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Abstract
In-context learning is a popular inference strat-
egy where large language models solve a task
using only a few labeled demonstrations with-
out needing any parameter updates. Although
there have been extensive studies on English in-
context learning, multilingual in-context learn-
ing remains under-explored, and we lack an
in-depth understanding of the role of demon-
strations in this context. To address this gap,
we conduct a multidimensional analysis of
multilingual in-context learning, experimenting
with 5 models from different model families,
9 datasets covering classification and gener-
ation tasks, and 56 typologically diverse lan-
guages. Our results reveal that the effectiveness
of demonstrations varies significantly across
models, tasks, and languages. We also find that
strong instruction-following models including
Llama 2-Chat, GPT-3.5, and GPT-4 are largely
insensitive to the quality of demonstrations. In-
stead, a carefully crafted template often elimi-
nates the benefits of demonstrations for some
tasks and languages altogether. These findings
show that the importance of demonstrations
might be overestimated. Our work highlights
the need for granular evaluation across mul-
tiple axes towards a better understanding of
in-context learning.1

1 Introduction

An intriguing property of large language models
(LLMs) is their ability to perform in-context learn-
ing (Brown et al., 2020), i.e., solve a task condi-
tioned on a few demonstrations at inference time,
without updating the model parameters. It has
been shown to be an efficient alternative to fine-
tuning when adapting models to diverse tasks and
domains (Dong et al., 2022; Min et al., 2022b; Si
et al., 2023, inter alia). In light of the success of in-
context learning, there has been increased interest

∗Corresponding author.
1We release our code publicly at https://github.com/

uds-lsv/multilingual-icl-analysis.

in better understanding the factors that influence
its success, such as demonstration selection (Liu
et al., 2022; Rubin et al., 2022; Wang et al., 2023c),
prompt design (Min et al., 2022a; Wei et al., 2022),
and more generally on understanding how and why
in-context learning works (Xie et al., 2022; Bansal
et al., 2023; Hendel et al., 2023; Pan et al., 2023;
Wang et al., 2023b).

However, most recent work on in-context learn-
ing predominantly focuses on English, and the ex-
ploration of multilingual in-context learning gen-
erally lags behind. This is problematic, as results
that apply to English might not hold for other lan-
guages, especially those that are less represented
in LLM training data. While there have been
a few studies on in-context learning that go be-
yond English, they either focus on benchmarking
LLMs on multilingual tasks without in-depth ex-
ploration, e.g., MEGA (Ahuja et al., 2023) and
BUFFET (Asai et al., 2023), or zoom in on specific
capabilities such as mathematical reasoning (Shi
et al., 2023b), machine translation (Zhu et al., 2023;
Agrawal et al., 2023), or code-switching (Zhang
et al., 2023).

In this work, we take a multidimensional ap-
proach (Ruder et al., 2022) that unifies these strands
of research and comprehensively evaluate the mul-
tilingual in-context learning abilities of LLMs. We
focus on dissecting the actual impact of in-context
demonstrations, which is crucial for understanding
model behaviour. Our research covers various mod-
els, tasks, and languages, and we seek to answer
the following research questions:

1. Does multilingual performance benefit from
demonstrations? (§4)

2. Does demonstration quality matter? (§5)
3. What is the interplay between demonstrations

and templates? (§6)
4. How do the answers to these questions vary

across languages and models? (§4, §5, §6)
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Zero-shot learning

In-context learning

 You are an NLP assistant for sentiment analysis in Chinese. Give your answer as  
  "positive", "negative" or "neutral". 
   Demonstration(s):  今天是让⼈放松的⼀天。What is the sentiment of this statement? 
   Answer: positive 
   Test Input:  我喜欢的队伍赢了这场⽐赛。What is the sentiment of this statement?    
 Answer:

Classification task

  You are an NLP assistant for question answering in English.  The answer should be 
  directly extracted from the passage.     
  Demonstration(s): [passage] Q: What team was the winner of Super Bowl XXXIII?  
  The correct answer to the given passage is: Broncos     
  Test Input: [passage] Q: How many companies were listed on the WSE on August 
  2009? The correct answer to the given passage is: 

Generation task

You are an NLP assistant for question answering in German.  The answer should 
   be directly extracted from the passage.       
  Test Input: [passage] Q: Wie viele Firmen waren am August 2009 bei der WSE   
  gelistet? The correct answer to the given passage is: 

Generation task

positive

374

Es waren 374 
Firmen gelistet.

LLM

Figure 1: An overview of the components of multilingual in-context learning (§2) with a comparison to zero-shot
learning. Sources of variation include tasks, languages, models, and the template, i.e., the task instruction, patterns
for formatting inputs, and verbalized labels.

Specifically, we address our research questions by
evaluating 5 LLMs including base models that are
only pre-trained on unlabeled text corpora (XGLM
and Llama 2), and chat models that are further
refined with instruction tuning and reinforcement
learning (Llama 2-Chat, GPT-3.5, and GPT-4). We
evaluate on 9 multilingual datasets that include
both classification and generation tasks, covering
56 typologically different languages.

Our main findings are: (1) The effectiveness
of demonstrations varies widely depending on the
model, task, and language used. For base mod-
els, in-context learning barely outperforms zero-
shot learning on many tasks. In general, in-context
learning matters more for generation tasks with
loosely-specified prompts; (2) Even with sophisti-
cated demonstration selection methods, in-context
learning is not always beneficial and can some-
times be worse than using no demonstrations at
all; (3) Chat models are less sensitive to seeing
correctly-labeled demonstrations than base models,
suggesting that for the former, demonstrations pri-
marily help the model understand the task format,
while for the latter, demonstrations also impart task-
specific knowledge; (4) Using a formatting-focused
template can even eliminate the need for demonstra-
tions with chat models. The relative significance
of demonstrations versus prompt templates varies
based on inherent model capabilities.

In sum, we suggest that the benefits of adding
demonstrations may be overestimated. Future work
on in-context learning should carefully compare
their results with zero-shot learning and on multiple

templates to faithfully represent its effectiveness.
Given the vast variance across models, tasks, and
languages, it is also important to cautiously frame
claims about in-context learning.

2 Preliminaries

2.1 In-context learning
In-context learning (ICL) is a popular inference
strategy where models solve2 a task without any
parameter updates (Brown et al., 2020). Instead,
the model performs the task by conditioning on
labeled demonstrations. Demonstrations are typi-
cally formatted using “pattern-verbalizer pairs,” as
this has been shown to be effective in eliciting good
task performance (Schick and Schütze, 2021; Bach
et al., 2022). Here, a pattern is used to format
the input for the model, and a verbalizer maps the
label to a textual representation. Additionally for
instruction-tuned LLMs, a task instruction is of-
ten added to provide information about the task
beyond individual demonstrations (Mishra et al.,
2022b; Wang et al., 2022; Ouyang et al., 2022).

Formally, given a test sample xt, k demonstra-
tions {(xi, yi)}ki=1, a pattern P , a verbalizer V and
a task instruction I, the model (parameterized by
θ) makes its prediction as follows:

yt ∼ pθ(y|I, {(P(xi),V(yi))}ki=1,P(xt)). (1)
2The extent to which models actually “solve” tasks is an

open question as ICL, similar to fine-tuning, has generalization
issues despite its impressive results (Mosbach et al., 2023).
Regardless, we use the word “solve” in the rest of this paper
for simplicity.
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Taken together, the pattern, the verbalizer and the
optional task instruction comprise the template
with which demonstrations and the test sample are
formatted as the input prompt for model inference.
The effectiveness of demonstrations is thus linked
with the template used to present them to the model.

2.2 Multilingual prompting
Previous studies highlight that the selection of
demonstrations and prompt templates can signif-
icantly influence model performance (Liu et al.,
2022; Fu et al., 2023b; Sclar et al., 2024). In mul-
tilingual in-context learning, the variation in input
prompts is further complicated by the language of
demonstrations, templates and test samples, all of
which are important design choices.

For the template language, Lin et al. (2022) and
Ahuja et al. (2023) found that English templates
generally perform better than native language
templates, possibly due to superior instruction-
following abilities on existing LLMs on English
compared to other languages. Following this, we
use English templates in our study.

For the language of few-shot demonstrations
and test samples, there are three popular settings.
Given a test sample in a certain language, the most
straightforward approach is to use demonstrations
in the same language (referred to as in-language
demonstrations). This setting directly measures
the model’s inherent ability to solve problems in
that language. Another choice is to use English
demonstrations regardless of the language of the
test sample. This is a cross-lingual transfer setup,
where the goal is to transfer knowledge from a
pivot language to a target language via in-context
learning. As highlighted in Shi et al. (2023b) and
Ahuja et al. (2023), in-language demonstrations of-
ten outperform English demonstrations on diverse
multilingual tasks. Yet another option is to translate
the test sample into English – an approach called
translate-test, where the demonstrations are also in
English. While translate-test leads to strong perfor-
mance (Ahuja et al., 2023), this approach heavily
relies on a translation system for data processing
and centers the English proficiency of LLMs. In
this work, we are interested in dissecting the intrin-
sic multilingual capabilities of LLMs, therefore we
choose to use in-language demonstrations.

All these design choices are represented visually
in Figure 1, which gives an overview of multilin-
gual in-context learning. Detailed setup informa-
tion is provided in the next section.

3 Experimental setup

Models. We evaluate two types of LLMs: pre-
trained base models and chat models. Our base
models include XGLM (Lin et al., 2022) and
Llama 2 (Touvron et al., 2023). Our chat mod-
els are Llama 2-Chat, GPT-3.5 (Ouyang et al.,
2022) and GPT-4 (OpenAI et al., 2023). Specif-
ically, we use xglm-7.5B, Llama-2-13b, and
Llama-2-13b-chat on Huggingface (Wolf et al.,
2020), and we access gpt-3.5-turbo-16k and
gpt-4-32k APIs via Microsoft Azure.3

Tasks and datasets. We experiment on a di-
verse range of multilingual classification and gen-
eration tasks, using 9 datasets covering 56 lan-
guages in total. Our dataset selection largely fol-
lows MEGA (Ahuja et al., 2023), but we add
datasets for extremely under-represented African
languages. Our classification tasks include natu-
ral language inference (NLI), paraphrase identi-
fication, commonsense reasoning and sentiment
analysis, with the following datasets: XNLI (Con-
neau et al., 2018), IndicXNLI (Aggarwal et al.,
2022), PAWS-X (Yang et al., 2019), XCOPA (Ponti
et al., 2020), XStoryCloze (Lin et al., 2022) and
AfriSenti (Muhammad et al., 2023). Our gen-
eration tasks are extractive question answering
(QA) and machine translation (MT), for which
we use XQuAD (Artetxe et al., 2020), TyDiQA-
GoldP (Clark et al., 2020), and MAFAND (Adelani
et al., 2022). See Appendix A.1 for more details.

In-context learning. For each test sample, we
select k ∈ {0, 2, 4, 8}4 different demonstrations,
which are randomly sampled unless otherwise spec-
ified. All demonstrations are in the same language
as the test sample, and all templates are in English.
We employ appropriate task-specific templates for
different model types. All templates and data splits
are shown in Appendix A.2.

Metrics. For classification tasks, we report the
rank classification accuracy5 for open-source base
models (Muennighoff et al., 2023; Lin et al., 2022).

3We also experiment with BLOOMZ and mT0 (Muen-
nighoff et al., 2023). Results in Appendix B.1 show that
their zero-shot performance significantly surpasses few-shot
performance, which we ascribe to their training scheme.

4For QA datasets, we select a maximum of 4 demonstra-
tions due to context size limitations.

5The scoring function is the average of per-token log prob-
abilities (ignoring the common prefix of different candidates).
The candidate with the highest score is chosen as the predic-
tion.
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Figure 2: Average performance across languages with different numbers of demonstrations. We average and report
standard deviations over 3 seeds for all models except GPT-4. Note that the standard deviations are relatively
small, possibly because of averaging over languages. en-xx: translating from English to another language, xx-en:
translating from another language to English.

For chat models, we measure the exact match
between generated outputs6 and verbalized la-
bels (Ahuja et al., 2023). As for generation tasks,
we use the F1 score for QA datasets and ChrF++
score (Popović, 2017) for MAFAND. Implemen-
tation details for our evaluation are provided in
Appendix A.3.

4 Do (more) demonstrations benefit
multilingual performance?

In this section, we systematically compare ICL
and zero-shot learning as this question is under-
explored in previous studies of multilingual
ICL (Ahuja et al., 2023; Asai et al., 2023). We ex-
amine model performance on diverse multilingual
tasks while varying the number of demonstrations,
and show the results for classification tasks and
generation tasks in Figure 2.

We begin with the overall trends across models
and datasets. OpenAI’s GPT-3.5 and GPT-4 models
achieve the best multilingual in-context learning
performance on all our datasets, which is unsurpris-
ing as they are currently the state-of-the-art on a
large suite of NLP benchmarks. The next best mod-
els are Llama 2 and Llama 2-Chat, which demon-
strate comparable or superior performance to the
multilingual XGLM model despite being trained
primarily on English corpora (Touvron et al.,
2023). This indicates that their task-solving abil-
ities can transfer across languages. Regardless of
the model, however, performance on the AfriSenti

6We extract verbalized labels from the generated outputs
using regular expressions before calculating the exact match.
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Figure 3: Performance difference between 4-shot and
0-shot. Each marker represents the average performance
across models for each language in a given task. MT
denotes the MAFAND dataset.

and MAFAND datasets, particularly when translat-
ing English to African languages, lags significantly
behind other tasks, showing that language discrep-
ancies remain even in the best models.

An important pattern across datasets and models
is that in-context learning does not always im-
prove over zero-shot learning – in particular, it
helps with generation tasks, but results on classifi-
cation tasks are mixed. For the AfriSenti dataset,
many models show noticeable improvements with
ICL. However, with other tasks such as IndicXNLI,
XNLI and PAWS-X, the same models, especially
base models, perform much worse compared to
the zero-shot setting. We also see marginal im-
provements in some cases, e.g., XGLM and Llama
2 on XCOPA. In comparison to chat models, the
addition of demonstrations typically reduces the
performance of base models across many tasks.
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Model XNLI IndicXNLI PAWS-X XCOPA XStoryCloze AfriSenti XQuAD TyDiQA MT (en-xx) MT (xx-en)

XGLM 4.59 2.49 0.24▽ 0.03 0.97▽ 5.62 1.77 4.21 1.31 0.66
Llama 2 6.61 4.17 2.35 −0.11 0.33 4.17 1.32 0.54 2.15 1.35

Llama 2-Chat −0.28 −1.36 −1.71▽ 0.32 0.43 2.17 1.02 2.42 0.74 0.66
GPT-3.5 0.18 0.71 −2.07 0.86 −0.61 −0.66▽ −0.34 2.98 0.72 0.43
GPT-4 0.76 −0.19 0.07 −0.36 0.05 −0.68 −0.77 1.88 1.21 0.65

Table 1: Performance difference of 4-shot ICL with TOP-K vs. RANDOM selection. Positive numbers show that
TOP-K is better than RANDOM (expected), and highlighted cells show where top-k is even worse than random
selection. ▽: TOP-K performance is even worse than zero-shot learning. For RANDOM, we average over 3 seeds
(except for GPT-4).

Model XNLI IndicXNLI PAWS-X XCOPA XStoryCloze AfriSenti XQuAD TyDiQA MT (en-xx) MT (xx-en)

XGLM 0.46 −0.05 0.44 0.51 0.62∗ 3.78∗ 24.56∗ 26.64∗ 3.18∗ 6.73∗

Llama 2 0.96∗ 0.43 1.16 0.61∗ 1.12∗ 2.27∗ 26.68∗ 29.20∗ 4.79∗ 8.34∗

Llama 2-Chat −0.34 0.04 1.48 0.03 −0.23 0.77∗ 5.94∗ 4.37∗ 1.13∗ 1.53∗

GPT-3.5 0.39 1.02 0.64 0.26 0.58∗ −0.62 5.46∗ 5.61∗ 1.39∗ 0.48∗

GPT-4 −0.86 −0.04 0.57 0.86 1.13 0.90 9.60 6.97 1.24 0.64

Table 2: Performance difference of 4-shot ICL with RANDOM vs. RANDOM-CORRUPTED demonstrations. Positive
numbers show that RANDOM is better than RANDOM-CORRUPTED (expected), and highlighted cells show where
corrupted labels perform even better than ground-truth labels. We average over 3 seeds (except for GPT-4). ∗: a
significant difference (p = 0.05).
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Figure 4: Performance difference between 4-shot and
0-shot for individual languages in PAWS-X. Error bars
represent standard deviations calculated over 3 seeds.

When examining the cases where ICL improves
performance, we see that improvements saturate
quickly with 2 to 4 demonstrations. This aligns
with Chen et al. (2023), who found that reducing
the number of demonstrations to one does not sig-
nificantly deteriorate chain-of-thought reasoning.

Looking at the improvements over zero-shot per-
formance (for all models and languages combined)
across tasks in Figure 3, we observe that there
are large fluctuations between individual languages
that are not captured by the average. The PAWS-X
dataset in particular shows an average degradation,
but in fact some languages benefit from ICL while
others degrade. For a more nuanced understand-
ing of language-specific differences within a task,
we zoom into this dataset in Figure 4 to inspect
these language-specific differences.7 We see that

7Plots for other datasets are provided in Appendix B.2.

languages and models can behave very differently
even on just one dataset, and a pattern which holds
for one language with one model does not necessar-
ily apply to a different language. For example, the
ICL performance of Llama 2 outperforms its zero-
shot performance by 2.3 points on Japanese and
1.3 points on Korean. However, demonstrations
degrade performance for other languages, e.g., En-
glish performance degrades by 10.3 points. In sum,
the effectiveness of demonstrations varies widely
depending on the model, task, and language.

5 Does demonstration quality matter?

Our previous experiments evaluated ICL using ran-
domly selected demonstrations. To ablate for the
effects of demonstration quality, this section exper-
iments with the choice of demonstrations as well as
the importance of ground truth labels, i.e., the input-
label mapping. Inspired by work on demonstration
selection (Liu et al., 2022; Rubin et al., 2022) and
input-label mapping (Min et al., 2022c; Yoo et al.,
2022) in English, we compare the following three
types of demonstrations:

• RANDOM: demonstrations are randomly se-
lected from clean data

• TOP-K: the k most semantically similar8 ex-
amples to a given test sample are selected (Liu

8We quantify semantic similarity using LaBSE (Feng et al.,
2022), a multilingual sentence embedding model trained on
109+ languages.
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Figure 5: Performance of 4-shot ICL using different types of demonstrations for individual languages on AfriSenti
and XQuAD. The top row shows Llama 2 results, and the bottom row shows GPT-3.5 results.

et al., 2022)

• RANDOM-CORRUPTED: demonstrations are
randomly selected but the labels are corrupted
by replacement with random labels9 (Min
et al., 2022c)

Table 1 shows that top-k selection performs bet-
ter than random selection in many cases, especially
for the base models XGLM and Llama 2. For chat
models, the largest improvements are on generation
tasks. For example, GPT-3.5 achieves a 2.98-point
improvement on TyDiQA. Nevertheless, top-k se-
lection often degrades performance on many other
tasks, e.g., GPT-3.5 is 2.07 points worse on PAWS-
X compared to random selection. When compared
to zero-shot performance, ICL with top-k selection
is even worse in some cases, such as XGLM on
PAWS-X and XStoryCloze. In cases where ran-
dom selection performs worse than zero-shot, even
top-k selection gives only marginal improvements
(see detailed numbers in Table 5 in Appendix C.1).
These findings indicate that sophisticated demon-
stration selection methods are not always bene-
ficial and can sometimes be worse than using no
demonstrations at all.

Exploring this further, in Table 2, we compare
randomly selected demonstrations with ground
truth labels and corrupted labels. We find that us-
ing corrupted labels does not hurt performance on
multilingual classification tasks much, which is
consistent with previous research on English (Min

9For classification tasks, we randomly choose a label from
the fixed label set. For generation tasks, we randomly choose
a label from the label space of the entire demonstration data.

et al., 2022c). On generation tasks, however, all
models perform worse with corrupted labels, but
to vastly different extents. XGLM and Llama 2
perform significantly worse with corrupted labels,
especially on the machine translation task, whereas
chat models do not rely as much on correct la-
bels. This might be explained by ICL helping the
model understand the task format and activating
prior knowledge acquired by the model, rather than
the model learning the task from demonstrations.
The observed model insensitivity to correct labels
on certain tasks implies that random labels can
serve as a strong baseline for demonstration gener-
ation before exploring more complex methods (Lyu
et al., 2023; Wan et al., 2023).

To investigate how these patterns split up across
languages, Figure 5 shows language-specific re-
sults on AfriSenti and XQuAD with Llama 2 and
GPT-3.5.10 On AfriSenti, top-k selection outper-
forms random selection with Llama 2 across most
languages; however, in the case of Swahili and
Tsonga, there is a performance drop of 3.2 and 1.2
points, respectively. With GPT-3.5, top-k selection
does not help across most languages, but it does
help with Mozambican Portuguese and Twi. Simi-
larly, the impact of corrupted labels varies. Llama
2 is affected dramatically by corrupted labels on all
languages in XQuAD, whereas GPT-3.5 is much
less affected, although to varying degrees across
different languages. We urge NLP practitioners
to attend to these discrepancies when creating
language-specific applications, and leave it to fu-
ture work to explore where they come from.

10See Appendix C.2 for other models and datasets.
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6 Better templates further reduce the
benefits of demonstrations

In-context learning performance depends not only
on the demonstrations, which we have varied so
far, but also on how they are formatted using tem-
plates. Previous work (Gonen et al., 2023; Mizrahi
et al., 2024) has shown that modifying the template
changes task performance. This section thus seeks
to examine the interplay between template choice
and demonstrations.

Template design. In the zero-shot setting, we
observe that chat models tend to generate verbose
responses (e.g., “Sure! I can help you with that”) or
explanations (e.g., “The reason is that ...”) that pose
a challenge for automatic evaluation. We observe a
reduction in this behaviour with ICL, which leads
us to question whether demonstrations are merely
a means to format model responses. To see if we
can achieve the same effect with minor template
engineering, we augment the original templates
with instructions that focus on output formatting.
We call these formatting-focused templates which
are shown in Table 9.

In this section, we focus on XCOPA, AfriSenti,
XQuAD, and TyDiQA, as these are the classifica-
tion and generation tasks that seem to benefit most
from in-context demonstrations (see Section 4).
However, as Figure 6 shows, the performance
gap between zero-shot and in-context learning
diminishes with formatting-focused templates.
The gap reduction is more substantial for QA
datasets (i.e., the generation tasks) than for XCOPA
and AfriSenti (i.e., the classification tasks). We
speculate that it is simpler for the model to gen-
erate label words for classification tasks with a
pre-defined label space than to answer questions in
a way that is easy to evaluate automatically. In the
latter case, formatting-focused templates can teach
output styling, largely eliminating the benefits of
demonstrations.

Compared to GPT-3.5 and GPT-4, Llama 2-Chat
performs worse in both zero-shot and few-shot set-
tings, and formatting-focused templates have a less
pronounced impact. On QA datasets, GPT-3.5 and
GPT-4 even achieve better zero-shot performance
with formatting-focused templates than ICL with
original templates, a pattern that is not observed
with Llama 2-Chat. This suggests that the relative
significance of demonstrations and templates
varies based on the inherent abilities of models
at solving tasks and following instructions.
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Figure 6: Effect of using different templates on 0-shot
and 4-shot performance. Formatting-focused templates
(with hatching) improve 0-shot performance over orig-
inal templates (solid colours), and reduce the gap be-
tween 0-shot and 4-shot performance. Few-shot results
are averaged across 3 seeds except for GPT-4.

Model Demo. Label XQuAD TyDiQA

O F O F

Original 38.9±0.1 43.8±0.7 40.0±0.3 40.6±0.8

Llama 2-Chat Corrupted 33.0±0.4 38.6±0.3 35.6±0.1 36.3±0.5

∆ 5.9 5.2 4.4 4.3

Original 68.2±0.4 72.2±0.4 64.8±0.5 70.5±0.5

GPT-3.5 Corrupted 62.7±0.2 69.9±0.2 59.2±0.3 67.1±0.7

∆ 5.5 2.3 5.6 3.4

Original 73.2 79.3 72.8 78.3
GPT-4 Corrupted 63.6 79.8 65.8 77.6

∆ 9.6 -0.5 7.0 0.7

Table 3: Effect of using different templates on 4-shot
performance with RANDOM and RANDOM-CORRUPTED
demonstrations. When using formatting-focused tem-
plates (F) over the original templates (O), the perfor-
mance gap (∆) between original and corrupted labels
decreases. We average and report standard deviations
over 3 seeds for all models except GPT-4.

With our new formatting-focused templates, we
revisit the impact of the input-label mapping dis-
cussed in Section 5. As Table 3 shows, all
models perform worse with corrupted labels, but
formatting-focused templates largely mitigate this
degradation. Notably, GPT-4 using corrupted la-
bels performs on par with ground truth labels.
This strengthens our finding that the correct input-
label mapping is not that important, while also
highlighting the crucial role that templates play in
in-context learning.

Figure 7 shows the language-specific effects of
formatting-focused templates on XQuAD (results
for other tasks are in Appendix D.1). For Llama
2-Chat, demonstrations remain essential even with
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Figure 7: Effect of using different templates on 0-shot
and 4-shot XQuAD performance. Formatting-focused
templates (with hatching) improve 0-shot performance
over original templates (solid colours), and reduce the
gap between 0-shot and 4-shot performance. Few-shot
results are averaged across 3 seeds except for GPT-4.

a formatting-focused template for most languages,
but not Greek and Hindi. GPT-3.5 and GPT-4
also show variance across languages. Moreover,
for most languages, zero-shot learning with minor
template engineering can match and even exceed
in-context learning performance, aligning with pre-
vious work on GPT-3 (Reynolds and McDonell,
2021). The fact that we can achieve the same ef-
fects through template engineering or demonstra-
tions reinforces our hypothesis that models are
not actually learning tasks on the fly. Instead,
some combination of demonstrations and templates
serves to activate prior knowledge of a task and en-
courage a consistent output format for automatic
evaluation.

7 Discussion

Our systematic study provides strong evidence that
the importance of in-context demonstrations on ex-
isting multilingual datasets might be overestimated,
as it highly depends on the model, task, and lan-
guage used. For strong instruction-following mod-
els, the effect of demonstrations is superficial and
can be eliminated with minor template engineering.
These findings open up new questions, which we
discuss below.

Understanding the failures of ICL. There has
been a surge of research interest in understanding

the underlying mechanisms of ICL (Xie et al., 2022;
Von Oswald et al., 2023; Wang et al., 2023b; Hen-
del et al., 2023), motivated by its successes. Our
results show that ICL is not always effective, and
that its performance changes depending on mul-
tiple factors including the choice of model, task
and language. The failures of ICL need as much
scrutiny as its successes for a more fundamental un-
derstanding of the learning mechanisms of LLMs.

Optimizing demonstrations or templates. With
the increasing popularity of research on demonstra-
tion selection (Liu et al., 2022; Rubin et al., 2022;
Li et al., 2023b) and prompt engineering (Mishra
et al., 2022a; White et al., 2023; Khattab et al.,
2023), it is important to understand the interplay of
the two. We show that good demonstrations help
base models perform better on certain tasks, but
that formatting-focused prompting has a much big-
ger impact on chat models. These results show that
the impact of demonstrations cannot be fairly eval-
uated in isolation from the choice of prompt. These
findings have implications both for researchers in-
terested in fairly evaluating ICL, and for practition-
ers to choose to spend time optimizing demonstra-
tions, templates or both.

Evaluating multilingual ICL. Compared to the
extensive research on ICL in English (Zhao et al.,
2021; Dong et al., 2022; Min et al., 2022b; Mos-
bach et al., 2023), multilingual ICL remains under-
explored. There is no widely accepted setup to
robustly evaluate the effectiveness of ICL across
languages, since the choice of multilingual models
and tasks is limited. Based on our findings, we have
some recommendations for the nascent field of mul-
tilingual ICL. First, critical evaluation is important.
We need to compare ICL strategies to zero-shot
learning, and ablate them with multiple templates.
Second, as there is so much variance across mod-
els, tasks and languages, it is important to carefully
scope claims about ICL. Last but not least, every
language is different, so granular per-language anal-
ysis is a must in multilingual research.

8 Related Work

Multilingual in-context learning. Most multi-
lingual in-context learning studies focus on bench-
marking LLMs on diverse tasks and comparing
them with smaller fine-tuned models (Ahuja et al.,
2023; Asai et al., 2023; Zhang et al., 2023; Zhu
et al., 2023). As these works focus on benchmark-
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ing, their analysis of the role of demonstrations
is limited. Ahuja et al. (2023) explore different
prompting strategies by adjusting the language of
templates and demonstrations. Zhang et al. (2023)
find that demonstrations sometimes do not con-
tribute to or even degrade model performance on
code-switching. Zhu et al. (2023) look at machine
translation and analyze the effects of template and
demonstration selection with XGLM. In the context
of cross-lingual transfer, Shi et al. (2022), Tanwar
et al. (2023), and Agrawal et al. (2023) investigate
demonstration selection for specific applications.
In contrast, we take a much broader perspective
and investigate the actual impact of demonstrations
across a wide range of models, tasks and languages.

English-centric demonstration analysis. Most
of the current demonstration analysis literature fo-
cuses on English: Lu et al. (2022) analyze the
sensitivity of ICL to the order of demonstrations,
Min et al. (2022c) and Yoo et al. (2022) explore
whether the ground truth labels matter for classifi-
cation tasks, and Wei et al. (2023) investigate the
sensitivity of various model families to different
input-label mappings. Similarly, Pan et al. (2023)
disentangle task recognition and task learning by
manipulating the label space. Beyond this, Shi et al.
(2023a) and Wang et al. (2023a) modify the valid-
ity of chain-of-thought (CoT) reasoning steps in
demonstrations and explore the impact of this mod-
ification on mathematical reasoning. Also focusing
on CoT, Chen et al. (2023) investigate how varying
the number of demonstrations affects performance.

9 Conclusion

In this paper, we conduct an in-depth multidimen-
sional analysis on the impact of demonstrations
in multilingual in-context learning. We find that
the use of demonstrations does not always provide
benefits compared to zero-shot learning, and that
there is a large variance in performance across mod-
els, datasets and languages. While the quality of
demonstrations influences the performance of base
LLMs on certain tasks, the impact is significantly
reduced for LLMs tuned with alignment techniques.
We also examine the interplay between demonstra-
tions and templates, finding that a carefully crafted
template can further decrease the benefits of demon-
strations. Our granular analysis contributes novel
insights with nuance and paves the way for a more
thoughtful multilingual ICL evaluation.

Limitations

Data contamination. Since LLMs are trained
with a vast amount of data scraped from the internet,
this might result in data contamination, i.e., when
the training data includes test datasets. Ahuja et al.
(2023) suspect that many multilingual datasets ap-
pear in the training data of GPT-4, which might
lead to an overestimation of the model’s capabili-
ties. In the context of our work, our prompt might
just be reminding LLMs of a task they have already
seen, whereas on an unseen task, the impact of
demonstrations might be different. We do not ex-
amine the impact of potential data contamination in
our paper and leave an exploration of this to future
work.

Other demonstration choices. In this work, we
choose to use demonstrations that are in the same
languages as the test sample, due to our focus on
evaluating inherent multilingual abilities of LLMs,
as explained in Section 2.2. However, using En-
glish demonstrations for cross-lingual transfer or
translating test samples into English has its own
practical value for NLP applications. Additionally,
it is worth exploring selecting demonstrations from
a mixture of languages. Expanding our study to
more setups would provide additional insights into
multilingual and cross-lingual LLM abilities.

Other prompting methods. In Section 6, we
only experiment with manually augmented tem-
plates to illustrate how the choice of template can
reduce the effectiveness of demonstrations. There
is a broad literature on prompt engineering and
prompt sensitivity (White et al., 2023; Gonen et al.,
2023), suggesting that it is plausible that another
prompt could reduce the gap between few-shot
and zero-shot performance even further. Chain-of-
thought (CoT) prompting is another approach with
promising multilingual abilities (Shi et al., 2023b;
Huang et al., 2023) that might affect our findings.
Our manually-augmented templates are intended
only as a starting point for further analysis, which
we leave to future work.

Beyond automatic evaluation. When examining
model responses, we noticed some cases where a
correct answer as evaluated by a human was not
fully captured by automatic evaluation metrics. Hu-
man evaluation is time-consuming, expensive, and
hard to source for the wide range of languages that
we explore in our work. Another option is LLM
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evaluation, which is becoming increasingly popu-
lar (Fu et al., 2023a; Chan et al., 2024), but is also
an expensive approach. More importantly, we have
no guarantees about LLMs’ multilingual capabil-
ities. As a trade-off between cost and evaluation
quality, we stick to automatic evaluation in our
work for all tasks and languages.
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A Experimental details

A.1 Tasks and datasets
We conduct experiments on 9 multilingual datasets with a wide coverage of tasks and languages, as shown
in Table 4. All datasets are public research datasets and our experiments are consistent with their intended
use, i.e., NLP evaluation. For the machine translation dataset MAFAND, English serves as the pivot
language and there are two translation directions: en-xx (i.e., translating from English to another language)
and xx-en (i.e., translating from another language to English). As the black-box training data of OpenAI
APIs that we used is up to September 2021, we include the dataset release date in the table which can be
taken as a clue to the severity of dataset contamination.

Dataset Task Languages |Lang.| Release Date

XNLI natural language inference English, German, Russian, French, Spanish, Chinese, Vietnamese, 15 2019.09
Turkish, Arabic, Greek, Thai, Bulgarian, Hindi, Urdu, Swahili

IndicXNLI natural language inference Hindi, Bengali, Tamil, Marathi, Malayalam, Telugu, Kannada, Punjabi, 11 2022.04
Oriya, Assamese, Gujarati

PAWS-X paraphrase identification English, German, Japanese, French, Spanish, Chinese, Korean 7 2019.08
XCOPA commonsense reasoning Chinese, Italian, Vietnamese, Indonesian, Turkish, Thai, Estonian, 11 2020.04

Tamil, Swahili, Haitian, Quechua
XStoryCloze commonsense reasoning English, Russian, Spanish, Chinese, Indonesian, Arabic, Hindi, 11 2023.05

Basque, Telugu, Burmese, Swahili
AfriSenti sentiment analysis Swahili, Amharic, Hausa, Kinyarwanda, Yoruba, Tigrinya, Igbo, Oromo, 14 2023.05

Moroccan Arabic, Algerian Arabic, Nigerian Pidgin, Mozambican Portuguese,
Tsonga, Twi

XQuAD extractive QA English, German, Russian, Spanish, Chinese, Vietnamese, Turkish, Greek, 12 2019.10
Romanian, Thai, Hindi

TyDiQA-GoldP extractive QA English, Russian, Indonesian, Korean, Arabic, Finnish, Bengali, Telugu, Swahili 9 2020.02
MAFAND machine translation Amharic, Hausa, Kinyarwanda, Luganda, Luo, Chichewa, Nigerian Pidgin, 14 2022.06

Shona, Swahili, Setswana, Twi, Xhosa, Yoruba, Zulu

Table 4: Multilingual benchmarking datasets.

A.2 In-context learning
We sample few-shot demonstrations from the validation set and evaluate the test set. For datasets without
a test data split (XStoryCloze and TyDiQA), we sample few-shots from the train set and evaluate the
validation set. Since XQuAD only has a validation data split, we utilize it for both demonstration sampling
and evaluation, ensuring that the test sample itself is not included in its demonstrations. For chat models
(Llama 2-Chat, GPT-3.5, and GPT-4), we limit the test sample size to a maximum of 200 in order to
reduce inference expenses and ensure a fair comparison.

We use GPT-3 style prompting templates for XGLM and Llama 2 as shown in Table 6. The templates
for BLOOMZ and mT0 are shown in Table 7. For Llama 2-Chat, GPT-3.5 and GPT-4, default templates
are shown in Table 8 and task instructions are used to assign a system role to the model. Inspired by Lai
et al. (2023) and Li et al. (2023a), where emotional stimuli are able to enhance LLM understanding, we
design formatting-focused templates (discussed in Section 6) to reinforce LLM to generate formatted
outputs that are easier to evaluate automatically, as shown in Table 9.

A.3 Implementation
Our codebase is adapted from OpenICL (Wu et al., 2023). We use int8bit model quantization11 for all
models except OpenAI models. Experiments are conducted using a single NVIDIA A100-80GB GPU.
As models have a maximum context length, we preserve complete demonstrations that can fit within the
context window. We employ greedy decoding for model generation. For chat models, the maximum
new token is set to 50, while for machine translation, it is set to 100. For other models, the maximum

11In our preliminary experiments, we found that int8 quantization led to a performance degradation of 1-2% on a few
classification datasets with Llama 2 and XGLM. Since this degradation is consistent across different setups, we believe that it
would not affect our overall findings.

7356



new token is set to 20, while for machine translation, it is set to 50. We use three seeds (0, 33, 42) in our
experiments, and the single-seed results for BLOOMZ and mT0 are obtained with the seed 0.

B More results for varying numbers of demonstrations

In this section, we provide supplemental results for Section 4.

B.1 Results for BLOOMZ and mT0
In addition to the 5 models (base models and chat models) we discussed in the main content, we also
experiment with two instruction-tuned models: BLOOMZ and mT0 (Muennighoff et al., 2023). The
results for varying numbers of random demonstrations are shown in Figure 8. In line with findings
from Asai et al. (2023), we observe significant performance degradation when using demonstrations
compared to zero-shot learning in all cases. This decline can be attributed to their training scheme, where
models are fine-tuned on a large collection of existing datasets in a zero-shot manner. In contrast, several
studies (Chen et al., 2022; Wang et al., 2022) focus on enhancing the in-context learning ability of LLMs
by incorporating demonstrations into their training process. This suggests that we should be careful in
model selection for in-context learning research and take the model training process into consideration.
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Figure 8: Average performance across languages for BLOOMZ and mT0 with different numbers of demonstrations.
The results are obtained with a single random seed. Note that PAWS-X, XQuAD and TyDiQA are included in the
instruction-tuning datasets of BLOOMZ and mT0.

B.2 Results for individual languages
The language-specific results for each task are shown in Figure 9. The order of languages follows their
data ratio in the CommonCrawl corpus12 from high-resource to low-resource. We observe large variations
in model performance across different languages. For instance, there exists a large performance disparity
between English and Urdu in XNLI. In XCOPA, the performance of Quechua is significantly worse
compared to other languages.

C More results for ablating the quality of demonstrations

In this section, we provide supplemental results for Section 5.

C.1 Performance of different types of demonstrations
In Table 5, we show the model performance of three types of demonstrations, as well as the zero-shot
performance for comparative analysis. As we notice, top-k selection may not always be the optimal choice,
given the considerable effort in optimizing demonstrations. For QA, XGLM and Llama 2’s abilities in
solving this task almost collapse with corrupted labels. However, for chat models, demonstrations with
corrupted labels can achieve comparable performance with ground truth labels and largely improve the

12http://commoncrawl.org
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Model Demonstration XNLI IndicXNLI PAWS-X XCOPA XStoryCloze AfriSenti XQuAD TyDiQA MT (en-xx) MT (xx-en)

XGLM

ZERO-SHOT 45.87 38.27 54.79 57.51 65.19 32.71 18.16 26.01 0.79 1.89
TOP-K 45.99 38.85 51.72 58.76 63.99 44.30 27.54 34.32 9.08 15.05
RANDOM 41.400.50 36.360.33 51.480.33 58.730.43 63.020.09 38.680.39 25.770.06 30.110.36 7.770.09 14.390.02
RANDOM-CORRUPTED 40.940.42 36.410.35 51.040.28 58.210.30 62.400.21 34.900.42 1.210.03 3.470.07 4.590.01 7.660.04

Llama 2

ZERO-SHOT 44.25 37.66 59.21 56.02 65.17 32.71 15.33 16.81 10.06 11.27
TOP-K 47.10 40.15 59.35 57.69 66.16 47.25 32.37 35.36 17.29 22.92
RANDOM 40.490.35 35.980.24 57.000.29 57.800.32 65.830.08 43.080.02 31.050.28 34.820.21 15.140.01 21.570.02
RANDOM-CORRUPTED 39.530.20 35.550.44 55.850.92 57.190.06 64.710.25 40.810.36 4.360.25 5.620.27 10.350.04 13.230.04

Llama 2-Chat

ZERO-SHOT 36.10 32.32 64.64 44.55 57.77 31.18 18.82 20.33 18.83 25.46
TOP-K 47.53 35.73 59.36 63.55 68.82 45.75 39.94 42.38 21.50 29.02
RANDOM 47.810.85 37.092.57 61.071.2 63.230.91 68.390.14 43.580.23 38.920.09 39.960.30 20.760.23 28.360.12
RANDOM-CORRUPTED 48.151.22 37.053.09 59.591.13 63.200.33 68.620.93 42.810.11 32.980.39 35.590.08 19.630.04 26.820.11

GPT-3.5

ZERO-SHOT 63.23 48.23 66.57 73.50 84.55 53.32 45.25 48.52 27.39 37.77
TOP-K 63.27 50.45 69.29 80.77 85.23 51.86 67.82 67.76 29.20 39.99
RANDOM 63.090.88 49.741.17 71.360.75 79.910.75 85.840.30 52.520.21 68.160.36 64.780.47 28.480.01 39.560.03
RANDOM-CORRUPTED 62.701.05 48.730.51 70.710.66 79.650.74 85.260.07 53.140.47 62.700.19 59.170.27 27.090.18 39.080.08

GPT-4

ZERO-SHOT 70.30 65.41 74.50 88.82 96.05 58.46 44.03 46.97 32.73 45.28
TOP-K 76.53 67.45 76.14 91.23 96.73 61.68 72.44 74.65 35.06 48.34
RANDOM 75.77 67.64 76.07 91.59 96.68 62.36 73.21 72.77 33.85 47.69
RANDOM-CORRUPTED 76.63 67.68 75.50 90.73 95.55 61.46 63.61 65.80 32.61 47.05

Table 5: Performance of different types of demonstrations. For RANDOM and RANDOM-CORRUPTED, we report the
mean and standard deviation across 3 seeds except for GPT-4. Best results for each model and dataset are boldfaced.

zero-shot performance. Overall, the base models are more sensitive to the type of demonstrations than
chat models.

C.2 Results for individual languages
In Figure 10, we show the language-specific results for each task, in which we can see language discrep-
ancies with different types of demonstrations.

D The interplay between demonstrations and templates

In this section, we provide supplemental results for Section 6.

D.1 Results for individual languages
We examine the effect of templates and show language-specific results for XCOPA, AfriSenti, XQuAD
and TyDiQA in Figure 11. In a few cases, we found that formatting-focused templates lead to a decline
in performance compared to original templates (e.g., Igbo and Mozambican Portuguese in AfriSenti
with GPT-3.5). This can be attributed to the model’s sensitivity to prompts, highlighting the potential of
automatic prompt engineering. Still, formatting-focused template can largely narrow the performance gap
between 0-shot and 4-shot in a broad context.

Task Pattern Verbalizer

NLI {premise}, right? {label}, {hypothesis} Yes || Also || No
PAWS-X {sentence1}, right? {label}, {sentence2} No || Yes
XCOPA {premise} {% if question == “cause" %}because{% else %} {choice1} || {choice2}

so{% endif %} {label}

XStoryCloze {input_sentence_1} {input_sentence_2} {sentence_quiz_1} ||
{input_sentence_3} {input_sentence_4} {label} {sentence_quiz_2}

AfriSenti {tweet} The sentiment of the previous sentence is {label} positive || neutral || negative
QA {context}\nQ:{question}\nA:{answer} {answer}

MT {source_sentence} = {target_sentence} {target_sentence}

Table 6: Prompting templates for XGLM and Llama 2 following Brown et al. (2020) and Lin et al. (2022).

7358



Task Pattern Verbalizer

NLI {premise} Based on the previous passage, is it true that Yes || Maybe || No
{hypothesis}? Yes, No, or Maybe? {label}

PAWS-X Sentence 1: {sentence1}\n No || Yes
Sentence 2: {sentence2}\n
Question: Can we rewrite Sentence 1 to Sentence 2? Yes or No?
{label}

XCOPA {premise} {% if question == “cause" %}This happened because...
{% else %} As a consequence...{% endif %}\n
Help me pick the more plausible option:\n {choice1} || {choice2}
- {choice1}\n
- {choice2}\n
{label}

XStoryCloze {input_sentence_1} {input_sentence_2}

{input_sentence_3} {input_sentence_4}\n
What is a possible continuation for the story given the following {sentence_quiz_1} ||
options?\n {sentence_quiz_2}

- {sentence_quiz_1}\n
- {sentence_quiz_2}\n
{label}

AfriSenti {tweet} Would you rate the previous sentence as positive, positive || neutral || negative
neutral or negative? {label}

QA {context}\nQ:{question}\nReferring to the passage above, {answer}

the correct answer to the given question is:{answer}
MT Translate the following {src_language} text to {tgt_language}:\n {tgt_sentence}

{src_sentence}\n{tgt_sentence}

Table 7: Prompting templates for BLOOMZ and mT0 following Muennighoff et al. (2023) and Bach et al. (2022).
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Figure 9: Language-specific performance for both classification and generation tasks with different numbers of
demonstrations. We average and report standard deviations over 3 seeds for all models except GPT-4.
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Figure 10: Language-specific performance of 4-shot ICL using different types of demonstrations. We average and
report standard deviations over 3 seeds for all models except GPT-4.
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Figure 11: Effect of using different templates on 0-shot and 4-shot performance for XCOPA, AfriSenti, and TyDiQA.
Few-shot results are averaged across 3 seeds except for GPT-4.
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Task Template

NLI task instruction: You are an NLP assistant whose purpose is to solve Natural Language Inference
(NLI) problems in <EVALUATION_LANGUAGE>. NLI is the task of determining the inference relation
between two (short, ordered) texts: entailment, contradiction, or neutral. Answer as concisely as
possible in the same format as the examples below:
pattern: {premise}\nQuestion: {hypothesis}\nTrue, False, or Neither?
verbalizer: True || Neither || False

PAWS-X task instruction: You are an NLP assistant whose purpose is to perform Paraphrase Identification in
<EVALUATION_LANGUAGE>. The goal of Paraphrase Identification is to determine whether a pair
of sentences have the same meaning. Answer as concisely as possible in the same format as the
examples below:
pattern: {sentence1}\nQuestion: {sentence2}\nTrue or False?
verbalizer: False || True

XCOPA task instruction: You are an NLP assistant whose purpose is to perform open-domain commonsense
causal reasoning in <EVALUATION_LANGUAGE>. You will be provided a premise and two alternatives,
where the task is to select the alternative that more plausibly has a causal relation with the premise.
Answer as concisely as possible in the same format as the examples below:
pattern:
Premise: {premise}\nWhat is the {question}? Pick the more plausible option:\n
1: {choice1}\n2: {choice2}\n
You should tell me the choice number in this format ’Choice number:’
verbalizer: Choice number: 1 || Choice number: 2

XStoryCloze task instruction: You are an NLP assistant whose purpose is to perform open-domain commonsense
causal reasoning in <EVALUATION_LANGUAGE>. You will be provided a four-sentence story and two
continuations, where the task is to select the correct ending. Answer as concisely as possible in the same
format as the examples below:
pattern:
Story: {input_sentence_1} {input_sentence_2} {input_sentence_3} {input_sentence_4}\n
What is a possible continuation for the story? Pick the more plausible option:\n
1: {sentence_quiz1}\n2: {sentence_quiz2}\n
You should tell me the choice number in this format ’Choice number:’
verbalizer: Choice number: 1 || Choice number: 2

AfriSenti task instruction: You are an NLP assistant whose purpose is to perform Sentiment Analysis in
<EVALUATION_LANGUAGE>. Sentiment Analysis is the task of determining the sentiment,
opinion or emotion expressed in a textual data. Give your answer as a single word, "positive", "neutral"
or "negative".
pattern: Does this statement “{tweet}” have a {positive neutral or negative} sentiment? Labels only
verbalizer: positive || neutral || negative

QA task instruction: You are an NLP assistant whose purpose is to solve reading comprehension
problems in <EVALUATION_LANGUAGE>. You will be provided questions on a set of passages and
you will need to provide the answer as it appears in the passage. The answer should be in the same
language as the question and the passage.
pattern:
{context}\nQ: {question}\nReferring to the passage above, the correct answer to the given question is:
verbalizer: {answer}

MT pattern: Translate the following {src_language} text to {tgt_language}: {src_sentence}
verbalizer: {tgt_sentence}

Table 8: Prompting templates for chat models following Ahuja et al. (2023) and Ojo et al. (2023). We add language
identifiers in task instructions as it is an effective strategy for improving multilingual prompting (Huang et al., 2023).
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Task Template

XCOPA task instruction: You are an NLP assistant whose purpose is to perform open-domain commonsense
causal reasoning in <EVALUATION_LANGUAGE>. You will be provided a premise and two alternatives,
where the task is to select the alternative that more plausibly has a causal relation with the premise.
Answer as concisely as possible in the same format as the examples below:
pattern:
Premise: {premise}\nWhat is the {question}? Pick the more plausible option:\n
1: {choice1}\n2: {choice2}\n
This is very important: Do not repeat the question and no explanation.
You should tell me the choice number in this format ’Choice number:’
verbalizer: Choice number: 1 || Choice number: 2

AfriSenti task instruction: You are an NLP assistant whose purpose is to perform Sentiment Analysis in
<EVALUATION_LANGUAGE>. Sentiment Analysis is the task of determining the sentiment,
opinion or emotion expressed in a textual data. Give your answer as a single word, "positive", "neutral"
or "negative".
pattern: Does this statement “{tweet}” have a {positive neutral or negative} sentiment?
This is very important: Do not repeat the question and no explanation. Labels only
verbalizer: positive || neutral || negative

QA task instruction: You are an NLP assistant whose purpose is to solve reading comprehension
problems in <EVALUATION_LANGUAGE>. Answer the question from the given passage. Your answer
should be directly extracted from the passage and be a single entity, name, or number, not a sentence.
pattern:
{context}\nQ: {question}\nThis is very important: Your answer should be directly extracted from the
passage and be a single entity, name, or number, not a sentence.
verbalizer: {answer}

Table 9: Formatting-focused templates for chat models. We augmented the original templates in Table 8 with
formatting-focused instructions.
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