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Abstract

The incremental sequence labeling task in-
volves continuously learning new classes over
time while retaining knowledge of the previous
ones. Our investigation identifies two signif-
icant semantic shifts: E2O (where the model
mislabels an old entity as a non-entity) and O2E
(where the model labels a non-entity or old en-
tity as a new entity). Previous research has
predominantly focused on addressing the E2O
problem, neglecting the O2E issue. This negli-
gence results in a model bias towards classify-
ing new data samples as belonging to the new
class during the learning process. To address
these challenges, we propose a novel frame-
work, Incremental Sequential Labeling without
Semantic Shifts (IS3). Motivated by the identi-
fied semantic shifts (E2O and O2E), IS3 aims
to mitigate catastrophic forgetting in models.
As for the E2O problem, we use knowledge
distillation to maintain the model’s discrimi-
native ability for old entities. Simultaneously,
to tackle the O2E problem, we alleviate the
model’s bias toward new entities through debi-
ased loss and optimization levels. Our experi-
mental evaluation, conducted on three datasets
with various incremental settings, demonstrates
the superior performance of IS3 compared to
the previous state-of-the-art method by a sig-
nificant margin. The data, code, and scripts are
publicly available 1.

1 Introduction

The conventional sequence labeling task typically
involves categorizing data into a predetermined set
of fixed categories (Lample et al., 2016). However,
this approach may need to be revised in natural
language processing scenarios, such as the named
entity recognition task, where new types of enti-
ties continuously emerge. Adapting a fixed set of

∗*Corresponding author
1https://github.com/zzz47zzz/codebase-for-incremental-

learning-with-llm and https://github.com/qianlima-
lab/codebase-for-incremental-learning-with-llm

Figure 1: A sample shows two shifts in incremental
sequence labeling. E2O denotes the semantic shift of
an old entity (such as [PER]) to a non-entity ([O]), and
O2E denotes the semantic shift of a non-entity ([O])
or an old entity(such as [GPE]) to a new entity (such
as [DATE]). Inputs means input sentence. CL means
current ground-truth label at step t. FL means the full
ground-truth label for all steps. Step t− 1 and Step t
means the predictions in step t− 1 and t.

categories becomes challenging when faced with
the dynamic nature of new entity classification re-
quirements. Consequently, continuous model up-
dates are essential to accommodating evolving en-
tity types. Previous studies have advocated for
adopting continual learning (Parisi et al., 2019;
Monaikul et al., 2021), also known as lifelong learn-
ing or incremental learning. Continual learning is a
paradigm designed to train models capable of adapt-
ing to the continual addition of new categories in
real-world scenarios while ensuring that knowledge
of old categories is retained. For instance, voice
assistants like Siri frequently encounter new event
types, such as pandemics, need to understand and
provide health-protecting information based on the
user’s latest intent. (Monaikul et al., 2021).

Due to constraints imposed by storage limita-
tions and privacy concerns, there exists a shortage
of training data about the old categories (He and
Zhu, 2022). Additionally, the manual relabeling
of all categories within the new training dataset
would incur substantial costs and time investment
(De Lange et al., 2021; Bang et al., 2021). Conse-
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quently, the model undergoes continuous updates
using a freshly acquired dataset comprising the new
categories. As depicted in Figure 1, the model un-
dergoes training based on the current ground-truth
label and undergoes testing using the full ground-
truth label.

The incremental sequence labeling task faces a
significant challenge known as the catastrophic for-
getting problem, as extensively discussed in previ-
ous studies (McCloskey and Cohen, 1989; Robins,
1995; Goodfellow et al., 2013; Kirkpatrick et al.,
2017; Zheng et al., 2024). This issue manifests as
semantic shifts, leading to a decrease in the discrim-
inative power of entity classes (Zhang et al., 2023b;
Ma et al., 2023). In this paper, we decompose the
problem into two primary semantic shifts in the
incremental sequence task: E2O and O2E. The first
semantic shift, E2O, arises from the presence of
non-entities, potential old entities (mislabelled as
non-entities), and new entities in the new dataset.
Progress has been made in addressing E2O through
methods falling into three categories: (1) Meth-
ods based on knowledge distillation: For instance,
RDP proposes a knowledge distillation loss incor-
porating inter-task relations (Zhang et al., 2023b).
At the same time, CFPD introduces a pooled fea-
ture distillation loss to alleviate catastrophic forget-
ting (Zhang et al., 2023a). (2) Methods based on
pseudo-labels: OCILNER utilizes class prototypes
to label new data (Ma et al., 2023), and CPFD em-
ploys old models to label predictions of new data.
(3) Methods based on freezing models: Examples
include ICE (Liu and Huang, 2023), which freezes
the backbone model and old classifiers to maintain
the stability of the old classes at the expense of
learning new classes.

Existing methods primarily focus on address-
ing the E2O shift, neglecting the bias towards the
emergence of new classes and the consequential
second semantic shift, O2E. To address both se-
mantic shifts, we propose a novel framework called
Incremental Sequential Labeling without Semantic
Shifts (IS3). IS3 consists of two key components:
First, we apply the knowledge distillation method
to tackle the E2O shift. Second, we address the
O2E shift on two fronts. At the loss function level,
we introduce a debiased cross-entropy loss func-
tion to mitigate the model’s impact on old class
distributions, reducing its inclination towards new
entities. At the optimization level, we introduce
a prototype-based approach to balance the imbal-
anced contributions of old and new entities during

batch updates, which aims to increase the involve-
ment of old entities in the optimization process. Im-
portantly, IS3 adopts a storage-efficient approach,
maintaining only one prototype per class with min-
imal storage costs. Class feature centers serve as
prototypes, ensuring no direct correspondence to
actual sample information and mitigating privacy
leakage concerns.

The contribution of our work can be summarized
as follows:

• We propose a novel perspective on the seman-
tic shift problem in incremental sequence la-
beling task by categorizing the catastrophic
forgetting problem into E2O and O2E.

• We propose a novel framework, Incremental
Sequential Labeling without Semantic Shifts
(IS3), to solve the two semantic shifts simul-
taneously.

• We conduct experiments under nine CIL set-
tings on three datasets, and our method outper-
forms the previous state-of-the-art methods.

2 Related Work

Incremental Learning The model continually
acquires new tasks intending to achieve optimal
performance on tasks previously learned (Gepperth
and Hammer, 2016; Wu et al., 2019; van de Ven
et al., 2022; Zheng et al., 2023b). There are three
main categories of current incremental learning
methods: regularization-based, rehearsal-based,
and architecture-based. Regularization-based meth-
ods place constraints on model weights (Kirk-
patrick et al., 2017; Zenke et al., 2017), represen-
tations of intermediate layer features (Hou et al.,
2019; Douillard et al., 2020), and output probabil-
ities (Li and Hoiem, 2017; Zheng et al., 2023a).
Rehearsal-based methods overcome forgetting by
saving some of the data containing the old classes
for learning with the new classes (Lopez-Paz and
Ranzato, 2017; Shin et al., 2017). Alternatively,
architecture-based approaches involve dynamically
expanding the network structure to allow for more
data as new classes are added (Hou et al., 2018;
Yan et al., 2021).
Incremental Sequence Labeling The traditional
sequence labeling task is the task of labeling each
token of a one-dimensional linear input sequence,
which requires each token to be categorized ac-
cording to its contextual content(Rei et al., 2016;
Akbik et al., 2018). However, previous methods

778



Figure 2: Illustration of E2O and O2E. When "Amy"
encounters E2O problem, the label is biased from [PER]
to [O]. When "California" encounters O2E problem, the
label is shifted from [GPE] to [DATE].

can only recognize classes in a fixed set. There-
fore, continuous learning paradigms are introduced
in sequence labeling tasks, including incremental
named entities (Monaikul et al., 2021; Zheng et al.,
2022; Zhang et al., 2023a), incremental event de-
tection (Cao et al., 2020; Yu et al., 2021), and so
on.

Methods for incremental sequence labeling tasks
can be categorized into distillation-based, rehearsal-
based, and other approaches. Distillation-based
methods encompass ExtendNER (Monaikul et al.,
2021), which is the pioneer in applying knowledge
distillation to incremental sequence labeling task,
RDP (Zhang et al., 2023b) with a relational distil-
lation approach, and CPFD (Zhang et al., 2023a)
utilizing pooled features distillation loss. CFNER
(Zheng et al., 2022) introduces a causal framework
for extracting new causal effects in entities and non-
entities. Rehearsal-based approaches include KCN
(Cao et al., 2020) and KD+R+K (Yu et al., 2021),
both employing rehearsal samples to address the
class imbalance and catastrophic forgetting in in-
cremental event detection. L&R (Xia et al., 2022)
proposes a learn-and-review framework by training
a new backbone model and a generative model si-
multaneously, generating synthetic samples of the
old class to be trained with new samples. OCIL-
NER (Ma et al., 2023) uses rehearsal samples to
compute class feature centers as class prototypes,
generates an entity-oriented feature space through
comparative learning, and annotates new data with
pseudo-labels using class prototypes. Other meth-
ods encompass span-based and freezing model-
based approaches, among others.

The mentioned methodologies primarily focus
on preserving the existing knowledge of the model
and do not explicitly consider the implications of
transitioning from non-entity to entity semantics.
In contrast, our proposed method, IS3, provides a
fresh perspective on model forgetting by address-
ing the model’s inclination towards new classes
during task adaptation. IS3 not only addresses
issues related to model mislabeling, indirectly mit-
igating the problem of semantic migration from
entity to non-entity, but also handles the challenge
of semantic migration from non-entity to entity.
By recognizing and addressing the model’s bias to-
wards new classes during adaptation, our approach
offers a comprehensive solution to the dynamic
challenges associated with transitioning between
different semantic categories.

3 Problem Formulation

Formally, the objective of incremental sequence
labeling is to acquire knowledge through a series
of tasks T = {T1, T2, . . . , TN}. Each task contains
its dataset Dt = {(xi, yi)|yi ∈ Yt} where (xi, yi)
is a pair formed by the input token sentence and the
label corresponding to each token in the sentence
and Yt stands for the current label set. Notably,
yi only labels the token corresponding to the cur-
rent task t, and the other tokens are labeled as O
class (potential old entities Y1:t, and unseen enti-
ties Yt+1:N ). At task t (t > 1), the new model Mt

learns only from the new dataset and is expected to
perform well on the learned classes

⋃t
i=1 Yi.

4 Method

In this section, we systematically address the catas-
trophic forgetting problem by decomposing it into
two distinct semantic shift challenges (Section 4.1).
Subsequently, we present a comprehensive frame-
work designed to address these semantic shifts indi-
vidually, focusing on E2O in Section 4.2 and O2E
in Section 4.3. The overarching goal is to effec-
tively mitigate the catastrophic forgetting problem,
as illustrated in Figure 4.

4.1 Two semantic shift problems

In the incremental sequence labeling task, semantic
shift can be decomposed into entity to non-entity
semantic shift and non-entity to entity semantic
shift, which are abbreviated as E2O and O2E.

E2O refers to the model incorrectly categorizing
entities as non-entities during the learning process.
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Figure 3: Confusion Matrix of the ExtendNER method
in Task 4. It indicates that the model predicts the old en-
tities as new entities with high probability and predicts
the old entity as non-entity, with severe O2E semantic
shift and E2O semantic shift.

This misclassification stems from the incremental
sequence labeling task, where only new entities are
labeled in the new dataset, potentially causing old
entities to be erroneously labeled as non-entities.
For instance, in Figure 2, the name "Amy" is mis-
takenly labeled as a non-entity. This misclassifica-
tion induces a gradual shift in the semantics of old
entities towards non-entities, leading to a blurred
boundary between the two classes. Several pre-
vious approaches have addressed this bias issue.
Methods like RDP focus on designing improved
distillation techniques to maintain the stability of
the model’s old entities. Similarly, OCILNER uti-
lizes comparative learning to obtain a more dis-
criminative feature space, clarifying the classifica-
tion boundaries between entities and non-entities.
These strategies aim to mitigate the impact of E2O,
ensuring a more accurate preservation of entity
semantics during incremental sequence labeling
tasks.

O2E signifies the model incorrectly labeling non-
entities or old entities as new entities during the
learning process. As seen in Figure 2, our obser-
vations indicate that the model maintains good dis-
crimination between old entities. However, Figure
3 shows a bias towards new entities in predictions
during incremental learning. Our research identi-
fies two key contributing factors to this bias.

The first factor is related to the classifier dimen-
sion’s predisposition. When learning new entities,
the ordinary cross-entropy function induces the

model to fit and converge faster on the distribu-
tion of new entities by excessively penalizing the
classifier dimension associated with old entities.
This over-penalization of old entities results in a
pronounced bias in significant classification scores
towards the new classes.

The second factor involves a tendency at the fea-
ture optimization level. The current dataset mainly
contains samples of new entities with minimal rep-
resentation from other entities, including potential
old and future new entities, to facilitate effective
learning of new entities. As a result, in the same
batch, the probability of old entities participating
in model optimization is much lower than the prob-
ability of new entities’ participation. Consequently,
there is a predisposition towards new categories at
the feature optimization level. Addressing these
aspects is crucial for mitigating the O2E semantic
shift and achieving more balanced and accurate
predictions during incremental sequence labeling
tasks.

Notably, the E2O and O2E problems are inter-
connected. If the O2E problem occurs in the model
during incremental sequence labeling, it can grad-
ually blur the boundaries among entities. It can
also indirectly contribute to the E2O problem, ulti-
mately impacting the model’s discriminative ability.
We will address these two semantic biases sepa-
rately to mitigate catastrophic forgetting during
incremental sequence labeling.

4.2 Solving E2O problem via knowledge
distillation

When learning the current task t, the model Mt is
trained on the training examples with the current en-
tities, which often leads to catastrophic forgetting
for the old entities. To alleviate the E2O problem,
we use knowledge distillation (Hinton et al., 2015).
This method preserves the prior knowledge by dis-
tilling the output probabilities from the old Mt−1

to the current model Mt. Therefore, the objec-
tive function for solving the E2O problem can be
expressed as:

Lkd =
1

|Dt|

|Dt|∑

i=1

ŷt−1
i log ŷti , (1)

where ŷt−1
i and ŷti represent the output probabilities

of the current model and the old model respectively.
Through Eq.1, "Amy" in Figure 4 corrects the

current model’s incorrect labeling via the output
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Figure 4: Overview of our framework IS3 for incremental sequence labeling. We solve the O2E problem by
distillation loss Lkd. Besides, we use two modules: debiased cross-entropy loss LDebias

ce and prototype learning to
solve the E2O problem.

probabilities provided by the old model, thus main-
taining discriminative properties between old enti-
ties.

4.3 Solving O2E problem
In this section, we address the O2E problem at the
debiased loss and feature optimization levels.

4.3.1 Debiasing in Ordinary Cross Entropy
The overall model parameters are defined as Θ =
{θ, ω}. The model’s backbone fθ : X → Rd ex-
tracts feature embeddings of dimension d from the
inputs. Following the backbone, a linear classi-
fier produces logits Φ(·) = ωT · fθ(·) : X → R|Yt|,
where ω represents the classifier weights for the cor-
responding dimensions. As the number of classes
of recognizable entities increases as well, the di-
mension of the classifier increases. The model is
trained by a cross-entropy loss function, which is
defined as:

Lce = − 1

|Dt|

|Dt|∑

i=1

yi log

(
eΦyi (xi)

∑
y′∈Yt

eΦy′ (xi)

)

=
1

|Dt|

|Dt|∑

i=1

log[1 +
∑

y′̸=yi

eΦy′(xi)−Φyi (xi)],

(2)
where yi denotes the label of the new entity for the
current incremental step t and y′ denotes the labels

not equal to yi. Figure 3 shows that confusion
matrix of previous method at incremental step 4.
It clearly shows that most predictions are biased
towards the recent entity (class 4). We find that
such a bias can be found in the cross-entropy loss
function. When learning new entities, the model’s
gradient update for old entities is defined as:

∂Lce

∂ωy′
∝ eΦy′(xi)(y′ ̸= yi), (3)

where the gradient update for old entities is pro-
portional to the classification score for that entity.
During the incremental sequence labeling process,
this gradient update exhibits an overly penalizing
effect on the old entity probability distributions. It
shows up as an excessive reduction in the output
probability score of the old entity. We provide a
more detailed explanation and derivation in Ap-
pendix A.

We assume the old model has learned the opti-
mal representation of old entities. Therefore, the
new entities should have a smaller impact on the
knowledge of old entities. Otherwise, because of
the absence of rehearsal samples of the old entities,
the model will face catastrophic forgetting of the
old entities. In addition, the new entity was not in
the predefined set, and a change from a non-entity
to a new entity occurs during learning. Therefore,
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it is reasonable to have a penalizing effect on non-
entities, and the debiased cross-entropy loss func-
tion is defined as follows:

LDebias
ce =

1

|Dt|

|Dt|∑

i=1

log[1+
∑

y′̸=yi

eδΦy′(xi)−Φyi (xi)],

(4)
where δ is the correction factor for the gradient
update of the old entity weights (excluding non-
entity weights), δ ∈ [0, 1]. When δ → 0, the model
will no longer penalize the learning of old entities.
When δ → 1, Eq.4 degenerates to the traditional
cross-entropy loss function.

4.3.2 Learning with Prototypes
In Section 4.1, we elucidate the reasons behind the
emergence of O2E at the feature optimization level.
In this section, we introduce the utilization of class
centers of old entities as class prototypes during the
learning process of new entities. Following each
task training, we compute prototypes using feature
representations from the training set and store them.
These prototypes then participate in training the
model classifier for the subsequent task alongside
the feature representations of new entities.

The class prototypes of old entities serve two
essential purposes: firstly, they participate in op-
timization alongside new entities in each batch,
ensuring a balanced optimization process among
entities. Secondly, these class prototypes act as
anchors in the feature space, mitigating the issue of
over-labeling new entities. As depicted in Figure
4, the introduction of old prototypes reduces the
potential over-labeling of new entities, enhancing
the precision of new entity learning.

To this end, we defined the loss function of pro-
totypes as follows:

Lpro = −
t−1∑

i=1

ỹi log

(
eω

TPi

∑|Yt|
j=0 e

ωTPj

)
, (5)

where ỹi stands for the label of the old prototype
and Pi, Pj stand for old prototypes, defined as
follows:

Pt =
1

|Dt|

|Dt|∑

i=1

fθ(xi). (6)

Our approach differs from OCILNER’s ap-
proach, which uses prototypes in two ways:(1)
OCILNER’s approach stores old samples for calcu-
lating prototypes. However, in this paper, we only
use the training data in each incremental step for

calculating prototypes and do not introduce replay
samples. (2) OCILNER uses prototypes to label
new datasets and adopts a cosine similarity as the
threshold for entity labeling. However, in this pa-
per, we found that some of the real non-entities also
have a high cosine similarity with entities, which
can easily produce wrong labeling for real non-
entities and exacerbate semantic migration from
entities to non-entities. Therefore, to avoid incor-
rectly labeling non-entities, we use only class cen-
ters as prototypes and do not use prototypes for
labeling existing entities.

In summary, the objective function of our
method is defined as follows:

L = LDebias
ce + αLpro︸ ︷︷ ︸

LO2E

+βLkd︸ ︷︷ ︸
LE2O

. (7)

5 Experiments

5.1 Experimental Setup
Datasets We conducted experiments on three
widely used datasets: i2b2 (Murphy et al., 2010),
OntoNotes5 (Hovy et al., 2006), and MAVEN
(Wang et al., 2020). We divide the dataset into dis-
joint slices according to categories. In each slice,
we keep only the category labels visible to the cur-
rent task, and the rest of the labels are labeled as
non-entities.
Settings We sort the above slices according to
initial letter and train them in a FG-a-PG-b manner.
FG means that the pre-trained model is trained with
a entity types as the initial model, and PG means
that the initial model is trained with b entity types
at each following incremental step.
Baselines We consider the following state-of-
the-art methods for incremental sequence labeling:
Self-Training (Rosenberg et al., 2005; De Lange
et al., 2019), ExtendNER (Monaikul et al., 2021),
CFNER (Zheng et al., 2022), DLD (Zhang et al.,
2023c), RDP (Zhang et al., 2023b), OCILNER (Ma
et al., 2023), ICE (Liu and Huang, 2023), CFPD
(Zhang et al., 2023a). Detailed descriptions of the
baselines and their experimental setup are provided
in Appendix C.
Implementation Details We use bert-base-cased
model from HuggingFace (Wolf et al., 2019) as
backbone, with a hidden dimension of d = 768.
In addition to this, we have included supplemen-
tal experiments with the roberta-base model on
the relevant datasets in Appendix E. We use the
AdamW (Loshchilov and Hutter, 2018) optimizer,
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Table 1: Comparisons with state-of-the-art methods on the i2b2 dataset using the bert-base-cased model. The best
results are highlighted in bold and the second best results are underlined. The average of each incremental step is
provided in Figure 5.

Methods
FG-1-PG-1 FG-2-PG-2 FG-8-PG-1 FG-8-PG-2

AT Ā AT Ā AT Ā AT Ā
FT 2.16 ± 0.18 14.98 ± 0.47 7.38 ± 1.10 25.00 ± 0.74 2.41 ±0.17 16.14 ± 1.81 6.38 ± 1.23 25.82 ± 1.36

SelfTrain 17.76 ± 1.75 37.32 ± 2.28 36.63 ± 6.27 54.07 ± 3.12 7.01 ± 3.51 27.27 ± 3.47 24.05 ± 6.61 47.81 ± 2.81

ExtendNER 19.54 ± 1.59 39.10 ± 3.17 29.20 ± 5.86 48.26 ± 4.05 7.83 ± 1.42 29.03 ± 1.15 24.00 ± 6.40 42.53 ± 2.92

CFNER 34.15 ± 4.79 50.15 ± 2.18 47.21 ± 2.99 58.03 ± 2.28 21.50 ± 1.49 38.53 ± 1.01 23.91 ± 3.91 46.31 ± 3.39

DLD 23.03 ± 4.08 42.87 ± 4.35 41.05 ± 2.79 57.28 ± 1.37 13.10 ± 3.05 35.12 ± 2.24 32.01 ± 4.47 51.66 ± 1.71

RDP 28.05 ± 1.85 47.61 ± 2.03 44.53 ± 2.79 59.75 ± 1.25 26.83 ± 3.01 42.02 ± 1.57 41.43 ± 5.32 56.92 ± 4.07

OCILNER 9.30 ± 1.79 27.75 ± 2.82 18.45 ± 3.18 42.43 ± 1.90 19.76 ± 3.56 41.01 ± 2.77 24.86 ± 2.12 46.75 ± 2.14

ICE_PLO 35.45 ± 0.91 45.65 ± 1.32 40.32 ± 0.58 50.25 ± 0.93 44.79 ± 0.93 50.61 ± 0.72 44.23 ± 2.22 51.05 ± 1.83

ICE_O 36.96 ± 1.17 46.93 ± 1.07 43.29 ± 1.79 51.24 ± 1.70 46.24 ± 1.36 51.70 ± 0.85 49.10 ± 1.33 53.56 ± 1.22

CPFD 17.72 ± 3.95 46.11 ± 1.45 31.44 ± 5.19 53.84 ± 2.39 5.0 ± 3.97 32.86 ± 3.49 23.03 ± 7.47 50.26 ± 3.38

IS3 (Ours) 43.88 ± 2.05 56.87 ± 0.56 54.84 ± 1.35 61.83 ± 0.87 50.75 ± 1.28 58.38 ± 1.35 56.96 ± 0.68 63.03 ± 1.07
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Figure 5: Comparison of the step-wise Macro F1 score on i2b2 and OntoNotes5.

with learning rate 1e−6 and 1e−3 for backbone and
classifier. We report the mean and standard devia-
tion results over five runs.
Metrics Considering that each of the categories
should have a comparable degree of contribution
in the test, we use Macro F1 to evaluate the perfor-
mance of the model. We use the last step Macro F1
result in AT , and the average Macro F1 result in Ā,
on all incremental steps as evaluation metrics. AT

and Ā are defined in Appendix D.

5.2 Results and Analysis

Comparisons with State-Of-The-Art To val-
idate the effectiveness of our approach, we
conducted exhaustive experiments on the i2b2,
OntoNotes5, and MAVEN datasets. We used the

Finetune Only (FT) approach as a lower bound for
comparison. Table 1 and Table 8 display the results
of the experiments conducted on i2b2. Due to space
limitations, we provide the results on MAVEN in
Table 6 and OntoNotes5 in Table 7 and Table 9.
In detail, we show the experimental results under
nine incremental learning settings through Figure 6.
Our method consistently outperforms the previous
state-of-the-art method in multiple settings, from
FG-1-PG-1 to FG-8-PG-2. The poor performance
of the previous method may be attributed to the ig-
norance of O2E. As shown in Figure 7, during the
learning process, the previous method, ExtendNER,
incorrectly confuses new entities with non-entities
due to O2E errors, and old entities with non-entities
due to E2D errors. These issues together lead to
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Figure 6: The comparison between our method and
previous state-of-the-art methods on nine incremental
learning settings. We report the MacroF1 score after
learning the final task. The detailed results are provided
in Table 1 and Tables 6-9.
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Figure 7: Visualization of prediction of previous method
and IS3 approach in task 4. Our approach greatly miti-
gates the E2O and O2E shift problems and balances the
old and new classes well on the model predictions.

poor prediction results for the model. We have
effectively mitigated the above problems through
our framework IS3, which strikes a good balance
between maintaining old entities and learning new
ones.

To further demonstrate the effectiveness of our
method, we visualize the feature representation
through T-SNE (Van der Maaten and Hinton, 2008).
As shown in Figure 9, the ExtendNER method
faces serious E2O and O2E problems, with new
entities and non-entities overwriting old ones, lead-
ing to catastrophic forgetting. Our method success-
fully addresses the issue of semantic bias that arises
when the model learns a new task.
Ablation Study We explored the validity of the
components of our approach through ablation ex-
periments, and the results are shown in Table
2. We removed the debiased cross-entropy loss
LDebias
ce and prototype loss Lpro modules, respec-

tively. These results demonstrate the essential roles

Table 2: The ablation study of our method on i2b2
and OntoNotes5 under the setting FG-1-PG-1, MAVEN
under the setting FG-18-PG-10. The ablation of each
component resulted in a significant decrease in model
performance, proving the effectiveness of all our com-
ponents.

Methods
i2b2 OntoNotes5 MAVEN

AT Ā AT Ā AT Ā
IS3 (Ours) 43.88 ± 2.05 56.87 ± 0.56 50.23 ± 0.94 54.65 ± 0.84 40.15 ± 0.38 48.16 ± 0.16

w/o LDebias
ce 40.79 ± 0.89 54.39 ± 0.19 47.89 ± 0.91 52.77 ± 1.21 38.19 ± 0.98 46.56 ± 0.58

w/o Lpro 25.88 ± 2.78 45.95 ± 2.53 44.26 ± 1.33 50.07 ± 1.08 34.64 ± 0.78 45.15 ± 0.39

w/o Both 23.22 ± 2.12 37.81 ± 3.81 42.77 ± 0.22 49.11 ± 0.49 31.03 ± 0.34 42.61 ± 0.87

played by both LDebias
ce and Lpro modules. The

LDebias
ce reduces the penalizing effect of the new

entity on the old entity and enhances the discrimina-
tion between the old and new entities by improving
the prediction confidence of the old entity. The
Lpro corrects the bias of modeling new entities by
shrinking the scope of over-labeling new entities
through old prototypes.
Hyper-Parameter Analysis Figure 10 shows the
results of different hyper-parameter choices on
OntoNotes5 with the setting FG-1-PG-1. We con-
sider two hyper-parameters: the correction factor
in the debiased cross-entropy loss δ and the weight
of the prototype loss β. The results show that δ
around 0.5 reaches the best result, indicating that
a moderate penalty effect reduction favors model
performance. As β keeps increasing, it makes the
model overfit for the old prototype, leading to a
decrease in model performance.
Case Study We provide an example in Figure
8 to demonstrate that the previous method suffers
from an O2E offset when learning a new entity
ORG, overwriting the old entity EVENT as a new
entity. Simultaneously, the model inherits past O2E
issues (labeling [O] as [DATE]). Additionally, it
suffers from E2O, which fails to recognize the old
entity accurately. Our method effectively balances
these two offset problems and is more conducive
to model learning.

6 Conclusion

In this paper, we introduce a novel perspective on
the catastrophic forgetting problem in incremental
sequence annotation, identifying and addressing
both E2O and O2E semantic shifts. Bridging gaps
in previous research, we propose the IS3 frame-
work to tackle both issues. Comprehensive exper-
iments on three datasets demonstrate that our IS3
method significantly outperforms previous state-
of-the-art approaches. This work provides a fresh
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Input Sentence In     the    near   future , the     Russian Tu      River   Region  N       Conference will also be held in Vlad  .

ExtendNER      O      O      O      O      O B-ORG   I-ORG   I-ORG   I-ORG   I-ORG   I-ORG   I-ORG      O    O    O  O    O  O  O

CFNER          O      B-DATE B-DATE O      O B-ORG   I-ORG   I-ORG   I-ORG   I-ORG   I-ORG   I-ORG      O    O    O  O    O  B-GPE O

RDP            B-DATE B-DATE B-DATE O      O B-ORG   I-ORG   I-ORG   I-ORG   I-ORG   I-ORG   I-ORG      O    O    O  O    O  B-GPE O

IS3(Ours) O      O      O      O      O B-EVENT I-EVENT I-EVENT I-EVENT I-EVENT I-EVENT I-EVENT    O    O    O  O    O  B-GPE O

Ground Truth   O      O      O      O      O B-EVENT I-EVENT I-EVENT I-EVENT I-EVENT I-EVENT I-EVENT    O    O    O  O    O  B-GPE O 

O2E: E2O:

O2E:

Figure 8: A sample from OntoNotes5. EVENT, DATE, GPE are old entites. ORG is a new entity. The previous
method had the issue of mislabeling non-entities as old entities and overwriting old entities as new ones. In
contrast, our method accurately labels old entities when learning the new entity, demonstrating its effectiveness and
superiority.

AGE
CITY
COUNTRY
DATE
O2E
E2O

(a) ExtendNER

AGE
CITY
COUNTRY
DATE
O2E
E2O

(b) IS3 (Ours)

Figure 9: The T-SNE visualization of the feature representations on ExtendNER and our method. Our approach IS3
greatly mitigates O2E and E2O, resulting in good discrimination between old and new entities.
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Figure 10: The results of different hyper-parameter
choices on i2b2 with the setting FG-1-PG-1. We show
the results are δ ∈ (0, 1] and β ∈ (0, 1].

outlook on the incremental sequence labeling task
and offers effective solutions to mitigate the catas-
trophic forgetting problem.

Limitations

While the proposed method effectively mitigates
catastrophic forgetting to some extent, its reliance

on the predictions of old models for preserving
existing knowledge can result in accumulated pre-
diction errors, which may lead to poor model per-
formance in more incremental steps. Moreover,
the current method does not thoroughly explore
the relationship between the penalty effect and
the dataset, leaving potential avenues for future
research.
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A Derivation of Debiased Cross-entropy
Loss Function

The overall model parameters are defined as Θ =
{θ, ω}. The model’s backbone fθ : X → Rd ex-
tracts feature embeddings of dimension d from the
inputs. Following the backbone, a linear classifier
produces logits Φ(·) = ωT · fθ(·) : X → R|Yt|,
where ω represents the classifier weights for the
corresponding dimensions and Yt represents the
current label set. The softmax probability of new
entity is defined as: pyi = eΦyi (xi)

∑
y′∈Yt

e
Φy′ (xi)

. The

derivation of Debiased Cross-entropy Loss Func-
tion is proved as follows:

∂Lce

∂ωy′
=

∂Lce

∂pyi
· ∂pyi
∂Φy′(xi)

· ∂Φy′(xi)

∂ωy′

= − 1

ln 2 · pyi
· fθ(xi) ·

∂pyi
∂Φy′(xi)

=
fθ(xi)

ln 2
· py′ ∝ eΦy′(xi)(y′ ̸= yi)

(8)

for the same input xi,
fθ(xi)
ln 2 can be viewed as

a constant. Therefore, the gradient penalty of the
new entity over the old entity is proportional to the
probability value of the old entity.

B Datasets

Table 3 shows the detailed description of each
dataset. Table 4 shows the format of inputs and
outputs for Sequence labeling task. FL means the
full ground-truth label for all steps. During the
learning process, we will label unseen entities as
non-entities [O].

C Baselines

The introduction about the baselines in the experi-
ment and their settings are as follows:

• SelfTrain (Rosenberg et al., 2005; De Lange
et al., 2019): SelfTrain utilizes the labels gen-
erated by the predictions of the old model on
the new dataset, combined with the labels of
the new entities, to guide the training of the
new model.

• ExtendNER (Monaikul et al., 2021): Extend-
NER introduces knowledge distillation to re-
view the knowledge of old entities, aiming to
align the outputs of the old and new models
for old entities using KL divergence. In con-
trast to SelfTrain, ExtendNER retains specific

structural information through the probability
distribution of the model output. The coeffi-
cient of the distillation loss λ = 2.

• CFNER (Zheng et al., 2022): CFNER pro-
poses a unified causal framework to extract
causality from both new entity types and the
Other-Class and employs curriculum learning
to alleviate the impact of label noise and in-
troduce a self-adaptive weight to balance the
causal effects between new entity types and
the Other-Class. The number of matched to-
kens K = 3, the initial value of balancing
weight λbase = 2 and the initial value of con-
fidence threshold δ1 = 1.

• DLD (Zhang et al., 2023c): DLD decomposes
a prediction logit into two terms, measuring
the probability of an input token belonging to
a specific entity type or not. The coefficient
of the distillation loss λ = 2.

• RDP (Zhang et al., 2023b): RDP introduces
a task relation distillation scheme with two
aims: ensuring inter-task semantic consis-
tency by minimizing inter-task relation dis-
tillation loss and enhancing model predic-
tion confidence by minimizing intra-task self-
entropy loss. The coefficient of inter-task re-
lation distillation loss λ1 = 0.3 and the coeffi-
cient of intra-task self-entropy loss λ2 = 0.1.

• OCILNER (Ma et al., 2023): OCILNER intro-
duces a novel representation learning method
aimed at acquiring discriminative represen-
tations for entities and non-entities, which
can dynamically identify entity clusters within
non-entities. The threshold for relabeling sam-
ples βi = 0.98− 0.05 ∗ (t− i), where t is the
current step, and i is the id of the old task.

• ICE (Liu and Huang, 2023): ICE freezes the
backbone model and the old entity classifiers,
focusing solely on training new entity classi-
fiers. This approach includes two methods:
ICE_O and ICE_PLO. The former combines
logits of non-entity with logits of new enti-
ties for output probability computation during
training, while the latter combines all previous
logits with new entity logits.

• CFPD (Zhang et al., 2023a): CPFD intro-
duces a pooled feature distillation loss that
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Table 3: Detailed description of each dataset.

Dataset Entity Type Sample Entity Type Sequence (Alphabetical Order)

AGE, CITY, COUNTRY, DATE, DOCTOR, HOSPITAL,

i2b2 16 141k
IDNUM, MEDICALRECORD, ORGANIZATION,
PATIENT, PHONE, PROFESSION, STATE, STREET,
USERNAME, ZIP

CARDINAL, DATE, EVENT, FAC, GPE, LANGUAGE,

OntoNotes5 18 77k
LAW, LOC, MONEY, NORP, ORDINAL, ORG,
PERCENT, PERSON, PRODUCT, QUANTITY, TIME,
WORK_OF_ART

MAVEN 178 124k
ACTION, ARREST, BRINGING, CONTROL, EXPANSION,
INCIDENT, INFLUENCE, VIOLENCE etc.

Table 4: Examples of inputs and outputs for each dataset.

Inputs Xinhua news agency , Beijing , August 31st
FL B-ORG I-ORG I-ORG O B-GPE O B-DATE I-DATE

Inputs There were no direct effects of the earthquake ’ s

FL O O O O B-Influence O O B-Catastrophe O O
shaking due to its low intensity.
B-Motion O O O O O

adeptly balances the trade-off between retain-
ing knowledge of old entity types and acquir-
ing new ones and a confidence-based pseudo-
labeling method for the non-entity type. The
balancing weight λ = 2.

D Metrics

The last step Macro F1 result AT and the average
Macro F1 result Ā are defined as follows:

at =
1

|Dt|

|Dt|∑

i=1

1(argmax
y′∈Yi

Φt,y′(xi) = yi), (9)

where at represents the F1 score of the tth entity,
|Dt| repesents the number of entities and 1(·) is the
indicator for Φt,y′(xi) = yi.

AT =
1

N

N∑

j=1

aj , (10)

where AT stands for the MacroF1 score at incre-
mental step t.

Ā =
1

N

N∑

k=1

ATk
, (11)

where Ā stands for the average MacroF1 score for
all incremental steps.
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Figure 11: The F1 score and probability distributions of
class "DATE" in OntoNotes5 with incremental steps.

E Additional Experimental Results

Table 6 highlights the superiority of our method IS3
over previous methods on MAVEN. However, due
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to its larger number of classes, the performance
of the model decreases in subsequent incremen-
tal steps. Table 7 shows the results of the experi-
ments conducted on OntoNotes5. Our method IS3
achieves improvements over the previous SOTA
ranging from 5.47% to 10.52% in MarcoF1 score,
and 3.89% to 6.53%, under four settings (FG-1-PG-
1, FG-2-PG-2, FG-8-PG-1, and FG-8-PG- 2) of the
OntoNotes5 dataset.

As shown in Figure 11, the previous method ex-
hibits a rapid decrease in probability distribution
with increasing incremental steps, coinciding with
a decline in the F1 score. In contrast, our approach
IS3 effectively mitigates the model’s penalization
of old entities, thereby maintaining good perfor-
mance.

Table 5: The comparison of training time and trainable
parameters for each task on OntoNotes5.

# Time (Min) # Trainable Params each Task

SEQ 150 109M
SelfTrain 276 109M

ExtendNER 182 109M
CFNER 512 109M

DLD 158 109M
RDP 188 109M

OCILNER 420 109M
ICE 126 28K

CPFD 282 109M

IS3(Ours) 155 109M

Table 6: Comparisons with state-of-the-art methods on
MAVEN. The best results are highlighted in bold and
the second best results are underlined.

Methods
MAVEN

AT Ā
SEQ 3.69 ± 0.17 11.75 ± 0.13

SelfTrain 35.33 ± 0.41 45.42 ± 0.76

ExtendNER 13.81 ± 0.56 24.92 ± 0.74

CFNER 22.74 ± 1.52 34.77 ± 1.38

DLD 14.18 ± 0.37 24.98 ± 0.43

RDP 28.76 ± 2.44 38.01 ± 1.09

OCILNER 21.70 ± 1.77 30.13 ± 0.75

ICE_PLO 39.01 ± 0.51 44.02 ± 0.96

ICE_O 38.16 ± 1.26 43.43 ± 1.31

CPFD 27.28 ± 1.39 41.31 ± 1.31

IS3 (Ours) 40.15 ± 0.38 48.16 ± 0.16

We compare the runtime and the number of
updated parameters in Table 5. The results indi-

cate that the proposed IS3 requires less than 5%
more training time than SEQ and less training time
than most previous methods, such as CFNER and
CPFD.
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Table 7: Comparisons with state-of-the-art methods on the OntoNotes5 dataset using the bert-base-cased model.
The best results are highlighted in bold and the second best results are underlined.

Dataset Methods
FG-1-PG-1 FG-2-PG-2 FG-8-PG-1 FG-8-PG-2

AT Ā AT Ā AT Ā AT Ā

OntoNotes5

FT 1.65 ± 0.11 12.91 ± 0.41 4.49 ± 0.44 20.69 ± 0.25 1.42 ± 0.08 12.41 ± 0.38 3.97 ± 0.37 21.45 ± 0.28

SelfTrain 38.32 ± 5.29 47.07 ± 1.67 52.23 ± 0.43 56.14 ± 0.88 38.26 ± 3.44 49.31 ± 2.92 51.71 ± 1.39 58.51 ± 1.04

ExtendNER 28.62 ± 2.42 42.20 ± 2.16 45.05 ± 0.61 52.30 ± 1.03 25.71 ± 5.67 40.34 ± 3.64 44.82 ± 2.42 55.25 ± 1.58

CFNER 44.76 ± 0.28 50.76 ± 1.61 49.29 ± 2.25 55.94 ± 1.37 46.81 ± 0.99 54.91 ± 0.69 51.41 ± 2.21 60.41 ± 0.43

DLD 22.22 ± 5.38 38.47 ± 4.73 44.88 ± 0.78 51.91 ± 1.15 25.25 ± 1.69 41.43 ± 1.01 44.53 ± 1.66 55.17 ± 1.18

RDP 38.25 ± 5.02 48.14 ± 2.60 48.55 ± 3.54 54.81 ± 2.57 39.31 ± 4.29 52.28 ± 3.11 50.34 ± 1.86 59.89 ± 0.83

OCILNER 14.91 ± 4.39 24.72 ± 3.21 26.31 ± 2.38 35.96 ± 1.76 19.39 ± 2.98 30.41 ± 2.98 23.28 ± 4.21 30.27 ± 4.46

ICE_PLO 39.69 ± 0.36 43.76 ± 0.16 43.81 ± 0.34 46.38 ± 0.36 42.69 ± 0.09 46.95 ± 0.21 44.66 ± 0.61 47.72 ± 0.61

ICE_O 38.87 ± 0.37 43.51 ± 0.23 40.82 ± 0.35 44.71 ± 0.28 45.98 ± 0.28 49.11 ± 0.49 48.01 ± 0.49 49.91 ± 0.57

CPFD 33.44 ± 1.18 44.73 ± 0.69 43.48 ± 0.72 50.79 ± 1.05 41.77 ± 2.79 52.46 ± 1.02 48.36 ± 2.35 58.60 ± 1.99

IS3 (Ours) 50.23 ± 0.94 54.65 ± 0.84 57.23 ± 1.19 58.25 ± 0.56 56.11 ± 1.15 61.44 ± 0.11 62.23 ± 0.10 66.01 ± 0.74

Table 8: Comparisons with state-of-the-art methods on the i2b2 dataset using the roberta-base model. The best
results are highlighted in bold and the second best results are underlined. The average of each incremental step is
provided in Figure 5.

Dataset Methods
FG-1-PG-1 FG-2-PG-2 FG-8-PG-1 FG-8-PG-2

AT Ā AT Ā AT Ā AT Ā

i2b2

FT 2.68 ± 1.19 14.36 ± 0.81 7.39 ± 1.58 23.02 ± 0.42 1.91 ± 0.38 15.56 ± 1.77 6.00 ± 0.49 25.01 ± 0.73

SelfTrain 17.58 ± 1.60 37.95 ± 1.10 25.84 ± 3.26 43.80 ± 3.24 6.97 ± 1.15 28.73 ± 0.48 27.85 ± 3.72 45.80 ± 2.37

ExtendNER 17.68 ± 1.75 34.53 ± 2.58 26.84 ± 1.63 44.33 ± 3.21 9.49 ± 1.07 28.80 ± 0.72 22.27 ± 7.08 40.07 ± 5.62

CFNER 32.65 ± 1.87 47.06 ± 2.70 43.12 ± 2.84 54.61 ± 2.40 33.52 ± 0.78 38.61 ± 1.56 36.19 ± 7.72 49.46 ± 6.09

DLD 16.26 ± 4.79 34.02 ± 3.46 27.12 ± 7.30 45.81 ± 3.26 5.54 ± 1.68 27.80 ± 1.39 20.39 ± 4.46 38.43 ± 2.58

RDP 21.70 ± 0.88 40.71 ± 2.86 35.38 ± 2.79 53.81 ± 0.98 26.49 ± 6.16 39.54 ± 3.96 42.98 ± 4.06 56.25 ± 1.44

OCILNER 9.27 ± 4.60 27.98 ± 1.94 15.14 ± 9.85 34.44 ± 4.11 15.89 ± 8.39 35.54 ± 7.28 21.26 ± 8.70 39.21 ± 5.01

ICE_PLO 29.89 ± 0.23 36.65 ± 0.32 32.14 ± 0.36 37.34 ± 0.31 34.34 ± 0.84 41.07 ± 0.91 39.88 ± 0.71 44.34 ± 0.46

ICE_O 25.56 ± 0.94 35.57 ± 0.75 33.17 ± 0.27 38.16 ± 0.25 32.77 ± 1.16 40.58 ± 1.30 36.95 ± 1.41 41.95 ± 1.44

CPFD 13.65 ± 4.16 40.81 ± 3.10 26.38 ± 1.72 49.82 ± 1.41 4.59 ± 0.86 31.76 ± 2.39 25.23 ± 9.73 48.85 ± 3.37

IS3 (Ours) 34.14 ± 1.45 51.61 ± 1.60 47.91 ± 2.76 59.22 ± 1.01 42.99 ± 3.01 52.25 ± 1.96 52.36 ± 3.42 60.99 ± 1.49

Table 9: Comparisons with state-of-the-art methods on the OntoNotes5 dataset using the roberta-base model. The
best results are highlighted in bold and the second best results are underlined.

Dataset Methods
FG-1-PG-1 FG-2-PG-2 FG-8-PG-1 FG-8-PG-2

AT Ā AT Ā AT Ā AT Ā

OntoNotes5

FT 1.75 ± 0.11 12.43 ± 0.11 5.07 ± 0.32 20.85 ± 0.27 1.32 ± 0.26 12.03 ± 0.20 4.97 ± 0.33 20.82 ± 0.14

SelfTrain 38.88 ± 6.38 47.57 ± 2.30 54.02 ± 0.76 55.78 ± 1.87 39.82 ± 5.23 49.05 ± 2.34 51.77 ± 2.28 57.71 ± 0.48

ExtendNER 23.29 ± 5.15 36.77 ± 6.26 44.00 ± 2.82 50.06 ± 1.44 24.12 ± 1.85 40.39 ± 3.00 44.48 ± 5.62 53.50 ± 2.86

CFNER 41.86 ± 2.78 48.73 ± 3.11 54.24 ± 1.04 58.07 ± 1.71 51.51 ± 2.06 55.65 ± 0.56 52.23 ± 2.75 58.95 ± 4.11

DLD 25.25 ± 4.17 37.24 ± 6.06 46.58 ± 1.78 50.93 ± 0.54 24.04 ± 2.54 40.63 ± 0.91 45.89 ± 1.27 54.89 ± 0.38

RDP 34.84 ± 2.92 45.90 ± 0.91 46.95 ± 1.49 55.02 ± 0.73 41.58 ± 3.37 53.69 ± 0.53 52.54 ± 0.44 62.03 ± 1.05

OCILNER 27.98 ± 5.18 29.86 ± 4.28 29.64 ± 4.27 37.24 ± 2.79 29.94 ± 1.60 42.51 ± 1.13 30.90 ± 2.41 45.54 ± 0.63

ICE_PLO 33.66 ± 0.66 37.21 ± 0.36 36.17 ± 0.07 37.71 ± 0.59 36.90 ± 0.19 40.33 ± 0.37 38.83 ± 0.34 41.10 ± 0.30

ICE_O 30.46 ± 1.69 33.41 ± 1.91 35.05 ± 0.92 37.17 ± 1.12 37.38 ± 1.14 40.22 ± 0.83 40.69 ± 0.21 42.25 ± 0.47

CPFD 29.50 ± 1.47 43.12 ± 2.18 41.01 ± 2.92 51.56 ± 0.52 40.58 ± 2.50 51.64 ± 2.52 50.70 ± 3.65 61.14 ± 1.57

IS3 (Ours) 48.87 ± 1.72 54.88 ± 0.41 55.93 ± 0.55 58.48 ± 0.36 52.14 ± 1.48 59.33 ± 0.32 61.64 ± 1.58 66.61 ± 0.74
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