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Abstract

Recent developments in Large Language Mod-
els (LLMs) have demonstrated their remarkable
capabilities across a range of tasks. Questions,
however, persist about the nature of LLMs and
their potential to integrate common-sense hu-
man knowledge when performing tasks involv-
ing information about the real physical world.
This paper delves into these questions by ex-
ploring how LLMs can be extended to inter-
act with and reason about the physical world
through IoT sensors and actuators, a concept
that we term "Penetrative AI1". The paper
explores such an extension at two levels of
LLMs’ ability to penetrate into the physical
world via the processing of sensory signals.
Our preliminary findings indicate that LLMs,
with ChatGPT being the representative exam-
ple in our exploration, have considerable and
unique proficiency in employing the embedded
world knowledge for interpreting IoT sensor
data and reasoning over them about tasks in the
physical realm. Not only this opens up new
applications for LLMs beyond traditional text-
based tasks, but also enables new ways of incor-
porating human knowledge in cyber-physical
systems.

1 Introduction

Large Language Models (LLMs) have made re-
markable strides (Brown et al., 2020; Scao et al.,
2022; Zeng et al., 2022). A particularly revolution-
ary milestone is ChatGPT (OpenAI, 2023b), which
excels in fluid, human-like conversations, mark-
ing a new era in human-AI interactions. These
latest LLMs cultivated on extensive text datasets
have showcased remarkable capabilities across di-
verse tasks, including coding and logical problem-
solving (Creswell et al., 2022). These out-of-the-
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1Project website: https://hkustwands.github.io/
penetrative-ai/

Figure 1: Overview of Penetrative AI.

box capabilities have demonstrated that they al-
ready comprise enormous amounts of world knowl-
edge 2.

This paper is motivated by an essential and in-
triguing question: can we enable LLMs to complete
tasks in the real physical world? We delve into this
inquiry and explore extending the boundaries of
LLMs’ capabilities by directly letting them interact
with the physical world through Internet of Things
(IoT) sensors. A basic example of this process is
depicted in Figure 1, where different from the con-
ventional way of LLMs, an LLM is expected to
analyze sensor data which are indeed projections
from the physical world. We conjecture that LLMs,
having been trained on vast amounts of human
knowledge, learned the physical world which can
be directly harnessed for analysis of such sensory
information to derive deep insights that tradition-
ally require background knowledge from human
experts and/or bespoke machine learning models
trained with large amounts of labeled sensor data.

As illustrated in Figure 1, we formulate such a
problem from a signal processing’s point of view,
and specifically explore the LLMs’ penetration into

2Some studies referred to it as a world model (LeCun,
2022) of how the world works.

7324

https://hkustwands.github.io/penetrative-ai/
https://hkustwands.github.io/penetrative-ai/


Figure 2: Overview of user activity sensing with LLMs.

the physical world at two signal processing lev-
els with the sensor data: i) with the textualized
signals derived from underlying sensor data, and
ii) with the digitized signals, essentially numeri-
cal sequences of raw sensor readings. We term
this endeavor "Penetrative AI" – where the embed-
ded world knowledge in LLMs serves as a founda-
tion model, seamlessly integrated with the Cyber-
Physical Systems (CPS) for perceiving and inter-
vening in the physical world.

Our methodology is exemplified through two
illustrative applications at two different levels, re-
spectively - user activity sensing where textualized
signals from smartphone accelerometer, satellite,
and WiFi data are analyzed to discern user motion
and environment conditions, and human heartbeat
detection where digitized electrocardiogram (ECG)
data are utilized to derive the heartbeat rate. Prelim-
inary findings are encouraging, showcasing LLMs’
proficiency in interpreting IoT sensor data and per-
forming perception tasks in the physical world. Our
exploration also underscores that existing LLMs
like ChatGPT-4 may already possess the capabil-
ity to establish intricate connections among world
knowledge and can be guided to tackle CPS tasks.

Section 2 and Section 3 will elaborate on the de-
sign and experiment results of these two illustrative
applications. Section 4 sets the scope of penetrative
AI and shares our insights on the foreseeable chal-
lenges to advance this burgeoning research frontier.
We present related works in Section 5 and conclude
this paper in Section 6.

2 Penetrative LLM with Textualized
Signals

This section describes tasking LLMs to compre-
hend sensor data at the textualized signal level.

2.1 An Illustrative Example

We take activity sensing as an illustrative example,
where LLMs interpret sensor data collected from
smartphones to derive user activities. The input
sensor data encompass smartphone accelerometer,
satellite, and WiFi signals, and the desired output is
to discern the user motion and environment context.
Figure 2 presents the overview of this LLM-based
design – the sensor data are pre-processed by in-
dividual sensing components and the textualized
sensor states are supplied to the LLM with a fixed
prompt for activity inference.

Objective and Rationale. We convey a clear
task to LLMs – "determine a user’s motion and sur-
rounding conditions by analyzing sensor data from
their smartphones". The basic idea is that when the
user conducts different activities in different envi-
ronments, the collected sensor data would exhibit
varied patterns, which reveal the users’ activities.

Data Preparation. To facilitate LLMs compre-
hension of the sensor data, we undertake a prepro-
cessing step where raw data from different sensing
modules are separately converted into textualized
states that are expected interpretable by LLMs. Fig-
ure 2 illustrates such a step.

To pre-process long accelerometer readings
(6,000 samples from 10 seconds of triaxial acceler-
ations sampled at 200 Hz), we employ the Android
step detector, which is a built-in step-counting im-
plementation (Developers, 2023b) and can trans-
form the 6,000 raw data points into a single textu-
ally expressed state, e.g., "step count: 5/min".

The Android system also offers a comprehensive
set of Global Navigation Satellite System (GNSS)
satellite measurements (Developers, 2023a), includ-
ing information like Pseudo-Random Noise as a
satellite identifier, Signal-to-Noise Ratio (SNR),
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Figure 3: Response examples of ChatGPT-4 for activity sensing.

and many others. To streamline the data for LLMs
interpretation, we filter and distill the satellite data
into two key attributes: the number of detected
satellites and their average SNR.

The Android system supports scanning for
nearby APs and provides comprehensive informa-
tion about scanned APs (Developers, 2023d). Sim-
ilar to satellite data, we disregard less relevant de-
tails and focus on critical information – Service
Set Identifier (SSID) and Received Signal Strength
Indicator (RSSI). To streamline the data and reduce
text length, we further filter APs with an RSSI
lower than -70 and instruct LLMs to analyze the
SSIDs to capture useful location information.

Expert Knowledge. We guide LLMs by in-
cluding explicit text-based descriptions of the re-
lationship between sensor patterns and user activ-
ity states in the prompts, as illustrated in Figure
2. For instance, a high satellite count and carrier-
to-noise density indicate an outdoor setting with
strong satellite signals.

Reasoning Examples. Following expert knowl-
edge, we can provide reasoning examples to en-
hance the proficiency of LLMs. Each example
includes the data for processing, a step-by-step rea-
soning process, and a brief summary of the ground
truth context, which adopts the chain of thought
(CoT) (Wei et al., 2022) prompting. Figure 2 illus-
trates this with the reasoning example section.

Complete Prompt. A full prompt includes a
defined objective and expert knowledge of the sen-
sor data, all in natural language as demonstrated
in Figure 2. Essentially, the way we construct the

prompt serves as a means to educate and instruct
LLMs to interpret sensor data and formulate its an-
swers into a concise format. We thereafter present
the prompt with succinct textualized sensor data
of novel queries to LLMs as shown in Figure 2,
which we expect to generate the inference results
as a concise description of the user’s activity. Note
that the prompt, once completed, is frozen and we
simply supply new textualized sensor data for new
inferences without altering the prompt any further.

2.2 Experiment Results

We conduct experiments in various scenarios – on
university campuses, commercial buildings, sub-
way stations, outdoor spaces, and across differ-
ent cities. The dataset contains 165 instances
and all sensor data are collected using a Samsung
Galaxy S8 Android smartphone. Accelerometer
data are sampled at 100 Hz, while the satellite
and WiFi data are sampled at 0.2 Hz. Sensor data
are gathered from time windows spanning dura-
tions of 10 to 60 seconds and the latest satellite
and WiFi scanning results are adopted. The eval-
uation is carried out using PaLM 2 (Anil et al.,
2023), ChatGPT-3.5 (gpt-3.5-turbo-0613) and
ChatGPT-4 (gpt-4-0613) (OpenAI, 2023b), acces-
sible through the official API with default parame-
ter settings.

Figure 3 shows several example answers of
ChatGPT-4 together with ground-truth contexts.
Due to space limits, we only show the detailed
response for the first case. The results suggest
ChatGPT-4’s ability to identify user motion and
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Table 1: Overall performance of LLMs in activity sensing. ’e.k.’ indicates the expert knowledge and ’exam.’
indicates a reasoning example.

Task
Metric Failure Rate (↓) Classification Accuracy (↑)

Prompt plain w/ e.k. w/ e.k. +1 exam. plain w/ e.k. w/ e.k. +1 exam.

Motion
Detection

PaLM 2 0% 0% 0% 1.00 1.00 1.00
ChatGPT-3.5 3% 0% 0% 0.97 1.00 1.00
ChatGPT-4 0% 0% 0% 1.00 1.00 1.00

Indoor/outdoor
Detection

PaLM 2 0% 0% 0% 0.79 0.88 0.91
ChatGPT-3.5 15% 0% 3% 0.70 0.82 0.88
ChatGPT-4 0% 0% 0% 0.88 0.91 0.94

indoor/outdoor states with the provided textualized
sensor data. Additionally, it demonstrates an im-
pressive capacity to deduce intricate details about
the user’s surroundings, e.g., it reasons that the user
is likely inside a shopping mall by analyzing the
scanned WiFi SSIDs in the first case.

To quantitatively assess the efficacy of such an
approach, we tasked LLMs to explicitly provide
the states of motion (between "stationary" and "mo-
tion") and environment (between "indoors" and
"outdoors"), which are identified by a keyword de-
tection process. We experiment with varied settings
– plain, with additional expert knowledge, as well
as with the additional reasoning example in the
prompt. To assess the performance of the penetra-
tive LLMs, we utilize two key metrics: the failure
rate and classification accuracy. In our cases, "fail-
ure" refers to instances where the LLMs are unable
to generate valid states relevant to the task. The
failure rate is thus calculated as the proportion of
such instances to the total number of cases.

Table 1 summarizes the overall performance of
different LLMs on the two tasks. ChatGPT-3.5
occasionally outputs ’unknown’ states leading to
higher failure rates in the two tasks. This rate can
be effectively reduced to 0% by incorporating ex-
pert knowledge. The results show three models
perform reasonably well in the motion detection
task. The task of discerning indoor/outdoor is more
challenging, largely due to its reliance on the fu-
sion of multimodal sensor data. Nevertheless, a
notable enhancement is achieved when prompts are
enriched with expert knowledge and one reasoning
example. PaLM 2 and ChatGPT-4 achieve above
90% accuracy with the best prompt scheme.

The location context detection using WiFi SSIDs
demands a broad base of general knowledge. In
many cases, WiFi signals are either sparse or the

Table 2: Performance of LLMs on location context
detection using WiFi SSIDs.

Metric PaLM 2 ChatGPT-3.5 ChatGPT-4

Precision 0.93 1.00 1.00
Recall 0.96 0.48 0.97

chrF 0.39 0.36 0.59
BERTScore 0.65 0.58 0.71

SSIDs lack unique identifiers that could be lever-
aged to infer detailed location contexts. To provide
the quantitative evaluation for this task, we manu-
ally assess all instances and identify that among the
143 instances with scanned WiFi signals, 115 fea-
ture SSIDs informative enough to deduce location
contexts, whereas 22 do not. Table 2 presents the
precision and recall for three models in the location
context detection task. To further evaluate the qual-
ity of the location contexts generated by LLMs, we
provide a reference location context based on the
actual environments and compare sentence-level
similarities between this reference and the gen-
erated contexts using chrF (Popović, 2015) and
BERTScore (Zhang et al., 2019) F1 score. The re-
sults shown in Table 2 indicate ChatGPT-4 achieves
the best overall performance with good chrF and
BERTScore.

Overall, the above experiment results suggest
LLMs can be effective in analyzing sensor signals
when properly abstracted into textual representa-
tions.

3 Penetrative LLM with Digitized Signals

This section describes our effort that goes beyond
the general expectations of the textualized signal
processing ability of LLMs. We specifically study
the potential of LLMs in comprehending digitized
sensor signals.
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Figure 4: Overview of heart rate detection with LLMs.

3.1 An Illustrative Example

We take human heart rate detection as an illustrative
example, where we task LLMs with the input of
ECG waveforms to identify the R-peaks, based on
which we can then derive the heartbeat rate. Fun-
damentally different from the previous example,
all sensor data in this application are expressed as
sequences of digitized samples. Figure 4 provides
an overview of the design.

Objective and Rationale. The sensor data con-
sist of a numerical sequence representing an ECG
waveform. Our objective for LLMs is to identify
the "R-peaks" (Yanowitz, 2010), which are tall up-
ward deflections in ECG data and correspond to
the red dots in Figure 4. The objective part of the
prompt succinctly states: "Find the R-peaks in an
ECG waveform". An interesting and challenging
job in this application is, we incorporate expert
knowledge directly into the prompts, delegating
the signal processing task to LLMs.

Data Preparation. The original ECG data are
collected at a high sampling rate, e.g., 360Hz. In
our design, raw ECG readings are down-sampled to
72 Hz and quantized to their integer parts to reduce
the length and complexity of the sequence.

Expert Knowledge. To assist the LLMs, we try
to give a detailed description of R-peaks with the
context of QRS complex (Kadambe et al., 1999) in
the prompt, i.e., "The QRS complex, a recurring
feature in ECG data, signifies the ventricles’ consis-
tent depolarization in the heart. It comprises the Q,
R, and S waves, where the Q wave shows a down-
ward deflection, followed by an upward-moving R
wave, and then the S wave, which deflects down-
ward after the R wave. The maximum amplitude
of the R wave is known as the R-peak.".

Our experiments show that it remains challeng-
ing for LLMs to perform the task for a long se-

Figure 5: Overview of heart rate detection with VLMs.

quence of ECG digits with only descriptions of
R-peaks. By observing the patterns of R-peaks, we
instead design a procedure that LLMs understand
to guide the selection of R-peaks. As depicted in
Figure 4, three steps are included: 1) assessing the
overall range of ECG numbers, 2) identifying sub-
sequences characterized by an initial lower value,
a subsequent significant increase, and a return to
the overall range, and 3) selecting the highest value
from each such subsequence as the R-peak. We ex-
amine whether LLMs like ChatGPT can effectively
execute such a fuzzy logic (without explicit thresh-
olding) when processing the digitized signals.

Reasoning Examples. We also furnish LLMs
with illustrative examples as shown in Figure 4,
which encompasses the digitized ECG data, a
reasoning procedure, and a summary of R-peaks
(check more details in Appendix A).

3.2 Digitized Data as Figures

Following the concept of Penetrative AI, we further
test using Vision-Language Models (VLMs) (Rad-
ford et al., 2021; Jia et al., 2021; Lu et al., 2019;
Tan and Bansal, 2019), which are vision interfaced
LLMs, to "see" digitized sensor data as figures and

7328



Table 3: Performance comparison in heart rate detection. The upper part shows the MAE (↓) of conventional
signal processing methods while the lower part includes the hallucination rates (↓) and MAEs (↓) of penetrative
LLMs/VLMs. "description" means the description of R-peaks, "proc." indicates the inclusion of detailed processing
procedure, and "exam." indicates the inclusion of reasoning examples.

Window Size Pan–Tompkins Hamilton Christov TMA SWT

5 seconds 5.76 3.60 7.08 9.24 4.20

30 seconds 1.06 0.76 1.30 1.64 0.37

LLM/VLM
Prompt Scheme (5-second window size)

w/ description w/ proc. w/ proc. + 1 exam. w/ proc. + 2 exam. one-shot

PaLM 2 95%, 816.00 95%, 148.80 58%, 30.29 50%, 82.32 97%, 84.00
ChatGPT-3.5 22%, 329.92 14%, 187.95 10%, 64.27 2%, 20.96 27%, 579.12
ChatGPT-4 0%, 81.84 0%, 92.40 0%, 1.56 0%, 4.80 0%, 142.68

GPT-4V 0%, 9.60 0%, 12.61 0%, 8.16 0%, 11.16 0%, 12.48

accordingly execute real-world tasks. Figure 5 il-
lustrates the design with VLM to process the same
R-peak detection example.

In this exploration, ECG data are visualized in
the figures and fed to VLMs, which are tasked with
locating the coordinates of R-peaks in such figures.
Figure 5 illustrates the process. The objective is
to count the R-peaks in the ECG data and only a
general description of R-peaks is provided as ex-
pert knowledge. Different prompt schemes are also
tested where a more detailed procedure to detect
R-peaks with one or more reasoning examples con-
taining reference ECG figures (see Appendix A for
detailed illustration). We investigate the efficacy of
VLMs, GPT-4V (OpenAI, 2023a) in this study, in
performing perceptual tasks.

3.3 Experiment Results

We conduct experiments with the MIT-BIH Ar-
rhythmia Database (Goldberger et al., 2000), which
is an ECG dataset with ground truth annotations
for R-peaks. We downsampled the raw ECG signal
to 72 Hz and each ECG query is from a 5-second
window comprising 360 numerical values by de-
fault. The evaluation is carried out using the three
models, i.e., PaLM 2, ChatGPT-3.5, and ChatGPT-
4 with default parameters. The experiment is also
performed with digitized ECG figures using GPT-
4V (OpenAI, 2023a) (gpt-4-vision-preview).
For comparison, we also test the performance of
classical signal processing approaches (Porr et al.,
2023), including Pan-Tompkins (Pan and Tomp-
kins, 1985), Hamilton (Hamilton, 2002), Christov
(Christov, 2004), Two Moving Average (abbrevi-
ated as TMA) (Elgendi et al., 2010), and Stationary

Wavelet Transform (abbreviated as SWT) (Kalidas
and Tamil, 2017). We use the Mean Absolute Error
(MAE) to measure the error in beats per minute
between the detected and actual heart rates.

The experiments with LLMs/VLMs are con-
ducted with different prompt schemes, including
(i) containing only general descriptions of R-peaks,
(ii) containing a detailed detection procedure, (iii)
containing the procedure as well as varied numbers
of reasoning examples, and (iv) one-shot prompt-
ing (Liu et al., 2023b) containing the one example
of ECG data and actual R-peak values. In our eval-
uation, "hallucination" is defined as cases where
the LLMs/VLMs are unable to proceed or generate
R-peak outputs. The MAE is averaged across cases
where models can produce R-peak outputs.

Overall Performance. Table 3 summarizes the
performance of various baseline methods along-
side four penetrative LLM/VLMs in the task. We
observe that conventional signal processing base-
lines give high MAEs when the window size of
query data is 5 seconds, which can be signifi-
cantly improved when the window size increases
to 30 seconds. However, the performance of LLMs
varies a lot. PaLM 2, for instance, frequently re-
peats the query sensor data in the response, leading
to high hallucination rates and significant MAEs.
ChatGPT-3.5 shows a reduction in hallucination
rates but tends to produce extended sequences of
R-peaks, resulting in significant errors.

Remarkably, ChatGPT-4 completely avoids hal-
lucinations and yields an impressive MAE of 1.56
when the prompt is incorporated with a dedicated
procedure and one reasoning example. This per-
formance is noteworthy, as it surpasses all conven-
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Figure 6: Impact of window size of query sensor data.

tional signal processing baselines with 5-second
data. It is noteworthy, however, that ChatGPT-4
does not record the lowest MAE when provided
with two reasoning examples. This phenomenon
may be attributed to the increased task complex-
ity due to additional examples. One more reason-
ing example encompasses an ECG sequence and a
reasoning procedure, which occupies about 2,200
tokens for ChatGPT.

GPT-4V exhibits commendable efficacy and it
outperforms all LLMs when only a general descrip-
tion of R-peaks is provided in the prompt, demon-
strating its potential for general adoptions where
its usage is completely independent of any signal
processing knowledge.

In conclusion, our findings indicate that LLMs
exemplified by ChatGPT-4 can exhibit remarkable
proficiency in analyzing physical digitized signals
when provided with proper guidance.

Impact of Window Size. We investigate how
the window size of ECG query data impacts the
end performance of LLM/VLMs. We adopt the
prompt scheme encompassing the procedure and
one reasoning example. As shown in Figure 6,
we vary the window size from 2.5 to 10 seconds,
adjusting the reasoning example correspondingly
for each window size. The stability of PaLM 2’s
performance is inconsistent, and a reduction in hal-
lucination rates does not translate to lower MAEs.
The hallucination rates for both ChatGPT-3.5 and
ChatGPT-4 escalate with the increase in window
size. A plausible explanation for such a trend is
ChatGPT’s inherent limitation in processing exten-
sive lengths of digitized sequences. For instance,
a 10-second window of query sensor data contains
720 numerical values, resulting in approximately
5,100 tokens. These findings suggest the inefficacy
of existing LLMs like ChatGPT when tasked to
process long digitized signals. The GPT-4V keeps
a zero hallucination rate but exhibits a similar trend
of MAE increase with bigger window sizes.

4 Penetrative AI

While not achieving perfect accuracy, LLMs ex-
hibit surprisingly encouraging performance, even
when dealing with pure digital signals. This
presents an enticing opportunity to leverage LLMs’
world knowledge as a foundation model to derive
insights from sensory information while requiring
no or little additional task knowledge or data, i.e.,
in zero or few-shot settings. Such a capability may
be equipped with IoT sensors and actuators to build
intelligence into cyber-physical systems – a con-
cept we term "Penetrative AI".

4.1 Scope

"Penetrative AI" is concerned with exploring the
foundation role of LLMs in completing tasks in
the physical world. Two primary characteristics
define its scope – i) the involvement of the em-
bedded world knowledge in LLMs 3, and ii) the
integration with IoT sensors and/or actuators for
perceiving and intervening the physical world. It
is important to distinguish the scope of Penetrative
AI from existing practices where the LLMs are not
engaged with their world knowledge in direct anal-
ysis of sensor inputs or CPS control. Examples
include classical NLP applications of LLMs, con-
ventional machine learning adopted in CPS, and
LLMs involved in the CPS loop but not applied to
comprehending the physical world phenomena.

As the example applications demonstrate, pene-
trative AI may offer the following potentials. It sim-
plifies solution deployment, allowing user-machine
interaction in plain language and minimizing the
need for extensive programming skills. It also en-
hances data efficiency as LLMs embedded with
vast world knowledge can effectively generalize to
new tasks. LLMs adeptly handle fuzzy logic well,
drawing inferences from vague or disorganized in-
formation, and bypassing the need for precise logic.
Finally, the penetrative AI offers an innovative op-
portunity for multimodal fusion, where diverse data
types are transformed into a uniform text format,
facilitating seamless adaptation to various tasks
without extensive model re-engineering.

4.2 Challenges and Future Directions

Adopting LLMs in a penetrative way for CPS is
non-trivial since LLMs are typically trained with
extensive text corpora for NLP applications and

3or variations like Vision-Language Models (VLMs) (Ope-
nAI, 2023a) which adapt to other input modalities.
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thus may lack expertise and domain knowledge for
CPS tasks. Unleashing its full potential necessitates
addressing the challenges as follows:

Understanding the knowledge boundaries of
LLMs. A fundamental challenge lies in system-
atically assessing LLMs’ capabilities for specific
CPS contexts. A pragmatic approach to this is
engaging LLMs in structured dialogues, tailored
to uncover their understanding and application of
relevant concepts at different levels, including con-
ceptual awareness where the LLMs’ fundamental
conceptual grasp can be gauged by questions like
"what is SSID in the context of WiFi?", and ap-
plication and understanding which delves deeper,
examining whether LLMs can aptly apply funda-
mental concepts in practical scenarios with exam-
ple questions like "what does it imply about the
users’ locations if their smartphones connect to
WiFi APs with certain SSIDs and RSSIs?".

Expanding LLMs’ capabilities. A subsequent
and essential challenge is to broaden the capabili-
ties of LLMs for CPS tasks based on the existing
knowledge. Such expansion can be approached
through several strategies. Task decomposition can
break down complex tasks into simpler sub-tasks,
which allows LLMs to develop more focused and
efficient problem-solvers. Signal transformation
and data preprocessing decides the form in which
sensor or actuator data shall be presented which is
a crucial challenge. While digitized signals offer
in-depth information, they require a deeper level of
physical world understanding from LLMs. Trans-
forming them into textualized data may be benefi-
cial and other preprocessing methods such as filter-
ing to remove irrelevant or redundant information
may also enhance system efficacy. Effective prompt
design is a major challenge, which may involve em-
bedding domain-specific knowledge when LLMs’
common knowledge is limited in certain tasks. De-
veloping stateful prompts and effective algorithms
with fuzzy logic (as demonstrated in Section 3.2)
is another interesting future work. Interfacing with
external tools also leads to an expansion of LLMs’
capabilities. Examples include using code inter-
preters for executing signal processing algorithms
or leveraging procedure calls for accessing real-
time information and/or controlling CPS.

Enriching LLMs with expert knowledge. A
pivotal approach is to develop specialized models
tailored to embedding additional domain knowl-
edge for CPS tasks. Such an approach however
comes with special considerations and challenges:

Dataset construction for multimodal datasets to
train tailored LLMs is a challenge. Unlike stan-
dard image-text pair datasets like those described
in (Byeon et al., 2022), sensor-text datasets for CPS
tasks shall include not only descriptive information
but also expert knowledge and processing guidance,
which necessitates a thoughtful approach to ensure
the data are comprehensive, accurate, and reflective
of real-world scenarios. Balancing specialization
with generalizability is necessary. A critical risk
in the fine-tuning LLMs is the potential disruption
of the existing knowledge base of LLMs and a bal-
anced fine-tuning process with both general and
domain-specific data may be key to maintaining
the robustness of LLMs. Integrating expert models
presents another way to enrich expert knowledge of
LLMs, e.g., integrating LLMs with an IMU founda-
tion model like LIMU-BERT (Xu et al., 2021) may
enable frontend features of sensor signals before
LLM comprehensions.

5 Related Work

LLMs for Sensor Processing. With the scaling
of model size and corpus size, LLMs demonstrate
an emerging in-context learning (ICL) ability by
learning directly from input prompts without addi-
tional training (Min et al., 2021; Rubin et al., 2021;
Min et al., 2022). This forward has broadened the
application spectrum of LLMs, such as in Liu et
al.’s study (Liu et al., 2023b), where LLMs analyze
medical data for health-related tasks, e.g., recog-
nizing activities with accelerometer data. LLMs in
(Liu et al., 2023b) primarily rely on learning from
question-answer pairs presented in prompts. Our
work, however, extends this by applying LLMs to
signal-processing tasks, providing them with pro-
cessed sensor data and structured guidance. We be-
lieve this enriched interaction between LLMs and
sensor data can better exploit embedded common-
sense knowledge in LLMs and thus unlock their
potential to accomplish real-world tasks.

Penetrative AI v.s. Embodied AI. "Penetra-
tive AI" is different from "Embodied AI" (Duan
et al., 2022; Ahn et al., 2022; Huang et al., 2022;
Shridhar et al., 2020; Lin et al., 2023), which pre-
dominantly aims at designing robotic agents and
is broadly defined with general AI models (rather
than the penetrative AI’s focus on LLMs’ foun-
dation roles). The penetrative AI focuses on the
exploration of integrating LLMs with IoT sensing,
which is not limited to the form of AI agents with
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tangible "bodies" and supports AGI-in-the-loop per-
ception or control modules for CPS. While most
Embodied AI works (Liang et al., 2023; Singh et al.,
2023; Lin et al., 2023; Wang et al., 2023) are gen-
erally focused on executing everyday tasks (e.g.,
table cleaning), Penetrative AI is aimed at facili-
tating domain-specific tasks that require advanced
expert knowledge, such as analyzing user behav-
iors. Many LLM-based embodied agents (Liang
et al., 2023; Singh et al., 2023) center around the
programming capabilities of LLMs, executing per-
ceptions and actions through predefined API inter-
faces. In contrast to these robot-focused endeavors,
this paper applies LLMs to directly comprehend
physical world signals in IoT scenarios.

Exploring Novel LLM Applications. Several
studies venture into novel LLM applications like
image editing (Wu et al., 2023), video understand-
ing (Li et al., 2023), constructing knowledge graph
(Sun et al., 2023; Carta et al., 2023), mental health
prediction (Xu et al., 2023), sequence completion
(Mirchandani et al., 2023), and developing recom-
mendation systems (Gao et al., 2023; Liu et al.,
2023a). Different from all existing efforts, this
paper defines "Penetrative AI" which leverages
LLMs’ world knowledge in comprehending phys-
ical phenomena and completing real-world tasks.
We believe this is the first effort to explore the
boundaries of LLMs’ ability to interact with the
real physical world with IoT sensors.

6 Conclusion

We present penetrative AI and explore the potential
of leveraging large language models as world mod-
els to accomplish real-world tasks with IoT sensors.
Our findings illuminate a promising path for the in-
tegration of artificial intelligence and CPS, offering
insights into the future of AI-powered solutions.

7 Limitations

Our study is based on a key assumption that LLMs
have integrated high-level common-sense human
knowledge that can be adopted for processing sen-
sor data. This assumption may not be universally
applicable to all LLMs, particularly those with
small size or trained in specific NLP text corpora.
Furthermore, our evaluation was confined to a se-
lect number of LLMs accessible through platforms
such as OpenAI and Google API. This limited
scope may not fully encompass the vast array of
LLM capabilities currently available.

Due to constraints in manuscript length, we fo-
cused on two illustrative applications. While these
were carefully chosen to represent distinct levels
of signal processing within the Penetrative AI, they
do not exhaust the full spectrum of potential ap-
plications. Despite this, we believe that these ap-
plications demonstrate the potential of LLMs in
processing sensory signals. Future research could
expand upon this groundwork by applying Penetra-
tive AI to a wider array of applications.

We also observed that when employed in a pen-
etrative manner, LLMs might exhibit lower effi-
ciency in processing extensive sequences of digi-
tal data compared to traditional signal processing
methods. This observation suggests a potential con-
straint in the practical deployment of Penetrative
AI solutions. It underscores the need for contin-
ued research to enhance the efficiency of LLMs in
handling long-digit sequences.

Since the three models assessed in this study
are not open-source, it remains unclear if the data
used for inference was included in their training
datasets. However, we gather sensor data from our
Android smartphones in the first application and
ensure that all information remains confidential. In
the second application, we utilize a publicly avail-
able dataset. Given that the raw signals undergo
preprocessing (including random extraction, down-
sampling, and quantization), the possibility that the
LLMs had previously encountered identical and
long numerical sequences in their training datasets
can be exceedingly low.

8 Ethics Statement

Labor Considerations. In constructing the dataset
for activity sensing, authors and 7 volunteers en-
gaged in tasks such as data collection and storage.
Volunteers acknowledge the usage of data and col-
lected sensor data are anonymous. The dataset in-
cludes human annotations that are fact-based, such
as identifying whether the subject is indoors or
outdoors during data collection. Thus, the sensor
dataset maintains an objective and unbiased per-
spective.

Misues Potential. In our experiments with ac-
tivity sensing, some LLMs demonstrated the ca-
pability to infer user activities from sensor data
collected by smartphones. There exists a potential
risk of future misuse, such as unauthorized tracking
of users’ location context information with satel-
lite and WiFi signals as demonstrated in the first
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application. Although accessing those signals re-
quires location permission from users in the higher
versions of Android (Developers, 2023c,e), we em-
phasize the necessity for responsible application of
these technologies, with a strong commitment to
protecting individual privacy and preventing ma-
licious uses. Additionally, while applying LLMs
such as ChatGPT-4 for heart rate detection holds
promise, it necessitates further experimentation and
studies to validate its effectiveness and reliability.
Continued research in this area is crucial to ensure
that LLMs can be confidently used for medical data
analysis.
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A Complete Prompt

A.0.1 Activity Sensing
In table 1, we evaluate three prompt schemes for ac-
tivity sensing: (1) plain prompt, (2) prompt with ex-
pert knowledge, and (3) prompt with expert knowl-
edge and one reasoning example, which are shown
in Figure 7 to Figure 9, respectively. All prompts
include the objective, response format, and query
sensor data. The response format is adopted to
constrain the output of LLMs. We highlight place-
holders for sensor data in blue and their detailed
information is as follows:

• $DATA_STEP$ represents the step count de-
rived from the step counter algorithms.

• $DATA_SATELLITE_COUNT$ indicates the
satellite count.

• $DATA_SATELLITE_SNR$ is the average SNR
of satellite signals.

• $DATA_WIFI_COUNT$ denotes the count of
WiFi APs with an RSSI above -70.

• $DATA_WIFI_LIST$ indicates the SSID list of
WiFi APs with RSSI over -70.

All placeholders are replaced with actual sen-
sor data for new inference. For instance,
"$DATA_STEP$" might be replaced by "5.2", result-
ing in the complete phrase "Step count: 5.2/min."

A.0.2 Heart Rate Detection
Figure 10 to Figure 12 present the prompt templates
to LLMs for the R-peak detection task. Similarly,
each prompt template incorporates a response for-
mat and a placeholder for ECG digits. Notably, a
special sentence - "Do not write codes" is inserted
in the prompt to prevent LMs from generating code
as a solution. Figure 13 demonstrates an example
of query ECG data, which can be used to replace
the placeholder in the prompt templates and get the
complete prompt.

Figure 14 presents the prompt template with de-
scriptions of R-peak for heart rate detection with
images, while Figure 15 displays prompt templates
incorporating a description or a reasoning example.
Since the digited ECG data are input as figures, we
omit the textual placeholder. In practice, we may
input multiple figures into VLMs, including a query
figure and reference images for reasoning exam-
ples. Figure 16 showcases examples of ECG data
figures, formatted in PNG and sized at 2000× 500.

7335



Objective:
Determine a user’s activity by analyzing sensor data from their smartphone.

Response Format:
Reasoning: Provide a comprehensive analysis of the sensor data.
Summary: Conclude with a brief summary of your findings.
Motion: choose one from either ’stationary’ or ’walking’.
Environment: choose one from either ’indoors’ or ’outdoors’.

Now infer a user’s motion and surrounding conditions with the following sensor data:
Sensor data:
1. Step count: $DATA_STEP$/min.
2. Satellites detected: $DATA_SATELLITE_COUNT$. Carrier-to-noise: $DATA_SATELLITE_SNR$dB.
3. Total WiFi APs scanned: $DATA_WIFI_COUNT$. SSID list: $DATA_WIFI_LIST$.
Reasoning:
Summary:
Motion:
Environment:

Figure 7: Prompt template (plain) for activity sensing.

Objective:
Determine a user’s activity by analyzing sensor data from their smartphone.

Sensor Data and Expert Knowledge:
You will receive data from various sensors, including the accelerometer, satellite, and WiFi. Here’s how to interpret this
data:
1. Step Count per Minute:
Source: Accelerometer (measures user’s movement).
Interpretation: A high count signifies walking; a low count indicates the user is likely stationary.
2. Satellite Data:
Data: Number of satellites detected and average carrier-to-noise density (in dB).
Interpretation: High satellite count and carrier-to-noise density indicates an outdoor setting with strong satellite signals.
3. WiFi Data:
Data: Total count of WiFi Access Points (APs) detected and the list of their SSID.
Interpretation: A large total count of detected APs implies that the user is likely in close proximity to or inside a building,
given the prevalence of WiFi in modern buildings. Scanned APs indicate user’s proximity to them, and their SSIDs can
hint at specific locations. So analyze each SSID. For example, an SSID named ’Starbucks’ suggests the user is close to a
Starbucks. Note: Some SSIDs may be not meaningful.

Response Format:
Reasoning: Provide a comprehensive analysis of the sensor data.
Summary: Conclude with a brief summary of your findings.
Motion: choose one from either ’stationary’ or ’walking’.
Environment: choose one from either ’indoors’ or ’outdoors’.

Now infer a user’s motion and surrounding conditions with the following sensor data:
Sensor data:
1. Step count: $DATA_STEP$/min.
2. Satellites detected: $DATA_SATELLITE_COUNT$. Carrier-to-noise: $DATA_SATELLITE_SNR$dB.
3. Total WiFi APs scanned: $DATA_WIFI_COUNT$. SSID list: $DATA_WIFI_LIST$.
Reasoning:
Summary:
Motion:
Environment:

Figure 8: Prompt template (with expert knowledge) for activity sensing.
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Objective:
Determine a user’s activity by analyzing sensor data from their smartphone.

Sensor Data and Expert Knowledge:
You will receive data from various sensors, including the accelerometer, satellite, and WiFi. Here’s how to interpret this
data:
1. Step Count per Minute:
Source: Accelerometer (measures user’s movement).
Interpretation: A high count signifies walking; a low count indicates the user is likely stationary.
2. Satellite Data:
Data: Number of satellites detected and average carrier-to-noise density (in dB).
Interpretation: High satellite count and carrier-to-noise density indicates an outdoor setting with strong satellite signals.
3. WiFi Data:
Data: Total count of WiFi Access Points (APs) detected and the list of their SSID.
Interpretation: A large total count of detected APs implies that the user is likely in close proximity to or inside a building,
given the prevalence of WiFi in modern buildings. Scanned APs indicate user’s proximity to them, and their SSIDs can
hint at specific locations. So analyze each SSID. For example, an SSID named ’Starbucks’ suggests the user is close to a
Starbucks. Note: Some SSIDs may be not meaningful.

Response Format:
Reasoning: Provide a comprehensive analysis of the sensor data.
Summary: Conclude with a brief summary of your findings.
Motion: choose one from either ’stationary’ or ’walking’.
Environment: choose one from either ’indoors’ or ’outdoors’.

Reasoning Example:
Sensor Data:
1. Step count: 5/min.
2. Satellites detected: 16. Carrier-to-noise: 35.46dB.
3. Total WiFi APs scanned: 6. SSID list: [’McDonald’s Singapore’, ’xiaomi_5G’, ’McDonald’s Singapore’,
’Android_xx123’, ’OPPO 196’, ’link-B33’].
Reasoning:
1. The low step count indicates the user is stationary.
2. A high number of detected satellites and high carrier-to-noise suggest an outdoor environment.
3. WiFi data shows some WiFi Access Points (APs) detected, with SSIDs like ’McDonald’s Singapore’ hinting at a
location close to McDonald restaurant in Singapore.
Summary: The user is stationary, likely in an outdoor area near a McDonald restaurant in Singapore.
Motion: stationary.
Environment: indoors.

Now infer a user’s motion and surrounding conditions with the following sensor data:
Sensor data:
1. Step count: $DATA_STEP$/min.
2. Satellites detected: $DATA_SATELLITE_COUNT$. Carrier-to-noise: $DATA_SATELLITE_SNR$dB.
3. Total WiFi APs scanned: $DATA_WIFI_COUNT$. SSID list: $DATA_WIFI_LIST$.
Reasoning:
Summary:
Motion:
Environment:

Figure 9: Prompt template (with expert knowledge) for activity sensing.
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Objective:
Find the R-peaks in an ECG waveform.

Background Knowledge:
The QRS complex, a recurring feature in ECG data, signifies the ventricles’ consistent depolarization in the heart. It com-
prises the Q, R, and S waves, where the Q wave shows a downward deflection, followed by an upward-moving R wave, and
then the S wave, which deflects downward after the R wave. The maximum amplitude of the R wave is known as the R-peak.

Response Format:
Your response should strictly adhere to the format detailed below:
Reasoning: Provide a reasoned explanation based on the information mentioned above about how the R-peaks were
identified.
R-peaks: List the identified R-peak values in the format [R1, R2, R3], including duplicates as separate entries.

Please identify the R-peaks in the provided ECG data. Do not write codes.
ECG data: $DATA$

Figure 10: Prompt template (with descriptions) for R-peak detection.

Objective:
Find the R-peaks in an ECG waveform.

Background Knowledge:
An R-peak within a sequence of ECG numbers refers to a pronounced upward deflection, typically representing the largest
and most conspicuous values within the sequence. To identify R-peaks, follow these steps:

1. Initial Observation: Begin by observing the rough overall range of ECG numbers in the provided data.

2. Identify Subsequences: Find subsequences of numbers that meet the following criteria:
2.1. The initial numbers are in the lower part of the overall range, even smaller than the range.
2.2. Subsequent numbers exhibit a significant increase, even exceeding the overall range.
2.3. Following the increase, subsequent numbers quickly return to the lower part of the overall range.

3. Select R-Peaks: After identifying these subsequences, select the largest number from each subsequence as an R-peak.

Response Format:
Your response should strictly adhere to the format detailed below:
Reasoning: Provide a reasoned explanation based on the information mentioned above about how the R-peaks were
identified.
R-peaks: List the identified R-peak values in the format [R1, R2, R3], including duplicates as separate entries.

Please identify the R-peaks in the provided ECG data. Do not write codes.
ECG data: $DATA$

Figure 11: Prompt template (with a procedure) for R-peak detection.
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Objective:
Find the R-peaks in an ECG waveform.

Background Knowledge:
An R-peak within a sequence of ECG numbers refers to a pronounced upward deflection, typically representing the largest
and most conspicuous values within the sequence. To identify R-peaks, follow these steps:

1. Initial Observation: Begin by observing the rough overall range of ECG numbers in the provided data.

2. Identify Subsequences: Find subsequences of numbers that meet the following criteria:
2.1. The initial numbers are in the lower part of the overall range, even smaller than the range.
2.2. Subsequent numbers exhibit a significant increase, even exceeding the overall range.
2.3. Following the increase, subsequent numbers quickly return to the lower part of the overall range.

3. Select R-Peaks: After identifying these subsequences, select the largest number from each subsequence as an R-peak.

Response Format:
Your response should strictly adhere to the format detailed below:
Reasoning: Provide a reasoned explanation based on the information mentioned above about how the R-peaks were
identified.
R-peaks: List the identified R-peak values in the format [R1, R2, R3], including duplicates as separate entries.

Reasoning Example:
ECG data: [978, 972, 976, 972, 974, 968, 969, 966, 968, 963, 966, 962, 963, 963, 966, 963, 966, 971, 977, 981, 986, 977,
979, 972, 960, 957, 955, 956, 956, 952, 925, 967, 1181, 1000, 926, 955, 940, 942, 940, 946, 940, 942, 939, 941, 942, 943,
944, 941, 935, 936, 934, 931, 936, 942, 952, 963, 965, 967, 968, 964, 965, 964, 963, 959, 960, 960, 962, 961, 961, 957,
962, 961, 965, 960, 973, 978, 987, 983, 983, 980, 970, 960, 963, 957, 964, 953, 957, 915, 1089, 1183, 939, 959, 946, 956,
947, 955, 947, 951, 948, 955, 949, 954, 949, 952, 948, 946, 942, 946, 952, 962, 972, 978, 978, 981, 979, 976, 975, 977,
974, 974, 970, 967, 970, 969, 968, 969, 971, 970, 971, 969, 977, 984, 991, 986, 984, 988, 974, 965, 965, 959, 965, 962,
956, 919, 1088, 1208, 955, 960, 953, 958, 950, 954, 949, 955, 950, 954, 950, 950, 948, 952, 948, 950, 946, 950, 947, 952,
958, 968, 970, 975, 975, 975, 974, 971, 969, 970, 966, 964, 961, 962, 962, 963, 962, 961, 962, 962, 962, 963, 975, 979,
983, 975, 980, 975, 960, 956, 957, 949, 954, 949, 939, 913, 1105, 1154, 925, 956, 938, 949, 937, 948, 938, 947, 939, 944,
938, 941, 938, 944, 939, 943, 938, 940, 933, 939, 938, 952, 954, 960, 957, 959, 960, 959, 954, 954, 950, 950, 947, 948,
943, 943, 940, 946, 944, 943, 944, 950, 954, 963, 959, 959, 958, 943, 935, 938, 934, 935, 934, 929, 898, 976, 1166, 972,
909, 934, 920, 930, 923, 928, 923, 925, 919, 925, 922, 926, 923, 926, 919, 923, 913, 918, 912, 919, 921, 936, 941, 953,
951, 954, 949, 954, 950, 955, 951, 956, 946, 950, 947, 955, 949, 955, 949, 957, 953, 959, 959, 972, 971, 979, 968, 980,
972, 963, 947, 958, 947, 959, 944, 936, 932, 1183, 1101, 915, 961, 938, 954, 943, 952, 943, 947, 943, 948, 945, 947, 943,
946, 946, 946, 944, 943, 941, 944, 948, 959, 969, 973, 977, 981, 979, 976, 979, 979, 977, 974, 974, 971, 974, 971, 973,
969, 970]
Reasoning:
Following the three steps by:
1. Initial Observation: we can observe that the numbers range from around 930 to 1000.
2. Identify Subsequences: we can identify several subsequences that start with numbers in the lower part of the range,
significantly increase to exceed the range, and then return to the range:
- [925, 967, 1181, 1000, 926]
- [915, 1089, 1183, 939]
- [919, 1088, 1208, 955]
- [913, 1105, 1154, 925]
- [898, 976, 1166, 972, 909]
- [932, 1183, 1101, 915]
3. Select R-Peaks: The largest number from those subsequences are [1181, 1183, 1208, 1154, 1166, 1183].
R-peaks: [1181, 1183, 1208, 1154, 1166, 1183].

Please identify the R-peaks in the provided ECG data. Do not write codes.
ECG data: $DATA$

Figure 12: Prompt template (with a procedure and a reasoning example) for R-peak detection.
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[968, 977, 981, 992, 985, 996, 985, 971, 959, 964, 956, 964, 950, 948, 918, 1143, 1164, 928, 965, 941, 956, 948, 958, 946,
955, 948, 952, 950, 953, 949, 953, 949, 952, 948, 951, 951, 957, 966, 976, 977, 977, 977, 979, 977, 975, 974, 972, 971,
970, 972, 968, 968, 966, 968, 969, 972, 971, 983, 987, 998, 992, 999, 996, 983, 968, 968, 959, 968, 956, 952, 915, 1118,
1160, 930, 967, 946, 962, 949, 961, 951, 958, 948, 958, 950, 956, 950, 957, 952, 952, 947, 949, 948, 955, 960, 971, 972,
978, 975, 978, 973, 971, 970, 970, 965, 968, 964, 963, 962, 964, 962, 966, 965, 962, 962, 971, 977, 984, 987, 986, 985,
986, 977, 959, 960, 951, 957, 949, 935, 935, 1175, 1056, 913, 962, 933, 954, 937, 950, 937, 949, 937, 947, 938, 947, 940,
947, 935, 939, 931, 937, 934, 949, 955, 967, 967, 977, 970, 977, 969, 975, 968, 974, 965, 967, 962, 968, 962, 969, 963,
969, 962, 972, 974, 986, 985, 995, 982, 997, 983, 971, 958, 964, 955, 964, 937, 924, 1004, 1231, 1037, 931, 961, 942, 952,
944, 951, 947, 948, 948, 950, 949, 949, 948, 949, 948, 947, 947, 945, 950, 953, 964, 971, 977, 975, 979, 975, 977, 975,
976, 969, 971, 966, 969, 966, 969, 962, 966, 962, 967, 963, 968, 970, 982, 982, 995, 988, 996, 991, 976, 962, 969, 958,
967, 954, 946, 935, 1179, 1119, 926, 971, 947, 961, 947, 960, 950, 957, 952, 958, 952, 956, 952, 956, 954, 956, 951, 954,
950, 956, 958, 969, 976, 983, 982, 985, 982, 984, 981, 981, 982, 979, 979, 978, 974, 975, 972, 974, 976, 976, 975, 975,
977, 977, 985, 989, 992, 1000, 998, 1000, 998, 981, 974, 971, 971, 965, 965, 956, 927, 1036, 1222, 1029, 924, 954, 953,
955, 953, 955, 954, 956, 953, 955, 954, 955, 957, 956, 952, 953, 950, 951, 945, 943, 949, 960, 970, 976, 979, 979, 979,
977, 977, 975, 974, 971, 969, 972, 971, 967, 968, 968, 968, 968, 966, 964, 966, 968, 969, 977, 981, 986, 988, 987, 991,
970]

Figure 13: Example query ECG data for R-peak detection.

Objective:
Find R-peaks in an ECG waveform.

Background Knowledge:
The QRS complex, a recurring feature in ECG data, signifies the ventricles’ consistent depolarization in the heart. It
comprises the Q, R, and S waves, where the Q wave shows a downward deflection, followed by an upward-moving R
wave, and then the S wave, which deflects downward after the R wave. The maximum amplitude of the R wave is known
as the R-peak.
Response Format:
Your response should strictly adhere to the format detailed below:
Reasoning: Provide a reasoned explanation based on the information mentioned above about how the R-peaks were
identified.
R-peaks: List the approximate indices of identified R-peak in the format [R1, R2, R3], including duplicates as separate
entries.

You should utilize the procedures described above, count R-peaks in the second image. In this task, the use of coding for
identification or counting of R-peaks is not permitted.

Figure 14: Vison prompt template (with a procedure and a reasoning example) for R-peak detection.

7340



Objective:
Find R-peaks in an ECG waveform.

Background Knowledge:
An R-peak within a sequence of ECG numbers refers to a pronounced upward deflection, typically representing the largest
and most conspicuous values within the sequence. To identify R-peaks, follow these procedures:
1.Identification of R-wave Spikes: Initially, identify the distinct sharp spikes in the ECG waveform that signify the R
waves.
2.Vertex Determination and Coordinate Extraction: Subsequently, determine the vertices of these identified spikes. Then
Extract the x-axis coordinates of these vertices.

Response Format:
Your response should strictly adhere to the format detailed below:
Reasoning: Provide a reasoned explanation based on the information mentioned above about how the R-peaks were
identified.
R-peaks: List the approximate indices of identified R-peak in the format [R1, R2, R3], including duplicates as separate
entries.

Reasoning Example:
For the first provided image, following the steps by:
1. There are six sharp spikes in total.
2. The coordinates are approximately [32,89,145,203,260,320].

You should utilize the procedures described above, count R-peaks in the second image. In this task, the use of coding for
identification or counting of R-peaks is not permitted.

Figure 15: Vison prompt template (with a procedure and a reasoning example) for R-peak detection.

(a) Reference figure for reasoning example.

(b) Query figure.

Figure 16: ECG Figure examples for VLMs.
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