial fluctuation in the code generated by CoT’s
prompt, we selected three typical prompts as the
study subjects. Through the statistical analysis of
the number of lines in the generated code, these
three prompts respectively represented code styles
with three different mean values of 0, 2, and 3 on
WizardCoder-7B, and the detailed prompt will be
listed in the Appendix (CoT1: CoT-No-Position1,
CoT2: CoT-pre1, CoT3: CoT-pre2). We test the
model in the SFT setting and the contrastive trained
setting. The results are shown in Table. 9. Com-
paring the mean of comment lines and the final
pass rates, we can find that the more comments the
CoT prompt can guide, the higher performance can
be seen. Comparing SFT and Lcl under the same
settings, it can be observed that for the prompt that
inherently performs CoT through code comments
(i.e., “CoT1”), the models after contrastive learning
consistently improve code pass rates. However, for
prompts that perform CoT through other means, a
decline in performance is observed in the 3B mod-
els after comparative learning. This phenomenon
suggests that merely fine-tuning through a small
amount of contrastive learning on comments is not
easily transferable to other forms of task decompo-
sition.

7046

setting pass@1 pass@5 pass@10 MCL

WizardCoder-3B

CoT1
SFT 28.80 52.22 61.38 2.83
Lcl 30.10 52.85 60.77 2.64

CoT2
SFT 17.91 44.05 53.86 1.35
Lcl 15.65 40.84 52.03 1.06

CoT3
SFT 17.28 41.09 51.83 0.95
Lcl 12.85 34.97 45.33 1.03

WizardCoder-7B

CoT1
SFT 47.64 70.89 77.64 2.70
Lcl 50.43 71.68 77.64 3.03

CoT2
SFT 47.70 67.94 73.78 1.86
Lcl 44.80 70.28 76.42 1.89

CoT3
SFT 42.30 67.76 74.19 0.38
Lcl 41.02 68.31 75.81 0.26

Table 9: The relevance of the CoT prompting perfor-
mance and the training loss setting. “MCL” is the ab-
breviation of mean comment lines.

5.4 Error Distribution

To analyze the pass rate improvement of MANGO,
we classify problem description understanding er-
ror types using the HumanEval test set. MANGO
improves model output by utilizing code comments,
which does not target a specific type of code error
but rather improves the understanding of problem
descriptions from the overall perspective via de-
composing complex coding logic. Meanwhile, test
cases can effectively reflect the degree of under-
standing of the output results in the code generation
task. We established two thresholds for evaluating
problem understanding: whether the compiler can
successfully compile the code and whether the code
can pass at least one test case. Based on this, we
roughly classified the understanding level into three
types from low to high.

We divide the failed cases into three categories:
Verification Error (VE) includes Runtime Error,
Syntax Error, and the other case except for Wrong
Answer; All Wrong Answer (AWA) includes the
cases that cannot pass the first test cases of the
scripts, indicating that the generated code has a
poor understanding on problem descriptions; Parti-
cle Wrong Answer (PWA) includes the cases that
can pass the first unit test at least but fail finally.

As shown in Tabel 10, compared with the error
rates in SFT, MANGO decreases all three types of
error rates. Furthermore, the ablation components
also show lower error rates in three types, indicat-
ing that MANGO has reduced the code error rate
across various degrees of comprehension error.

Setting VE AWA PWA overall

SFT 4.31 10.24 11.87 26.42
w/ LCP 3.84 8.88 11.46 24.19
w/ Lcl 2.81 10.69 10.49 23.99
MANGO 2.84 8.49 10.00 21.33

Table 10: Statistics of test result error distribution.

6 Related Work

6.1 Code LLMs and Logical Reasoning

The rapid development of pre-trained language
models brings the bloom of code LLMs. The
most advanced open-source code LLMs are pre-
trained by a large amount of natural language
corpus and code corpus (Roziere et al., 2023).
Based on the backbones, WizardCoder (Luo et al.,
2023) and OctoPack (Muennighoff et al., 2023) pro-
posed instruction-tuning data construction methods
that boost the instruction-following ability of code
LLMs significantly. Besides, Fu et al. (2022) pro-
posed that code corpus can be the source of CoT
ability. Both Fu et al. (2022) and Ma et al. (2023)
observed that training small-size code LLMs on
code data can augment the logical reasoning ability
of the model further.

6.2 Prompting-based Code Generation
Strategy

The planning strategy is the mainstream technique
to transform the causal language model to fit logical
text generation. Existing works include the variant
of CoT (Chain of Thought) (Jiang et al., 2023; Li
et al., 2023a), Reflexion (Shinn et al., 2023), etc.
Most prompting strategies utilize the outstanding
logical and understanding abilities of the most ad-
vanced models. However, these strategies will not
work even on large open-source models with a size
beyond 10B (Jiang et al., 2023; Shinn et al., 2023).
Another mainstream method is compiling feedback
to train code models (Chen et al., 2023, 2022). Our
method utilizes the comment, the widely accepted
rule for coders, to enhance the code readability and
explain the code logic simultaneously. Li et al.
(2023c) proposed that the brainstorming step can
elite code generation performance. The common-
ness of comments in training code corpus enables
models to easily capture the relationship between
code and natural language description logic in dif-
ferent sizes of backbone models.

7047

7 Conclusion

In this paper, we first emphasize the importance
of code comments in bridging natural language
and code language, and then we hypothesize that
more comments to explain code logic can enhance
code generation performance. We propose a sim-
ple and effective method MANGO, which contains
contrastive comment loss and logical comment
prompts. The main experiments and ablation stud-
ies show that MANGO effectively augments the
pass rate of code generated by the models. In
further analysis, we also compared LCP and CoT
prompting strategies and found that LCP has a sig-
nificantly better and stabler performance than CoT,
especially for smaller models. The comment con-
trastive training can also boost CoT performance
in certain conditions.

In conclusion, our work introduces the comment
pivot as a novel perspective, and guiding models
to use comments can augment the code generation
ability stably. In the future, we will further explore
the application potential of comments in broader
complex scenarios, such as tool usage and LLM
agents.

8 Limitation

Although MANGO does not constrain the size of
the model, we did not test our method (especially
for comment contrastive training) on larger models
due to our limitations in computing resources. Fur-
thermore, the method adopts a strategy to stimulate
the model’s annotation capabilities, but this method
is still limited by the upper limit of the planning
and comment generation capabilities of the models.
Therefore, exploring how to further improve the
annotation capabilities of the base model is an issue
worth exploring.

Acknowledgements

The research work described in this paper has
been supported by the National Nature Science
Foundation of China (No. 62376019, 61976015,
61976016, 61876198, and 61370130). The authors
would like to thank the anonymous reviewers for
their valuable comments and suggestions to im-
prove this paper.

References
Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan,

Jyoti Aneja, Ahmed Awadallah, Hany Awadalla,

Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harki-
rat Behl, et al. 2024. Phi-3 technical report: A highly
capable language model locally on your phone. arXiv
preprint arXiv:2404.14219.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732.

Angelica Chen, Jérémy Scheurer, Tomasz Korbak,
Jon Ander Campos, Jun Shern Chan, Samuel R Bow-
man, Kyunghyun Cho, and Ethan Perez. 2023. Im-
proving code generation by training with natural lan-
guage feedback. arXiv preprint arXiv:2303.16749.

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan,
Zeqi Lin, Jian-Guang Lou, and Weizhu Chen. 2022.
Codet: Code generation with generated tests. In
The Eleventh International Conference on Learning
Representations.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Yao Fu, Hao Peng, and Tushar Khot. 2022. How does
gpt obtain its ability? tracing emergent abilities of
language models to their sources. Yao Fu’s Notion.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Y Wu, YK Li, et al. 2024. Deepseek-coder: When the
large language model meets programming–the rise of
code intelligence. arXiv preprint arXiv:2401.14196.

Xue Jiang, Yihong Dong, Lecheng Wang, Qiwei
Shang, and Ge Li. 2023. Self-planning code gen-
eration with large language model. arXiv preprint
arXiv:2303.06689.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. Advances in
neural information processing systems, 35:22199–
22213.

Jia Li, Ge Li, Yongmin Li, and Zhi Jin. 2023a. Struc-
tured chain-of-thought prompting for code genera-
tion. arXiv preprint arXiv:2305.06599.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al.
2023b. Starcoder: may the source be with you!
arXiv preprint arXiv:2305.06161.

7048

Xin-Ye Li, Jiang-Tian Xue, Zheng Xie, and Ming Li.
2023c. Think outside the code: Brainstorming boosts
large language models in code generation. arXiv
preprint arXiv:2305.10679.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,
Qingwei Lin, and Daxin Jiang. 2023. Wizardcoder:
Empowering code large language models with evol-
instruct. arXiv preprint arXiv:2306.08568.

Yingwei Ma, Yue Liu, Yue Yu, Yuanliang Zhang,
Yu Jiang, Changjian Wang, and Shanshan Li. 2023.
At which training stage does code data help llms
reasoning? arXiv preprint arXiv:2309.16298.

Niklas Muennighoff, Qian Liu, Armel Zebaze, Qinkai
Zheng, Binyuan Hui, Terry Yue Zhuo, Swayam
Singh, Xiangru Tang, Leandro von Werra, and
Shayne Longpre. 2023. Octopack: Instruction tun-
ing code large language models. arXiv preprint
arXiv:2308.07124.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik R Narasimhan, and Shunyu Yao. 2023. Re-
flexion: Language agents with verbal reinforcement
learning. In Thirty-seventh Conference on Neural
Information Processing Systems.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in Neural
Information Processing Systems, 35:24824–24837.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. 2023. Wizardlm: Empowering large lan-
guage models to follow complex instructions. arXiv
preprint arXiv:2304.12244.

Daoguang Zan, Ailun Yu, Bo Shen, Jiaxin Zhang, Tai-
hong Chen, Bing Geng, Bei Chen, Jichuan Ji, Yafen
Yao, Yongji Wang, et al. 2023. Can programming
languages boost each other via instruction tuning?
arXiv preprint arXiv:2308.16824.

Eric Zelikman, Qian Huang, Gabriel Poesia, Noah
Goodman, and Nick Haber. 2023. Parsel: Algorith-
mic reasoning with language models by composing
decompositions. In Thirty-seventh Conference on
Neural Information Processing Systems.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, et al. 2023. A
survey of large language models. arXiv preprint
arXiv:2303.18223.

Yuqi Zhu, Jia Allen Li, Ge Li, YunFei Zhao, Jia Li, Zhi
Jin, and Hong Mei. 2023. Improving code generation
by dynamic temperature sampling. arXiv preprint
arXiv:2309.02772.

A Analysis on the Effect of Contrastive
Learning

To show how comment contrastive learning
changes the inner representation of the model, we
compare the cosine similarity of representation for
code snippets with comments and the unpreferred
variations.

First, we sample 100 code snippets with com-
ments from the training set and post-process the
code snippets into two unpreferred code styles,
including shuffling comments and deleting com-
ments. Secondly, we process each code snippet
into three versions listed below:

• Origin: The origin code retains its comments
without change.

• Shuffling Comments (SC): The comments are
shuffled without changing the inserting po-
sition, which breaks the semantic alignment
relationship between the certain comment and
its nearby code lines.

• Deleting Comments (DC): The comments are
eliminated, leaving only the executable code
lines.

Concretely, we compare the model using standard
finetuning and comment contrastive learning by
computing the cosine similarity of the original and
the other versions, respectively. The cosine simi-
larity score is calculated with the last token repre-
sentation of the last layer model output. Finally,
the final scores are averaged across the 100 sam-
ples. The cosine similarity scores are displayed
in Table 11. The table shows that cosine similar-

model <origin, SC> <origin, DC>

SFT 0.7780 0.5271
w/ Lcl 0.7231 0.4404

Table 11: The cosine similarity score of different types
of post-processing strategies, where SC means shuffling
comments and DC means deleting comments.

ity scores between the origin version and the other
two unpreferred versions are substantially lower
in the model with comment contrastive learning.
This suggests that the contrastive learning process

7049

markedly enhances their differentiation within the
embedding space.

B Performance on Boarder Models

We evaluate our decoding strategy LCP to explore
the potential of utilizing comments to improve
code generation on larger and more variant mod-
els. We compare LCP on WizardCoder-13B (Luo
et al., 2023), Phi-3-14B (Abdin et al., 2024),
and DeepSeekCoder-7B (Guo et al., 2024). The
Pass@1 results in temperature T=0.8 are shown
in Table 12 are based on HumanEval, indicating
that LCP consistently and significantly surpasses
the origin setting. Moreover, CoT can promote
the code generation on DeepSeekCoder-7B and
Phi-3-14B, but it fails to improve the pass rate in
WizardCoder-13B. Therefore, the results further
illustrate the stability and effectiveness of LCP on
border backbone models and reveal the potential of
comments in enhancing code generation.

model origin CoT LCP

WizardCoder-13B 0.6402 0.5914 0.6524
DeepSeekCoder-7B 0.5792 0.6036 0.6158

Phi-3-14B 0.5915 0.6768 0.6585

Table 12: Performance on three latest and larger back-
bone models. The results reflect that LCP is consistently
effective.

C The Detail of Variant Prompts

We use three types of prompts to generate codes
with different styles. The CoT-pre indicates
prompts that request models to generate a step-by-
step chain of thoughts before generating code, and
the CoT-No-Position indicates prompts that only
request models generate a step-by-step chain of
thoughts. The concrete prompts of three types are
shown as follows: We show the concrete prompts
of the three seed prompts for each type in Table 13,
and the other prompts are paraphrased by GPT-4.

D Case Study

We use a simple coding task to illustrate the differ-
ence between the origin prompt, the LCP prompt,
and the CoT prompt. The problem description is
shown as follows.

def is_simple_power(x, n):

"""Your task is to write a function that
returns true if a number x is a simple

power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
is_simple_power(1, 4) => true
is_simple_power(2, 2) => true
is_simple_power(8, 2) => true
is_simple_power(3, 2) => false
is_simple_power(3, 1) => false
is_simple_power(5, 3) => false
"""

Origin Prompt result [Failed] The origin
prompt contains no extra instructions, and the gen-
erated code fails to pass all of the unit tests because
it can only solve the cases provided as examples.

```python
def is_simple_power(x, n):

"""Your task is to write a function that
returns true if a number x is a simple

power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
is_simple_power(1, 4) => true
is_simple_power(2, 2) => true
is_simple_power(8, 2) => true
is_simple_power(3, 2) => false
is_simple_power(3, 1) => false
is_simple_power(5, 3) => false
"""
if n == 1:

return True
elif x == n:

return True
elif x == n**2:

return True
elif x == n**3:

return True
else:

return False
```

In this script, we define a function called
`is_simple_power` that takes two parameters
`x` and `n`. We check a few possible cases
to determine if `x` is a simple power of
`n`. If any of these cases are true, we
return `True`, otherwise we return `False`

CoT result [Failed] The code generated in the
CoT prompt setting contains a step-by-step expla-
nation that simply decomposes the problem descrip-
tion into two bullet points. The final generated code
fails due to the generated ambiguous reinterpreted
bullet points, and there is a large gap between the
code implementation and the problem description.

1. Define a function called `is_simple_power`
that takes two parameters, `x` and `n`.

2. Inside the function, check if `x` is equal

7050

prompt name content

CoT-pre1 First, consider the process step by step, and then present the Python script:
CoT-pre2 Start by creating a step-by-step coding plan, then follow it with the Python

script for the provided issue:
CoT-pre3 The following Python script addresses the specified issue and includes a detailed

explanation at the start:
Comment1 Here is the annotated Python script that solves the specified issue:
Comment2 To clarify the logic, it’s preferable to include annotations in the script. Here’s

the Python code for the given issue:
Comment3 The following Python script addresses the given problem, with complex logic

broken down using straightforward comments:
CoT-No-Position1 Here’s the Python code for the specified issue, broken down into logical steps:
CoT-No-Position2 The Python program for the aforementioned issue is presented here, with a

step-by-step explanation:
CoT-No-Position3 Here’s a Python script that tackles the given problem, accompanied by a com-

prehensive breakdown:

Table 13: Three handcraft seed prompts for each type.

to `n**int(n)`. If it is, return `True`.
Otherwise, return `False`.

Here is the Python script implementing the
above steps:

```python
def is_simple_power(x, n):

if x == n**int(n):
return True

else:
return False

```

This function checks if a number `x` is a
simple power of `n`. If `x` is equal to
`n` raised to the power of `int(n)`, it
returns `True`. Otherwise, it returns
`False`.

LCP result [Passed] The code generated in the
LCP prompt setting contains clear comments to
explain the code logic and all of the unit tests are
passed successfully.

```python
def is_simple_power(x, n):

"""
Your task is to write a function that

returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
is_simple_power(1, 4) => true
is_simple_power(2, 2) => true
is_simple_power(8, 2) => true
is_simple_power(3, 2) => false
is_simple_power(3, 1) => false
is_simple_power(5, 3) => false
"""

# Check if x is a perfect power of n
if n == 1:

return x == 1

# Check if x is a simple power of n
if x % n == 0:

return is_simple_power(x // n, n)

# Check if x is a perfect power of n
for i in range(2, x):

if x == n ** i:
return True

# If x does not satisfy any of the above
conditions, it is not a simple power of
n

return False
```

Now, you can call the function
`is_simple_power` with the desired inputs
to check if a number is a simple power of a
given base.

}

7051

