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Abstract

The integration of Large Language Models
(LLMs) and knowledge graphs (KGs) has
achieved remarkable success in various natural
language processing tasks. However, existing
methodologies that integrate LLMs and KGs
often navigate the task-solving process solely
based on the LLM’s analysis of the question,
overlooking the rich cognitive potential inher-
ent in the vast knowledge encapsulated in KGs.
To address this, we introduce Observation-
Driven Agent (ODA), a novel AI agent frame-
work tailored for tasks involving KGs. ODA
incorporates KG reasoning abilities via global
observation, which enhances reasoning capa-
bilities through a cyclical paradigm of obser-
vation, action, and reflection. Confronting the
exponential explosion of knowledge during ob-
servation, we innovatively design a recursive
observation mechanism. Subsequently, we in-
tegrate the observed knowledge into the ac-
tion and reflection modules. Through extensive
experiments, ODA demonstrates state-of-the-
art performance on several datasets, notably
achieving accuracy improvements of 12.87%
and 8.9%. Our code and data are available on
https://github.com/lanjiuqing64/KGdata.

1 Introduction

Large language models (LLMs) (Touvron et al.,
2023; Scao et al., 2022; Muennighoff et al., 2022;
Brown et al., 2020) have exhibited extraordinary
capabilities across a variety of natural language pro-
cessing tasks. Despite their impressive accomplish-
ments, LLMs often struggle to provide accurate
responses to queries that necessitate specialized
expertise beyond their pre-training content. In re-
sponse to this limitation, a natural and promising
approach involves the integration of external knowl-
edge sources, such as knowledge graphs (KGs), to

*Equal contribution
†Corresponding author

Figure 1: An example of LLM integrating with KG. Ob-
served entities are shown in white, while non-observed
entities are displayed in gray. Entities selected by the
agent to answer the question are highlighted in yellow.

augment LLM reasoning abilities. KGs provide
structured, explicit, and explainable knowledge rep-
resentations, offering a synergistic method to over-
come the intrinsic constraints of LLMs. The fusion
of LLMs with KGs has garnered significant interest
in recent research (Pan et al., 2024), underlying a
vast array of applications (Zhang et al., 2023; Do
et al., 2024; Sun et al., 2023b).

Existing methodologies for solving tasks that
integrate KGs with LLMs can be categorized into
two groups. The first one involves retrieving rele-
vant triples from KGs in response to specific ques-
tions (Wang et al., 2023b; Luo et al., 2024; Jiang
et al., 2023). The second part adopts an explore-
exploit strategy, directing the knowledge utilization
process within the graph according to the ques-
tion (Sun et al., 2023b; Guo et al., 2023). However,
both categories navigate the task-solving process
by merely relying on the LLM’s analysis of the
question, overlooking the rich cognitive potential
inherent in the abundant knowledge encapsulated
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in KGs. KGs, which store a wealth of informative
and symbolic facts, should deeply participate in the
reasoning process together with LLM rather than
being merely treated as a static repository of knowl-
edge (Pan et al., 2024). As the example in the upper
panel of Figure 1, LLM analyzes the question and
navigates towards Narrative location relation of
entity The Call of The Wild. However, this entity
has many neighboring entities with that relation,
leading LLM to incorrectly infer Canada as the
answer. In contrast, the bottom panel demonstrates
how KG provides key patterns that reveal both The
Call of The Wild and White Fang share the loca-
tion Yukon. If LLM could observe this information
beforehand, it would precisely guide its reasoning
process towards the correct answer (as shown in
the bottom panel). Therefore, LLM should adopt
an overall observation to incorporate the extensive
knowledge and intricate patterns embedded within
the KG. Achieving this objective presents two pri-
mary challenges: firstly, a global observation of
the KG can result in an exponential growth in the
number of triples. As shown in the upper panel of
Figure 1, fully processing all 3-hop connections for
The Call of the Wild is impractical. Secondly, the
integration of such comprehensive observation into
the existing reasoning paradigms of LLMs presents
another challenge. How to combine the observa-
tion with the reasoning process of LLM matters for
solving the tasks.

Motivated by this, we introduce a novel frame-
work, the Observation-Driven Agent (ODA), aimed
at sufficiently and autonomously integrating the ca-
pabilities of both LLM and KG. ODA serves as
an AI Agent specifically designed for KG-centric
tasks. ODA engages in a cyclical paradigm of ob-
servation, action, and reflection. Within ODA, we
design a novel observation module to efficiently
draw autonomous reasoning patterns of KG. Our
observation module avoids the problem of expo-
nential growth of triples via recursive progress.
This approach ensures ODA integrating abilities
of KG and LLM while mitigating the challenges
associated with excessive data in KG, improving
the efficiency and accuracy. Following the obser-
vation phase, ODA takes action by autonomously
amalgamating insights derived from LLM infer-
ences with the observed KG patterns. ODA can
perform actions of three distinct types: Neighbor
Exploration, Path Discovery, and Answering. Sub-
sequently, ODA reflects on its internal state, con-
sidering both the outcomes of its actions and the

prior observations. This iterative process continues
until ODA accomplishes the task at hand.

We conduct extensive experiments to testify
to the effectiveness of ODA on four datasets:
QALD10-en, T-REx, Zero-Shot RE and Creak.
Notably, our approach achieved state-of-the-art
(SOTA) performance compared to competitive
baselines. Specifically, on QALD10-en and T-REx
datasets, we observed remarkable accuracy im-
provements of 12.87% and 8.9%, respectively. We
conclude the contributions as follows:

• We propose ODA, an AI Agent tailored for
KG-centric tasks. ODA conducts observation
to incorporate the reasoning ability of KG.

• We design action and reflection modules that
integrate observation into LLM reasoning.
This strategy leverages the autonomous rea-
soning of KG and LLM in synergy.

• We conduct experiments on four datasets and
achieve SOTA performances.

2 Methods

In this work, we aim to solve tasks associated with
KG. Let q represent a user question. The task T can
be defined as generating an answer Y given a ques-
tion q, task-relevant entities E = {e0, e1, ..., ek},
and a KG denoted as G. Formally, the task T can
be expressed as:

T : (q, E), G → Y

Employing an iterative approach, ODA tackles
the challenges inherent in KG-centric tasks. In con-
trast to existing methods that couple LLMs and
KGs and rely solely on analyzing the LLM’s query,
ODA autonomously integrates observed knowl-
edge from the KG into the entire reasoning process,
resulting in more informed decisions. To achieve
this objective, our ODA system, illustrated in Fig-
ure 2, primarily comprises three key modules for
task resolution:

• Observation: This module efficiently ob-
serves and processes relevant knowledge from
the KG environment. In each iteration i,
it constructs an observation subgraph (de-
noted as Oi). By leveraging insights and
patterns gleaned from the KG, this subgraph
is autonomously incorporated into a reason-
ing LLM. This synergistic integration equips
ODA with enhanced capabilities from both
the LLM and KG, allowing it to tackle tasks
more effectively.
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Figure 2: The overall framework of ODA.

• Action: Drawing upon both the observation
subgraph Oi and ODA memory (denoted as
M<i), the action module,represented by ai,
strategically selects the most suitable action
to execute on the KG, ensuring the accurate
answering of the question.

• Reflection: Utilizing the observation sub-
graph Oi, the reflection module provides feed-
back by reflecting on the knowledge obtained
from the action step. The reflected knowledge
is then stored in memory Mi for the next iter-
ation, facilitating continuous reasoning.

Through this iterative process, ODA dynamically
updates its observation subgraph Oi and memory
Mi at each iteration i. Each module is discussed in
detail in the following sections.

2.1 Observation
The observation module is designed to inspect
global KG knowledge and navigate the autonomous
reasoning process with the KG environments. At
each iteration i, it leverages task-relevant entities
Ei and a question q to generate an observation sub-
graph Oi. This process can be formulated as:

Oi = Observation([Ei, q])

Initially, the task-relevant entities are populated
with the entities embedded within the question q.

For KG-centric tasks, the observation incurs the
problem of an explosive number of nodes. To ad-
dress the scalability challenge during observation
subgraph updates, we propose a D-turn observe

strategy, where D represents the maximum hop
depth. Each turn has two steps: update and refine.
The update step focuses on expanding the subgraph,
while the refining step ensures its appropriate size
without loss of important information.

For each entity e ∈ Ei, the observation mod-
ule initializes the observation entities as a set
Ed

o = {e} at hop depth d, where d represents the
current search depth within the KG. The two-step,
update and refine, iterates for each entity e until D
is reached. The specific details are described as:

Algorithm 1 Observation
Require: Question q, limit D, N , and P

Initialize task-relevant entities Ei with the en-
tities in q
for e ∈ Ei do

Set d = 0
Initialize observation entities Ed

o = {e}
while d < D do

for entity ∈ Ed
o do

Extract the neighboring triples
end for
for (r, t) ∈ triples do

Cosine similarity(q,r + t)
end for
Sort similarity scores of triples
Append top N triples to Oi

Extract top P% triples from top N
Update Ed

o with t in top P%
Increment d

end while
end for
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Figure 3: An example workflow of ODA. In this case, ODA initiates the obervation with entity Johann Wolfgang
von Goethe. During the first iteration on the left side, the Neighbor Exploration of Johann Wolfgang von Goethe
is selected, and the reflected triple (Johann Wolfgang von Goethe, unmarried Partner, Lili Schöneman) is stored
in memory. Subsequently, The observation of Lili Schöneman then guides ODA to choose Neighbor Exploration
action, and leads to the retention of the triple (Lili Schöneman, place of birth, Offenbach am Main) in memory,
as shown on the right side. Once sufficient knowledge has been accumulated, ODA triggers the Answer action,
correctly identifying Offenbach am Main as the answer.

Update:

• For each entity e in Ed
o , neighboring triples

are extracted from KG. Each triple takes the
form [e, r, t], where r signifies the relation,
and t denotes the tail entity.

• The similarity score between the question and
the combined representation of r and t, is com-
puted by measuring the cosine similarity of
their embeddings*:

Cosine Similarity(vq,vr+t) =
vq · vr+t

∥vq∥∥vr+t∥

• All triples associated with entities in E are
collectively sorted in descending order based
on their similarity scores.

• The Top-N triples are added to the observa-
tion subgraph Oi.

Refine:

*We use the GPT text-embedding-ada-002 model from
OpenAI for encoding.

• The Top-N triples are further refined by re-
taining only the top P% with the highest sim-
ilarity scores.

• The tail entities from the refined top P%
triples are identified as the starting observa-
tion entities Ed

o for the next iteration.

2.2 Action

Harnessing the power of an LLM, the action mod-
ule crafts strategic prompts to generate optimal
actions. Based on its memory M<i, observation
subgraph Oi, and historical actions a<i, the ODA
selects the most accurate action ai.

ai = Action([Oi, a<i,M<i])

We propose three core actions designed to em-
power ODA :

• Neighbor Exploration: This action explores
the KG neighborhood of task-relevant entities
Ei and retrieves all neighboring triples. This
helps build context and understand intercon-
nectedness within the KG for ODA .
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• Path Discovery: Given two entities in task-
relevant entities Ei, this action searches for
all possible paths connecting them. Each path
consists of interconnected triples, allowing
the ODA to explore various connections and
potentially uncover hidden relationships.

• Answer: This action responds to the question
only if the required information is present in
memory M<i.

Upon selecting an answer action, ODA halts the
iterative loop of observation, action, and reflection.
Leveraging the reliable knowledge within memory
M<i, it can then directly formulate the answer to
the question. Alternatively, if a Neighbor Explo-
ration or Path Discovery action is selected, ODA
strategically extracts relevant knowledge from the
KG as a set of triples. These extracted triples are
then fed into the subsequent reflection step for fur-
ther processing. The prompt used here can be found
in Table 7.

2.3 Reflection
The reflection module plays a crucial role in eval-
uating the triples generated from the action step
and subsequently updating ODA memory Mi. De-
signed specifically for KG tasks, memory Mi

adopts a subgraph format consisting of a network
of paths that align with the inherent structure of
KG, aimed at optimizing efficiency and relevance.
By integrating the observation subgraph Oi and
existing memory M<i autonomously, the reflection
module provides invaluable feedback that guides
future decision-making. This process can be for-
malized as:

Mi = Reflection([Oi, ai,M<i])

Given that memory Mi is structured as a net-
work of paths, the reflection module navigates these
paths to identify the first suitable one for integrat-
ing the reflected triple. This suitability arises from
aligning the tail t of the last triple in the selected
path with the entity e of the reflected triple. If a
matching path is found, the reflected triple is ap-
pended. Otherwise, a new path is created based on
the reflected triple. The maximum size of reflected
triples is denoted as K.

Subsequently, the tail entities in the reflected
triples are designated as the task-relevant entities
for the next iteration. The specific prompt descrip-
tion used for the reflection module is provided in
Table 8.

The observation, action, and reflection modules
collaborate iteratively until either the Answer ac-
tion is triggered or the maximum iteration limit is
reached. Figure 3 shows how observation, action,
and reflection work together.

3 Experiments

Dataset Test Entity Type License

QALD10-en 333 396 Multi-hop MIT License
T-REx 5000 4943 Slot-Filling MIT License
Zero-Shot RE 3724 3657 Slot Filling MIT License
Creak 1371 516 Fact Checking MIT License

Table 1: Dataset statistics. Entity stands for the entity
size derived from all the question within the datasets.

3.1 Dataset
To evaluate the performance of our ODA , we con-
duct experiments on four diverse KBQA datasets
encompassing various task types: QALD10-en
(Perevalov et al., 2022) for multi-hop reasoning,
Creak (Onoe et al., 2021) for fack checking, and
T-REx (Elsahar et al., 2018) and Zero-Shot RE
(Petroni et al., 2021) for slot filling. Detailed speci-
fications for each dataset are provided in Table 1.
The Hits@1(Sun et al., 2019) accuracy with exact
match is utilized as our evaluation metric.

3.2 Setup
We utilized the GPT-4 (OpenAI, 2023) model as the
ODA via the OpenAI API. Throughout our experi-
ments, we consistently configured the temperature
value of GPT-4 to 0.4 and set the maximum token
length to 500.

For the observation step, we tuned key parame-
ters based on preliminary experiments. we set Pt

to 10 and Nt to 50. Furthermore, the ODA loop
was capped at a maximum of 8 iterations. Lastly,
the maximum hop depth D is set to 3. As for the re-
flection module, we set the size of reflected triples
K to 15.

To establish Wikidata KG database and retrieve
information from it, we employed the simple-
wikidata-db* Python library. This library provides
various scripts for downloading the Wikidata dump,
organizing it into staging files, and executing dis-
tributed queries on the data within these staged
files. Specifically, we deployed the Wikidata dump
across five AWS EC2 instances, each consisting of
a 768GB machine with 48 cores.

*https://github.com/neelguha/simple-wikidata-db
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Considering that our ODA relies heavily on con-
tinuous interaction with the KG, we discovered
that the real-time extraction of required Wikidata
knowledge on AWS achieved an average comple-
tion time of 50 seconds per question-answer pair
within QALD10-en dataset. However, as the KBQA
dataset expanded, the cost of using the Wikidata
database on AWS became prohibitively expensive.
Consequently, to address the computational ex-
penses involved, we devised a solution by gener-
ating an offline subgraph for each KBQA dataset.
This offline subgraph captures all the triples within
a 3-hop radius of the entities in each dataset, in-
cluding the properties of both the entities and the
relations involved. Notably, generating such a sub-
graph for the T-REx dataset, with its 4943 entities
(as listed in Table 1), takes approximately 54 min-
utes and 42.834 seconds in practice.

3.3 Baseline Models
To comprehensively evaluate ODA effectiveness,
we conduct a rigorous benchmark against several
SOTA models across diverse categories. The com-
parison encompasses various models, starting with
prompt-based approaches that do not utilize ex-
ternal knowledge. These include direct answer-
ing with GPT-3.5 and GPT-4, as well as the Self-
Consistency (Wang et al., 2023c) and CoT (Sun
et al., 2023b). On the other hand, Kownledge-
combined models are considered, which incorpo-
rate fine-tuned techniques such as SPARQL-QA
(Santana et al., 2022), RACo (Yu et al., 2022),
RAG (Petroni et al., 2021) and Re2G (Glass et al.,
2022). Additionally, there is ToG (Sun et al.,
2023a) model, which integrates LLM with KG to
bolster question-answering proficiency.

3.4 Main Result
Our ODA method outperforms existing methods,
as shown in Table 2. On average, our method
achieves an accuracy gain of up to 19.58% com-
pared to direct answering with GPT-4, 19.28% com-
pared to fine-tuned models, and 7.09% compared
to TOG. These results demonstrate the efficiency
and effectiveness of our method in comparison to
other state-of-the-art methods.

Furthermore, our ODA significantly outper-
forms the prompt-based methods across various
datasets, particularly showing an improvement
of 65.50% and 23.77% on Zero-Shot REx and
QALD10-en , respectively. These results underscore
the importance of leveraging external knowledge

graphs for reasoning and completing the question-
answering task.

Compared to the fine-tuned method, our
ODA method demonstrates superior performance.
Specifically, our method achieves a performance
gain of 21.27% for the QALD10-en dataset, 6.99%
for the Creak dataset, and 50.56% for the
Zero-Shot RE dataset. Notably, this interaction
between the LLM and KG, as our method employs,
proves more effective than data-driven fine-tuned
techniques, despite requiring no explicit training.

Our ODA method exhibits significant per-
formance gains over the ToG method across
most datasets, with improvements of 12.87%
(QALD10-en), 8.9% (T-REx), and 7% (Zero-Shot
RE), despite both methods leveraging large lan-
guage models and knowledge graphs. This per-
formance disparity highlights the critical role of
our observation module and the effectiveness of
autonomously incorporating reasoning from KG.
Specifically, our method demonstrates significantly
stronger performance on the QALD10-en dataset,
known for its multi-hop and complex reasoning
requirements. This achievement underscores our
ODA ability to exploit the rich knowledge and
patterns within KG effectively, combining the au-
tonomous reasoning strengths of both LLM and
KG to tackle complex questions successfully.

4 Discussion

To better understand the key factors influenc-
ing our ODA, we conducted extensive analy-
sis experiments. To conserve computational re-
sources, we kept the previously mentioned datasets
(QALD10-en, Creak, T-REx, and Zero-Shot RE)
but randomly sampled 400 examples each for
Creak, T-REx, and Zero-Shot RE.

4.1 Effect of Observation

To assess the efficacy of the observation module,
we conducted comprehensive experiments with the
model without observation. During the action step,
ODA selects the action only based on the memory.
Subsequently, the reflection step reflects on the
triples outputted by the action and updates memory
without the guide from observation.

A statistical comparison was performed to evalu-
ate the performance of the ODA with and without
observation across all datasets (see Table 3). The
results show that the ODA with observation out-
performs the ODA without observation, with an
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Method QALD10-en Creak T-REx Zero-Shot
RE

Average

w.o. Knowledge

Direct answering(GPT3.5) 44.74 90.00 37.78 37.14 52.42
Direct answering(GPT4) 57.10 94.52 57.72 55.50 66.21
Self-Consistency(GPT3.5)(Wang et al., 2023c) 45.30 90.80 41.80 45.40 55.83
COT(GPT3.5)(Sun et al., 2023a) 42.90 90.10 32.00 28.80 48.45

w.t. Knowledge / Fine-tuned

SOTA 45.401 88.202 87.703 44.744 66.51

w.t. Knowledge / Zero-Shot (GPT-4)

TOG-R (Sun et al., 2023a) 54.70 95.40 75.50 86.90 78.13
TOG (Sun et al., 2023a) 53.80 95.60 77.10 88.30 78.70
ODA (Ours) 66.67 95.19 86.00 95.30 85.79

Table 2: Performance Comparison of different methods. Bold scores stand for best performances among all
GPT-based zero-shot methods. The fine-tuned SOTA includes: 1: SPARQL-QA(Santana et al., 2022), 2: RACo(Yu
et al., 2022), 3: Re2G(Glass et al., 2022), 4:RAG(Petroni et al., 2021).

average improvement of 3.14%. Specifically, for
QALD10-en dataset, the ODA with observation out-
performs the ODA without observation by 5.41%.
Since QALD10-en involves multi-hop reasoning, the
improved performance of the ODA with observa-
tion indicates that the observation module enhances
the reasoning ability of the agent, enabling more
accurate action selection and reflection.

We can further illustrate the benefits of the obser-
vation module with a practical case. In this scenario
(see Table 6), question is Where are both The Call
of the Wild and White Fang set, the most two fa-
mous works of Jack London?. Without observation,
ODA generated the memory, such as (The Call of
the Wild, narrative location, Canada), ultimately
produced the wrong answer of Canada. However,
with the observation module, the ODA correctly
reasons the memory,such as (The Call of the Wild,
narrative location, Yukon), (White Fang, narrative
location, Yukon). As a result, the ODA with ob-
servation provides the correct answer, Yukon. This
case exemplifies how the observation module im-
proves the accuracy of action selection and reflec-
tion, consequently enhancing the reasoning ability
of ODA .

By incorporating observation information, ODA
reasoning power undergoes a dramatic leap, there-
fore generate an accurate answers. This boost
stems from the synergistic interplay between the ob-
servation module, harnessing the KG’s autonomous
reasoning capabilities, and LLM, which further am-
plifies those strengths.

4.2 Effect of Observation on Reflection

In this section, we discuss the impact of observa-
tion on reflection module. Three non-observation
reflection methods were designed to verify whether
observation can enhance the effectiveness of reflec-
tion. The similarity-based involves reflecting on the
triples from action steps by calculating similarity.
In this approach, triples are first sorted based on the
similarity score between the r+ t and the question.
The top-K triples are then selected and stored in
memory for the next iteration. The random-based
method randomly picks K triples from the action’s
output and stores them in memory. Finally, the
generated-fact method creates K natural language
question-related facts for storage. All methods use
a setting of K = 15.

Table 3 showcases our ODA dominance over
all three non-observation methods. It achieved an
average accuracy increase of 2.48% compared to
the similarity-based method, 6.00% compared to
the random-based method, and 3.66% compared to
the generated-fact method.

In specific scenarios (see Table 5), when an-
swering the question What is the capital of the
prefecture Tokyo?, the generated-fact method re-
sulted in problematic facts, such as Tokyo is the
capital of Tokyo, and Tokyo is the capital of Japan.
These were essentially hallucinations created by the
LLM based on the given question, which misled
the agent and resulted in incorrect answers. In con-
trast, the reflection of our ODA leveraging obser-
vation yielded factual knowledge, (Tokyo, instance
of, prefecture of Japan), (Tokyo, capital,Japan) and
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Method QALD10-en Creak T-REx Zero-Shot RE Average

Without Observation 61.26 95.50 82.00 91.75 82.63
Similarity-based Reflection 61.26 95.20 83.20 93.50 83.29
Random-based Reflection 58.56 89.00 79.50 92.00 79.77
Generated-fact Reflection 63.66 91.00 80.00 93.75 82.10
ODA 66.67 96.00 85.40 95.00 85.77

Table 3: Ablation Comparison

(Tokyo, capital, Shinjuku), consequently enabling
the ODA to answer the question correctly.

The findings of Table 3 reveal that observation
enables reflection module to generate more ac-
curate memories, which translates to improved
question-answering accuracy for ODA. This re-
sult underscores the value of both leveraging KG
autonomous reasoning capabilities and fostering
deep collaboration between KG and LLMs.

4.3 Performance across Different Backbone
Models

To evaluate the effectiveness of ODA across
various backbones, we analyzed its impact on
performance in T-REx and QALD10-en datasets.
We employed three backbones: GPT-3.5, GPT-
4 and DeepSeek-V2 (DeepSeek-AI et al., 2024).
DeepSeek-V2 stands out as a powerful, economical,
and efficient mixture-of-experts language model.
Notably, DeepSeek-V2 surpasses the performance
of LLaMA3 70B Instruct on standard benchmarks.

As evidenced by the Table 4, our ODA approach
significantly outperformed the direct answering
methods using GPT-3.5, GPT-4 and DeepSeek-V2.
Notably, ODA demonstrated a remarkable 30.4%
improvement in direct answering performance
when utilizing GPT-3.5 model on QALD10-en
dataset. This experiment suggests the generaliz-
ability of ODA across different LLMs.

Method T-REx QALD10-en

Direct answering(GPT3.5) 37.60 44.74
ODA (GPT3.5) 68.00 49.71

Direct answering(GPT4) 57.44 57.10
ODA (GPT4) 86.00 66.67

Direct answering(DeepSeek-V2) 32.86 41.14
ODA (DeepSeek-V2) 62.67 57.36

Table 4: Performance comparison using different back-
bone models

5 Related Works

KG-enhanced LLM Knowledge Graph-
enhanced Language Models utilize two primary
methodologies when tackling tasks that require
integration with KGs. The first involves the
extraction of relevant triples from KGs in response
to posed questions. Wang et al. (2023b) prompt
LLMs to generate explicit knowledge evidence
structured as triples, while Jiang et al. (2023)
develop specialized interfaces for gathering
pertinent evidence from structured data, enabling
LLMs to focus on reasoning tasks based on this
information. Baek et al. (2023) retrieve facts
related to the input question by assessing semantic
similarities between the question and associated
facts, then prepending these facts to the input.
Meanwhile, Li et al. (2023) iteratively refine
reasoning rationales by adapting knowledge from
the KG. Wang et al. (2023a) dissect complex
questions using predefined templates, retrieve
entities from the KG, and generate answers
accordingly. Luo et al. (2024) employs a planning-
retrieval-reasoning framework to generate relation
paths grounded by KGs, thereby enhancing the
reasoning capabilities of LLMs. Recently, graph
retrieve augmented generation (GRAG) has been
introduced to retrieve proper knowledge subgraphs
rather than triplets (He et al., 2024; Hu et al.,
2024; Mavromatis and Karypis, 2024). In GRAG
approaches, subgraphs are first encoded into graph
embeddings, and then retrieved based on their
similarity to the query. Hu et al. (2024) proposes
an additional step of filtering irrelevant entities
within each retrieved subgraph.

The second approach employs an explore-exploit
strategy that guides the knowledge utilization pro-
cess within the graph. Sun et al. (2023b) perform
an iterative beam search on the KG to identify the
most promising reasoning pathways and report the
outcomes. Guo et al. (2023) selectively accumu-
late supporting information from the KG through
an iterative process that incorporates insights from
the LLM to address the question. HyKGE (Jiang
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et al.) first generates a hypothesis of the question
by an LLM. Then it retrieves knowledge from the
KG according to the entities of the hypothesis and
answers the question based on the knowledge. To
deal with incomplete KG, Xu et al. (2024) add a
generation operation if some knowledge is missing.

Although these methods utilize the structural
knowledge of KG, the searching or retrieving pro-
cess is driven by the rationale of LLMs to the target
question. Our method is the first to incorporate
existing patterns in KG as a way to deeply bind the
reasoning abilities of both LLM and KG via our
novel observation mechanism.

AI Agent In the domain of AI agents, Yao et al.
(2022) utilize LLMs to interleave the generation
of reasoning traces with task-specific actions. Wu
et al. (2023) propose an adaptable and conversa-
tional agent framework. This framework can op-
erate in various modes, leveraging combinations
of LLMs, human input, and auxiliary tools, result-
ing in a flexible and versatile system. Chen et al.
(2023) focus on creating expert agents capable of
solving complex tasks.

6 Conclusion

In this work, we design ODA framework for KG-
centric tasks. In ODA, we introduce KG observa-
tion mechanism to autonomously combine the rea-
soning abilities of KG with LLM. We first propose
the observation method to mitigate the problem
of explosive number of triples in KG when tack-
ling complex tasks. Then we fuse the observation
into the action and reflection modules to further en-
hance the overall performance. We conduct exten-
sive experiments, and the results clearly illustrate
the effectiveness of our framework, highlighting
its capability to enhance performance across four
KBQA datasets, particularly in handling compli-
cated questions.

Limitation

Given the diverse nature of KG-related tasks span-
ning multiple domains and requiring a broad range
of capabilities, the implementation of a multi-agent
system is promising to significantly enhance task
performance. We leave the integration of our ob-
servation mechanism with multi-agent system to
future work.
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A Case Study

To demonstrate ODA effectiveness, we highlight
several representative cases from the QALD10-en
dataset. For improved readability, we replaced en-
tity IDs in Outputs with their corresponding names.
We selected two examples to illustrate how ODA
utilizes observation to correctly address the ques-
tion in Table 5 and Table 6.

Question The question is What is the capital of the prefecture Tokyo ?
Action Thought: The question is asking for the capital of the prefecture Tokyo.

The candidate entity ID ’Q1490’ corresponds to Tokyo. I can see from
the observation that there is a triple (Tokyo, capital, Shinjuku) which
might answer the question. However, to confirm this, I will execute a
GetNeighbor action on ’Q1490’ to get all the triples where Tokyo is the
head.
Action: GetNeighbor
Entity_id: Tokyo

Reflection Thought: The question is asking for the capital of Tokyo. From the
observation, we can see that Tokyo is the capital of Japan and it is a
prefecture of Japan. The capital of Tokyo is Shinjuku. Therefore, we
should select the triples that contain this information.
Triples: (Tokyo, instance of, prefecture of Japan), (Tokyo, capital , Shin-
juku), (Tokyo, capital, Japan)

Action Thought:The question is asking for the capital of the prefecture Tokyo.
From the reference memory, it is stated that the capital of Tokyo is
Shinjuku. Therefore, the answer to the question is Shinjuku.
Action: Answer

Answer Shinjuku

Table 5: Case 1
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Question Where are both The Call of the Wild and White Fang set, the most two
famous works of Jack London?

Action Thought: The question asks about the setting of two works, The Call
of the Wild and White Fang, both by Jack London. The observation
provides some information about the narrative locations of these works,
but to confirm and provide a specific answer, I will use the GetNeighbor
function on The Call of the Wild.
Action: GetNeighbor
Entity_id: The Call of the Wild

Reflection Thought: First, I will focus on the triples related to the locations of
the two works, The Call of the Wild and White Fang, as the question is
asking about the settings of these two novels. I will also consider the
triples related to the author, Jack London, as the question mentions him.
I will select the triples that are most directly related to the settings of the
two novels.
Triples: (The Call of the Wild, Narrative location, Yukon), (The Call
of the Wild, Narrative location, Canada), (The Call of the Wild, author,
Jack London)

Action Thought:The question asks for the setting of both The Call of the Wild
and White Fang, two notable works of Jack London. From the obser-
vation, we can see that The Call of the Wild has narrative locations in
the United States of America, Alaska, Canada, and Yukon. However,
we don’t have the narrative location for White Fang. Therefore, I will
use the GetNeighbor function on the entityID of White Fang to find its
narrative location.
Action: GetNeighbor
Entity_id: White Fang

Reflection Thought:First, I will look for triples that directly answer the question.
The question is asking for the setting of two works by Jack London,
namely, The Call of the Wild and White Fang. Therefore, I will look for
triples that contain these two works and a relation that indicates a setting
or location. From the candidate triples, I can see that there are two triples
that indicate a narrative location for White Fang: (White Fang, Narrative
location, Yukon), (White Fang, Narrative location, Canada).
Triples: (White Fang, Narrative location, Yukon), (White Fang, Narrative
location, Canada)

Action Thought:The question is asking for the locations where both The Call
of the Wild and White Fang are set. From the reference memory, I can
see that The Call of the Wild is set in the United States of America,
Alaska, Canada, and Yukon. White Fang is set in Canada and Yukon.
The common locations for both books are Canada and Yukon.
Action: Answer

Answer [Canada,Yukon]

Table 6: Case 2
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B Prompt

This section presents the prompts for the action and
reflection modules in tables 7 and 8.

Action Prompt

Neighbor Exploration &
Path Discovery

Agent Instructions:
You function as an agent that provides answers based on a knowledge
graph.
To assist you in querying the KB, use the following tools:
GetNeighbor(entityID: str) -> List[Tuple[str, str, str]]:
Description: Returns triplets containing the given entityID as the head
and its corresponding entityID as the tail.
GetPath(entityID1: str, entityID2: str) -> List[List[Tuple[str, str, str]]]:
Description: Returns all triplets linking the two given entityIDs.
Example Usage:GetPath("Q30", "Q25231") returns all triplets connecting
’Q30’ and ’Q25231’.
Data Provided to You:
Question:[Question]
Memory: [Memory]
Candidate EntityIDs: [Task-relevant EntityIDs] (Choose 1 or 2 based on
the action)
Observation: [Observation] (These serve as a reference to assist you in
selecting the appropriate entityID from the Candidate EntityIDs)
Labels: [Task-relevant entities labels]
Action History: [historical action] (Avoid these actions)
Guidelines:
Choose only one action at a time.
For GetPath, select two entityIDs. For GetNeighbor, select one entityID.
If there are less than 2 entityIDs available, only choose the GetNeighbor
action.

Answer You are a agent that answer questions based on the reference memory
and your knowledge.
Here are the reference memory:[Memory]. You can use it to help you
answer the quesiton.
Here is the question you are asked to answer the question:[Question].
Ensure that your answer contains one answer or a list of answer, and
each answer should be only one or several words,a phrase, a number,true
or false, or a date, no other information or descripation in answer.

Table 7: Action Prompt Description
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Field Prompt
Reflection You are an agent that provides answers based on a KG.

You queried some candidate triples [triples] from last action step and
their corresponding labels:[entities labels] from the KB based on the
question: [Question].
Now you are asked to select related triples, so you can answer the ques-
tion in the future by using them.
Here are the observation: [Obervation] for guiding you to select the right
triples from the candidate triples.
Also, here is the memory: [Memory]. You can use it to help you select
the right triples from the candidate triples.
Guidelines:
You can select less than 15 triples from the candidate triples.
Your output triples must be in the format of entityID,relationID,entityID.

Table 8: Reflection Prompt Description
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