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Abstract

Detecting temporal semantic changes of words
is an important task for various NLP appli-
cations that must make time-sensitive pre-
dictions. Lexical semantic change detec-
tion (SCD) task involves predicting whether
a given target word, w, changes its meaning
between two different text corpora, C1 and
C2. For this purpose, we propose a super-
vised two-staged SCD method that uses ex-
isting Word-in-Context (WiC) datasets. In
the first stage, for a target word w, we learn
two sense-aware encoders that represent the
meaning of w in a given sentence selected
from a corpus. Next, in the second stage, we
learn a sense-aware distance metric that com-
pares the semantic representations of a target
word across all of its occurrences in C1 and
C2. Experimental results on multiple bench-
mark datasets for SCD show that our pro-
posed method achieves strong performance in
multiple languages. Additionally, our method
achieves significant improvements on WiC
benchmarks compared to a sense-aware en-
coder with conventional distance functions.1

1 Introduction

The notion of word meaning is a dynamic one, and
evolves over time as noted by Tahmasebi et al.
(2021). For example, the meaning of the word
cell has changed over time to include cell phone
to its previous meanings of prison and related to
biology. Detection of such semantic changes of
words over time remains a challenging, yet an im-
portant task for lexicography, sociology, and infor-
mation retrieval (Traugott and Dasher, 2001; Cook
and Stevenson, 2010; Michel et al., 2011; Kutu-
zov et al., 2018). For example, in E-commerce, a
user might use the same keyword, such as scarf,
to search for different types of products based
on seasonal variations, such as silk scarves in

1Source code is available at https://github.com/
LivNLP/svp-sdml .

Figure 1: An overview of our method. Conventional
distance functions such as Cosine or Euclidean con-
sider the information of each dimension uniformly
(left), but our method considers sense-aware informa-
tion and cross-dimensional correlations (right).

spring versus woollen scarves in winter. Re-
cently, a decline in the performance of pretrained
Large Language Models (LLMs) over time has
been observed, and attributed to their training on
static snapshots (Loureiro et al., 2022; Lazaridou
et al., 2021). Recognising the words with changed
meanings enables efficient fine-tuning of LLMs
to incorporate only those with specific semantic
shifts (yu Su et al., 2022).

Detecting whether a word has its meaning
changed between two given corpora, sampled at
different points in time, requires overcoming two
important challenges, which we name as the rep-
resentational and measurement challenges.

Representational Challenge: A word can take
different meanings in different contexts even
within the same corpus. Therefore, creating a rep-
resentation for the meaning of a word across an en-
tire corpus is a challenging task compared to that
in a single sentence or a document. Prior work has
averaged static (Kim et al., 2014; Kulkarni et al.,
2015; Hamilton et al., 2016; Yao et al., 2018; Du-
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bossarsky et al., 2019; Aida et al., 2021) or con-
textualised (Martinc et al., 2020; Beck, 2020; Ku-
tuzov and Giulianelli, 2020; Rosin et al., 2022;
Rosin and Radinsky, 2022) word embeddings for
this purpose, which is suboptimal because averag-
ing conflates multiple meanings of a word into a
single vector.

Measurement Challenge: We require a distance
metric that can accurately measure the semantic
change of a target word between two given cor-
pora, using the learnt representations of the target
word from each corpus. This challenge has been
addressed in prior work using parameter-free dis-
tance functions due to the lack of labelled training
data to provide any supervision for SCD (Kutuzov
and Giulianelli, 2020; Card, 2023; Cassotti et al.,
2023; Aida and Bollegala, 2023b,a; Tang et al.,
2023).

To address those challenges, we propose
Semantic Distance Metric Learning (SDML), a
supervised two-staged SCD method. To solve
the representational challenge, we learn a sense-
aware2 encoder from sense-level supervision that
represents the meaning of a target word in a sen-
tence. Word sense information has shown to be
useful for SCD (Rachinskiy and Arefyev, 2021;
Arefyev et al., 2021; Cassotti et al., 2023; Tang
et al., 2023) and outperform word representa-
tions that encode only time (Rosin et al., 2022;
Rosin and Radinsky, 2022). Following Cassotti
et al. (2023), we use WiC (Pilehvar and Camacho-
Collados, 2019) data, annotated for word sense
discrimination for training the sense-aware en-
coder.

To solve the measurement challenge, we pro-
pose a method to learn a sense-aware distance
metric to compare two sense-aware embeddings
for a target word in sentences selected from the
two corpora. Specifically, the distance metric is
trained such that it returns a smaller value be-
tween two sentences where the target word takes
the same meaning compared to that between two
sentences which express different meanings of the
target word. We learn a distance metric that satis-
fies this criteria, using the weak-supervision pro-
vided by existing WiC datasets.

2In this paper, the term ‘sense’ refers not to strictly de-
fined senses as found in dictionaries or WordNet (Fellbaum
and Miller, 1998), but rather to the nuances of word meanings
derived from the distributional hypothesis (Harris, 1954).

Experimental results show that SDML achieves
exceptional performance in the SCD task. Re-
markably, SDML obtains performance improve-
ments of 2-5% over the current strong baselines.
While our focus is on the SCD task, we also ex-
plore the applicability of our SDML to the WiC
task. In WiC benchmarks, SDML significantly en-
hances performance in multiple languages. These
results demonstrate the effectiveness of learning
both a sense-aware encoder and a sense-aware dis-
tance metric.

2 Related Work

The diachronic semantic changes of words have
been extensively investigated by linguists to ex-
plore how meanings evolve over time (Traugott
and Dasher, 2001). In recent years, the advent
of diachronic corpora and advancements in rep-
resenting word meanings have paved the way
for automated SCD in NLP (Tahmasebi et al.,
2021). To detect semantically changed words in
time-separated corpora, unsupervised SCD meth-
ods compare word embeddings trained on the
target corpora. Many methods exist that align
vector spaces over time spanned by static word
embeddings, such as initialisation (Kim et al.,
2014), alignment (Kulkarni et al., 2015; Hamil-
ton et al., 2016), and joint learning (Yao et al.,
2018; Dubossarsky et al., 2019; Aida et al., 2021).
Likewise, methods for comparing sets of target
word representations computed as contextualised
word embeddings have also been proposed. Such
methods include comparing the average (Martinc
et al., 2020; Beck, 2020; Kutuzov and Giulianelli,
2020; Laicher et al., 2021; Giulianelli et al., 2022;
Rosin et al., 2022; Rosin and Radinsky, 2022) or
each pair of embeddings (Kutuzov and Giulianelli,
2020; Laicher et al., 2021). Additionally, Aida and
Bollegala (2023b) and Nagata et al. (2023) have
proposed methods that consider the variance in
the sets of embeddings. These unsupervised SCD
methods have been evaluated using unsupervised
SCD tasks (Del Tredici et al., 2019; Schlechtweg
et al., 2020; Kutuzov and Pivovarova, 2021).

Due to the lack of manually-labelled data for
lexical semantic change, prior work on SCD have
been limited to unsupervised approaches. A no-
table exception is XL-LEXEME (Cassotti et al.,
2023), a supervised SCD method that uses sense-
level supervision. They focused on the WiC
task (Pilehvar and Camacho-Collados, 2019) de-
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signed to detect semantic differences of a target
word in a given pair of sentences. XL-LEXEME
fine-tunes a pretrained multilingual Masked Lan-
guage Model (MLM) across multilingual WiC
datasets, and achieves strong performance in some
SCD tasks. Recent work show SCD is a chal-
lenging task for LLMs such as GPT-3.5 (Sorensen
et al., 2022; Periti et al., 2024), reporting low per-
formance even with carefully designed prompts.

3 Semantic Distance Metric Learning

Given a target word w and two corpora C1 and C2

sampled at distinct time points, the goal in SCD is
to predict a score for w that indicates the degree
of semantic change undergone by w between C1

and C2. For this purpose, we propose, SDML,
which overcomes the two challenges introduced
in § 1. Specifically, to address the representational
challenge, we first learn a sense-aware encoder in
§ 3.1. Next, to overcome the measurement chal-
lenge, we learn a sense-aware distance metric be-
tween two sense-aware representations of a target
word computed from C1 and C2, as described in
§ 3.2.

3.1 Learning Sense-Aware Encoder
Following prior work on SCD that show contextu-
alised word embeddings to outperform the static
word embeddings (Aida and Bollegala, 2023b;
Rosin and Radinsky, 2022), we represent the
meaning of a word w in a sentence s by the d-
dimensional token embedding,3 f(w, s; θ)(∈ Rd),
obtained from a pretrained MLM parametrised by
θ. Although contextualised word embeddings cap-
ture the contextual information of a word in a sen-
tence (Zhou and Bollegala, 2021), explicitly en-
coding word sense information has been shown to
improve performance in SCD tasks (Tang et al.,
2023).

For this purpose, we follow Cassotti et al.
(2023) and fine-tune the MLM on WiC. WiC con-
tains tuples (w, s1, s2, y), where the label y = 1 if
w has the same meaning in both sentences s1 and
s2, and y = 0 otherwise. We use a Siamese bi-
encoder approach (Reimers and Gurevych, 2019),
which uses two encoders to produce respective
embeddings for pairs of sentences. This archi-
tecture enables us to capture the semantic rela-
tionship between the pairs of sentences. In this

3When a word has been tokenised into multiple subto-
kens, we compute the average of the subtoken embeddings
to create the token embedding

paper, we use the same MLM encoder to ob-
tain two representations, w1 = f(w, s1; θ) and
w2 = f(w, s2; θ) for the meaning of w in s1 and
s2. We then update θ such that the contrastive loss,
ℓc (Hadsell et al., 2006) given by (1) is minimised.

ℓc(θ) =
1

2

(
yδ2 + (1− y)max(0,m− δ)2

)
(1)

Here, we set the margin m = 0.5 and δ =
1 − (w1

⊤w2)/ ||w1|| ||w2|| is the cosine dis-
tance. Note that the same encoder is used
to compute both w1 and w2 here. We use
AdamW (Loshchilov and Hutter, 2019) as the op-
timiser to minimise the contrastive loss in (1) with
the initial learning rate set to 10−5 and the weight
decay coefficient set to 0.01.

3.2 Learning Sense-Aware Distance Metrics
Armed with the sense-aware encoder trained in
§ 3.1, we are now ready to learn a sense-aware dis-
tance metric h(w1,w2;A) given by (2) that mea-
sures the semantic distance between two sense-
aware embeddings w1 = f(w, s1; θ) and w2 =
f(w, s2; θ), for w in two sentences s1 and s2, re-
spectively.

h(w1,w2;A) = (w1 −w2)
⊤A(w1 −w2) (2)

Here, A ∈ Rd×d is a Mahalanobis matrix (as-
sumed to be positive definite) that defines a
(squared) distance metric, Mahalanobis distance.
Unlike conventional distance functions such as
Euclidean distance, Mahalanobis distance weights
each dimension according to its variance and ac-
counts for cross-dimensional correlations.

We use the WiC training data instances to learn
A in (2). Specifically, we consider two types
of constraints that must be satisfied by h as fol-
lows. For instances where y = 1, the distance be-
tween w1 and w2 is required to be greater than a
distance lower bound ℓ such that, h(w1,w2) ≥
ℓ. Likewise, for instances where y = 0, the
distance between w1 and w2 is required to be
lower than a distance upper bound u such that,
h(w1,w2) ≤ u. There exists a bijection (up to a
scaling function) between the set of Mahalanobis
distances and the set of equal mean (denoted by
µ) multivariate Gaussian distributions given by
p(w;A) = 1

Z exp
(
−1

2h(w,µ;A)
)
, where Z is a

normalising constant and A−1 is the covariance of
the distribution. We can use this bijection to mea-
sure the distance between two Mahalanobis dis-
tance functions parametrised by positive definite
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matrices A0 and A using the relative entropy (KL-
divergence) between the corresponding multivari-
ate Gaussians, given by (3).

KL(p(w;A0)||p(w;A)) =

∫
p(w;A0) log

p(w;A0)

p(w;A)
dw

(3)

Relative entropy is a non-negative and convex
function in A. The overall optimisation problem
is then given by (4).

min
A

KL(p(w;A0)||p(w;A))

subject to h(w1,w2) ≤ u y = 1, (4)

h(w1,w2) ≥ ℓ y = 0.

The optimisation problem given in (4) can be
expressed as a particular type of Bregman diver-
gence, which can be efficiently solved using the
Bregman’s method (Censor and Zenios, 1997).
We use Information-Theoretic Metric Learning
(ITML) (Davis et al., 2007) for learning a Ma-
halanobis matrix A that satisfies those require-
ments. Further details of ITML are described in
Appendix A.

3.3 Measuring Temporal Semantic Change
Using the sense-aware distance metric h and the
sense-aware encoder f learnt as described in the
previous sections, we can now compute the se-
mantic change score, α(w,C1, C2), of w between
C1 and C2 as the average pairwise distance com-
puted over S1(w) and S2(w), given by (5).

1

n1n2

∑

s1∈S1(w)
s2∈S2(w)

h(f(w, s1; θ),f(w, s2; θ);A) (5)

Here, we denote the set of sentences where w
occurs in Ci to be Si(w) for i = 1, 2, and the
corresponding number of sentences in each set to
be ni = |Si(w)|. Unlike much prior work in
SCD, which first computes a single vector (of-
ten by averaging) for a target word w from a cor-
pus, thereby conflating its different meanings, (5)
computes representations per each occurrence of
w and compares the average over all distances.
Although the total number of summations, n1n2,
in (5) could become large for frequent w, seman-
tic change scores can be efficiently computed by
pre-computing and indexing the sense-aware em-
beddings for all occurrences of w in each cor-
pus. Moreover, the summation in (5) can be com-
puted in parallel over different batches of sen-
tences to obtain a highly efficient Map-Reduce
version (Dean and Ghemawat, 2004).

Dataset Language #Train #Dev #Test

XL-WiC
German 48k 8.9k 1.1k
French 39k 8.6k 22k
Italian 1.1k 0.2k 0.6k

MCL-WiC English 4.0k 0.5k 0.5k

AM2iCo

German 50k 0.5k 1.0k
Russian 28k 0.5k 1.0k
Japanese 16k 0.5k 1.0k
Chinese 13k 0.5k 1.0k
Arabic 9.6k 0.5k 1.0k
Korean 7.0k 0.5k 1.0k
Finnish 6.3k 0.5k 1.0k
Turkish 3.9k 0.5k 1.0k
Indonesian 1.6k 0.5k 1.0k
Basque 1.0k 0.5k 1.0k

Table 1: Statistics of the WiC datasets. #Train, #Dev,
and #Test shows the number of instances.

4 Experiments

4.1 Setting

To learn the sense-aware encoder and the distance
metric described in § 3, we use WiC datasets cov-
ering multiple languages as shown in Table 1: XL-
WiC (Raganato et al., 2020), MCL-WiC (Martelli
et al., 2021), and AM2iCo (Liu et al., 2021).4

We use the sense-aware encoder released by
Cassotti et al. (2023) as f ,5 which is based
on XLM-RoBERTalarge (Conneau et al., 2020)
for the remainder of the experiments with
SDML reported in this paper. We use the
metric learn6 package to train a sense-aware
distance metric with ITML. The slack pa-
rameter γ in ITML weights the margin viola-
tions, and is searched from the 11 values in
{10−5, 10−4, ..., 100, ..., 104, 105}, according to
the best performance measured on the develop-
ment data in each WiC dataset.

After that, we evaluate the performance on SCD
tasks. In this paper, we use the two benchmark
datasets – SemEval-2020 Task 1 (Schlechtweg
et al., 2020) (covering English (En), German
(De), Swedish (Sv) and Latin (La)) and RuShiftE-
val (Kutuzov and Pivovarova, 2021) (covering
Russian (Ru)), which have also been used in prior
work on SCD (Kutuzov et al., 2021; Giulianelli

4XL-WiC and MCL-WiC are licensed under a Cre-
ative Commons Attribution-NonCommercial 4.0 License,
and AM2iCo is licensed under a Creative Commons Attri-
bution 4.0 International Public license.

5This model is available at https://huggingface.co/
pierluigic/xl-lexeme

6https://github.com/scikit-learn-contrib/
metric-learn
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Dataset Language Time Period #Sentences

SemEval

English 1810–1860 254k
1960–2010 354k

German 1800–1899 2.6M
1946–1990 3.5M

Swedish 1790–1830 3.4M
1895–1903 5.2M

Latin B.C. 200–0 96k
0–2000 463k

RuShiftEval Russian
1700–1916 3.3k
1918–1990 3.3k
1992–2016 3.3k

Table 2: Statistics of the SCD datasets. In the
RuShiftEval, we used annotated pairwise sentences for
prediction as in Cassotti et al. (2023), and evalua-
tion is conducted in three subsets: pre-Soviet (1700–
1916) vs. Soviet (1918–1990), Soviet (1918–1990)
vs. post-Soviet (1992–2016), and pre-Soviet (1700–
1916) vs. post-Soviet (1992–2016), respectively re-
ferred to as RuShiftEval1 (Ru1), RuShiftEval2 (Ru2),
and RuShiftEval3 (Ru3). Full data statistics are shown
in Appendix B.

et al., 2022; Cassotti et al., 2023).7 Statistics of
those datasets are summarised in Table 2.

For English, German and Russian, there exist
WiC training data splits that we can use to train
SDML separately for each of those languages.
However, no such training data are available for
Latin and Swedish languages. Therefore, when
evaluating SDML for Latin, we train it on the
WiC training data available for Italian and French,
which are in the same Romance language family.
Likewise, when evaluating SDML for Swedish,
we train it on the WiC training data available for
German, which is in the same Germanic language
family. Creating WiC datasets for languages that
do not have such resources is beyond the scope of
this paper and is deferred to future work.

Before presenting the results of the SCD task,
we first look at the performance of our SDML
on the WiC task for languages corresponding to
the SCD benchmarks. As a baseline, we use a
sense-aware encoder fine-tuned to distinguish the
different meanings of a target word by optimis-
ing (1). For SDML, the sense-aware distance met-
ric is learned via ITML using WiC datasets, clas-
sification boundaries are also obtained. Therefore,
we can use these boundaries for the prediction of
the WiC tasks.

7SemEval-2020 Task 1 and RuShiftEval are licensed un-
der a Creative Commons Attribution 4.0 International Li-
cense and a GNU General Public License version 3.0, respec-
tively.

Table 3 shows that the combination of the
sense-aware encoder and the sense-aware distance
metric (our SDML) constantly outperforms the
baseline. Interestingly, SDML achieves signifi-
cant improvements at the 95% confidence interval
computed using Bernoulli trials in all languages.
These results support our hypothesis: even in the
task of detecting semantic differences at the same
time period, it is better to use the combination of
the sense-aware encoder and the sense-aware dis-
tance metric than the sense-aware encoder only.
More comprehensive results can be found in § 4.3.

4.2 Evaluating Semantic Changes of Words

We compare the performance of SDML against
prior work on several SCD benchmarks. In this
evaluation, given a set of target words, an SCD
method under evaluation is required to predict
scores that indicate the degree of semantic changes
undergone by each word in the set. The Spear-
man’s rank correlation coefficient r (∈ [−1, 1])
between those predicted semantic change scores
and that assigned by the human annotators in each
benchmark dataset (i.e. gold ratings) is computed
as the evaluation metric. An SCD method that re-
ports a high Spearman’s r value indicates better
agreement with human ratings, and is considered
to be desirable for detecting the semantic changes
of words over time.

We compare the proposed methods against
strong baselines as described next.

Baselines: Kutuzov and Giulianelli (2020) and
Laicher et al. (2021) showed that the average
pairwise cosine distance of the sets of contex-
tualised embeddings perform well (APD). Aida
and Bollegala (2023a) proposed swapping-based
SCD, conducting context-swapping across target
corpora to obtain more reliable scores (SSCD).
Card (2023) proposed a token replacement-based
JS divergence metric, to mitigate the influence of
token frequency by replacing tokens with neigh-
bouring words (ScaledJSD). Rosin and Radin-
sky (2022) proposed temporal attention, additional
time-aware attention mechanism to MLMs. SCD
scores are calculated by the average cosine dis-
tance (w/ TA + CD). Giulianelli et al. (2022) intro-
duced an ensemble method combining the average
cosine distance from MLMs with the cosine dis-
tance between morpho-syntactic features labelled
from universal dependencies (CD & UD + CD).
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Models MCL-WiC XL-WiC AM2iCo
En De Fr It De Ru

Baseline: Sense-aware Sentence Encoder 78.0 78.3 73.2 67.1 78.1 78.2
+ Sense-aware Distance Metric 90.3†† 84.9†† 78.7†† 75.3†† 85.0†† 87.6††

Table 3: Accuracy of the WiC test sets for languages relevant to the SCD benchmarks. †† indicates significance at
the 95% confidence interval.

Models FT SemEval RuShiftEval
En De Sv La Ru1 Ru2 Ru3

Baselines: MLM
+ APD (Laicher et al., 2021) 0.571 0.407 0.554 - - - -
+ SSCD (Aida and Bollegala, 2023a) 0.383 0.597 0.234 0.433 - - -
+ APD (Kutuzov and Giulianelli, 2020) ✓ 0.605 0.560 0.569 0.113 - - -
+ ScaledJSD (Card, 2023) ✓ 0.547 0.563 0.310 0.533 - - -
w/ TA + CD (Rosin and Radinsky, 2022) ✓ 0.520 0.763 - 0.565 - - -
+ CD & UD + CD (Giulianelli et al., 2022) ✓ 0.451 0.354 0.356 0.572 0.117 0.269 0.326

Sense-Aware Methods
DeepMistake (Arefyev et al., 2021) ✓ - - - - 0.798 0.773 0.803
GlossReader (Rachinskiy and Arefyev, 2021) ✓ - - - - 0.781 0.803 0.822
XL-LEXEME (Cassotti et al., 2023) 0.757 0.877 0.754 0.056 0.775 0.822 0.809
XL-LEXEME (Cassotti et al., 2023) ✓ - - - - 0.799 0.833 0.842
SDML (ours) 0.774 0.902 0.656 0.124 0.805 0.811 0.846

Table 4: Spearman’s rank correlation on SCD tasks compared against strong baselines. FT indicates whether fine-
tuning on target time separated corpora was conducted. The absolute correlations for previous methods are taken
from the respective papers as reported. - indicates that the corresponding benchmark was not evaluated in the
referenced paper.

Sense-Aware Methods: Here, we introduce
sense-aware methods that use sense-level super-
vision. DeepMistake (Arefyev et al., 2021) and
GlossReader (Rachinskiy and Arefyev, 2021)
both leverage data from the WiC and Word Sense
Disambiguation tasks to fine-tune MLMs. Sub-
sequently, both methods make predictions using
linear regression trained on the provided training
data. XL-LEXEME is fine-tuned on WiC data
across multiple languages. In our method, SCD
is performed using the average pairwise distance.
For SDML, we predict the semantic change scores
for the target words using (5).

Results are shown in Table 4.8 Our method per-
forms comparable or superior to previous sense-
aware methods using a sense-aware encoder only.
Moreover, SDML accomplishes performance im-
provements of 2-5% over the sense-aware meth-
ods9, provided that training data in the correspond-
ing languages is available. In SemEval Sv and La,
no training data for the corresponding languages

8In SemEval De, Sv, and La, we have several models due
to multiple WiC datasets in the corresponding/related lan-
guages, but we report the highest performance.

9In SCD tasks, there is no statistical significance across
ALL methods due to the lack of target words when we use
the Fisher transformation.

exist, but our method performed equally well for
SemEval Sv and showed a drastic performance im-
provement for SemEval La.

However, the performance in Latin is lower than
pretrained MLMs in Table 4. We attribute these
results to the composition of the data used dur-
ing MLM pretraining and SDML training, respec-
tively. Firstly, while Latin is included in the pre-
training of XLM-RoBERTa, the dataset for pre-
training is only a fraction (1/10 to 1/100) of the
size of the datasets for the other languages evalu-
ated in the SCD benchmarks. Secondly, Latin is
also absent from the WiC dataset used to train our
SDML. Therefore, we believe that the poor infor-
mation on Latin, which was scarce even during the
pretraining phase, was further diluted by the train-
ing of the SDML, resulting in a low performance.
In the future, as the WiC datasets are expanded and
include more languages, it is expected that the per-
formance of models for a wider range of languages
will improve.

4.3 Applying to WiC Prediction

Our main focus in this paper has been Lexical
Semantic Change Detection – detecting whether
a target word, w, has its meaning changed from
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Models MCL-WiC XL-WiC all XL-WiC IV XL-WiC OOV
En De Fr It De Fr It De Fr It

Baselines: MLM
mBERTbase 84.0 81.6 73.7 72.0 81.9 72.9 73.2 70.1 71.2 68.5
XLM-RoBERTabase 86.6 80.8 73.1 68.6 81.2 71.9 70.7 71.3 71.1 62.4
XLM-RoBERTalarge - 84.0 76.2 72.3 82.2 75.6 75.1 72.5 73.9 65.2
Lang. BERT - 82.9 78.1 72.6 83.2 77.6 73.9 76.6 78.0 69.1

Sense-Aware Methods
XL-LEXEME 78.0 78.3 73.2 67.1 78.4 73.6 71.2 65.2 65.7 57.9
SDML (ours) 90.3† 84.9† 78.7†† 75.3 85.1† 78.5†† 77.8 76.6 75.3 70.2

Table 5: Accuracy reported by different methods on the MCL-WiC and XL-WiC datasets. XL-WiC contains
additional two test sets; in-vocabulary (IV) and out-of-vocabulary (OOV) test sets. Lang. BERT means language-
specific BERT models. † or †† indicate significance at the 90% or 95% confidence interval, respectively.

Models De Ru Ja Zh Ar Ko Fi Tr Id Eu

Baselines: MLM
mBERTbase 80.4 82.1 78.2 75.2 73.3 75.8 81.2 80.6 78.4 75.9
XLM-RoBERTabase 79.4 80.9 79.4 76.1 73.6 76.0 81.2 80.5 77.9 74.2

Sense-Aware Methods
XL-LEXEME 78.1 78.2 77.1 75.2 75.4 75.5 78.0 78.7 75.5 72.7
SDML (ours) 85.0† 87.6†† 82.9 81.7†† 81.8†† 82.9†† 87.7†† 84.4 83.6†† 80.8†

Table 6: Accuracy of AM2iCo dataset. † or †† indicate significance at the 90% or 95% confidence interval,
respectively.

one corpus, C1, to another, C2. However, we
use WiC datasets for training the sense-aware en-
coder (described in § 3.1) as well as the sense-
aware distance metric (described in § 3.2) because
there does not exist sufficiently large manually an-
notated datasets for training temporal SCD meth-
ods. Although none of the WiC datasets we used
are sampled from temporally distinct corpora, they
provide a convenient alternative for training mod-
els that discriminate the meaning of a word in two
given sentences. Therefore, by evaluating our pro-
posed SDML on benchmark datasets for WiC, we
will be able to sanity check whether SDML can in-
deed detect words that have same/different mean-
ings in two given sentences, even if the two sen-
tences might not be sampled from temporally dis-
tinct corpora. In this WiC task, a model is required
to predict whether a target word takes the same
meaning in two given sentences. This is modelled
as a binary classification task and classification ac-
curacy is used as the evaluation metric. A ran-
dom prediction baseline would report an accuracy
of 50% on WiC test datasets, which are balanced.

Baselines: As baselines for comparison, use re-
port the accuracy of binary classifiers that have
been trained using different MLMs for the WiC
task as follows. Given an instance (w, s1, s2, y)

from a WiC training dataset, the token embed-
dings f(w, s1) and f(w, s2) are concatenated to
represent the meaning of w in s1 and s2. Next,
a binary logistic regression classifier is trained
on the training data from a WiC dataset. Note
that the parameters of the MLMs are not up-
dated during this process. For these baselines, we
use the multilingual MLMs such as mBERTbase

and XLM-RoBERTabase/large as well as target
language-specific BERT models (Lang. BERT)
to train the baselines in XL-WiC such as BERT-
base-german-cased10 for German, CamemBERT-
large11 for French, and BERT-base-italian-xxl-
cased12 for Italian. Rather than re-implementing
or re-running these methods, we use the results
presented in the corresponding benchmarks.

Sense-Aware Methods: Unlike the MLMs used
in the above-mentioned baselines, XL-LEXEME
uses a sense-aware encoder fine-tuned to discrim-
inate the different meanings of a target word.
XL-LEXEME is already fine-tuned using WiC
datasets and does not require a binary classifier to

10https://huggingface.co/dbmdz/
bert-base-german-cased

11https://huggingface.co/almanach/
camembert-large

12https://huggingface.co/dbmdz/
bert-base-italian-xxl-cased

7576

https://huggingface.co/dbmdz/bert-base-german-cased
https://huggingface.co/dbmdz/bert-base-german-cased
https://huggingface.co/almanach/camembert-large
https://huggingface.co/almanach/camembert-large
https://huggingface.co/dbmdz/bert-base-italian-xxl-cased
https://huggingface.co/dbmdz/bert-base-italian-xxl-cased


be trained, and predicts cosine distances less than
the margin m (set to 0.5) to be instances where the
target word takes the same meaning in both sen-
tences. For SDML, we use the sense-aware dis-
tance metric learned via ITML to predict whether
a target word expresses the same meaning in the
two given sentences in WiC datasets. Since ITML
also learns classification boundaries (i.e. the up-
per and lower bounds denoted by respectively u
and l in Algorithm 1), which can be used to make
binary predictions. Note that however, we do not
have two different corpora in this WiC-based eval-
uation, thus not requiring to average the distances
as done in (5), and instead can perform a single
point estimate considering the two sentences in a
single WiC test instance.

Table 5 shows the results for MCL-WiC and
XL-WiC datasets. XL-WiC has in-vocab (IV)
test sets and out-of-vocab (OOV) test sets ex-
tracted from the test set, in addition to the
vanilla test set. The results show that our
SDML consistently outperforms all of the base-
lines. It shows 90% accuracy in English, which
is a significant improvement compared to XL-
LEXEME, using the sense-aware distance met-
ric. In German and French, SDML outperforms
XLM-RoBERTalarge, which is the same model as
XL-LEXEME, as well as language-specific lan-
guage models (Lang. BERT). Interestingly, even
in Italian, where there are only a few thousand
training data instances (Table 1), the performance
was significantly improved from XL-LEXEME.
Moreover, statistical tests reveal that our SDML
achieves significant improvements over all other
methods on multiple test sets, with statistical sig-
nificance observed at the 90% or 95% for binomial
proportion confidence intervals.

Similarly, in the AM2iCo dataset, Table 6
also demonstrates the performance improvements
achieved by SDML. In particular, according to
Table 6, SDML achieves the best performance on
all test sets. Statistical tests demonstrate the sig-
nificant performance enhancements of our SDML
compared to the other methods on most test sets,
with significance observed at the 90% or 95% for
binomial proportional confidence intervals. While
regular multilingual MLMs and XL-LEXEME do
not perform well for low-resource language (Eu)
or languages not similar to English (Ja, Zh, Ar,
and Ko), sense-aware distance metrics can dra-
matically improve performance for even just a few

thousand instances.

5 Ablation Study

Motivated by the superior performance reported
in § 4.2 by SDML, we conduct an ablation study
to understand the importance of (i) using sense-
aware distance metric, and (ii) considering cross-
dimensional correlations by Mahalanobis matrix.

Firstly, we conduct a quantitative comparison
between our SDML (sense-aware sentence en-
coder and sense-aware distance metric using full
components of Mahalanobis matrix, SDMLfull)
and two variants; (i) sense-aware sentence en-
coder only (Baseline), and (ii) sense-aware sen-
tence encoder and sense-aware distance metric us-
ing diagonal components of Mahalanobis matrix
(SDMLdiag). Results on SCD tasks are shown in
Table 7. While our method achieves compara-
ble or superior performance to the baseline even
with the diagonal components of the Mahalanobis
matrix (SDMLdiag), using the full Mahalanobis
matrix (SDMLfull) yields further improvements.
These results indicate the importance of consider-
ing inter-dimensional information by the full com-
ponents of the sense-aware Mahalanobis matrix.

Secondly, we perform a qualitative analysis us-
ing gold labels. Following Aida and Bollegala
(2023a,b), we pick up the (i) top-8 semantically
changed words, and (ii) top-8 semantically stable
words in the SemEval En. Additionally, due to
the sense-aware method, we also evaluated the re-
lationship between the SCD performance and two
factors; polysemy and frequency as described in
Hamilton et al. (2016). We count the number
of senses (synsets defined in WordNet) and fre-
quency of the evaluation set of words in given cor-
pora. From Table 8, we can see that our method
SDMLfull slightly improves prediction. Moreover,
polysemous words tend to change their meanings
(the law of innovation), but frequent words, con-
trary to the law of conformity, show no correla-
tion with semantic change, as described in (Hamil-
ton et al., 2016). The same trends are in Table 9.
From this table, SDMLdiag has a higher/lower cor-
relation with frequency/polysemy than the base-
line, which degrades the performance in SCD.
However, in SDMLfull, while a correlation with
frequency/polysemy is slightly weaker than the
baseline, they contribute to the performance im-
provement in SCD. We conclude that reliev-

13http://wordnetweb.princeton.edu/perl/webwn
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Models SemEval RuShiftEval
En De Sv La Ru1 Ru2 Ru3

Baseline: Sense-aware Sentence Encoder 0.757 0.877 0.754 0.056 0.775 0.822 0.809
+ Sense-aware Distance Metric (diagonal) 0.750 0.902 0.642 0.083 0.804 0.808 0.846
+ Sense-aware Distance Metric (full) 0.774 0.902 0.656 0.124 0.805 0.811 0.846

Table 7: Spearman’s rank correlation on SCD tasks.

Word Gold WordNet Frequency Baseline SDMLdiag SDMLfull

rank ∆ #Synsets C1 C2 rank rank rank

plane 1 ✓ 5 278 792 1 1 1
tip 2 ✓ 9 119 241 3 6 4
prop 3 ✓ 3 121 147 9 7 7
graft 4 ✓ 3 119 109 7 2 6
record 5 ✓ 8 420 1188 5 4 2
stab 7 ✓ 3 92 117 4 8 9
bit 9 ✓ 11 296 622 13 14 13
head 10 ✓ 33 3599 4127 14 18 14

multitude 30 ✗ 3 475 131 27 26 24
savage 31 ✗ 2 504 133 15 13 17
contemplation 32 ✗ 2 240 111 28 27 28
tree 33 ✗ 3 2322 1596 32 32 35
relationship 34 ✗ 4 130 841 24 23 27
fiction 35 ✗ 2 202 326 35 33 33
chairman 36 ✗ 1 147 683 36 36 34
risk 37 ✗ 4 286 643 37 37 37

Spearman 1.000 0.420 −0.153 −0.047 0.757 0.750 0.774

Table 8: Ablation study on the words categorised by the existence of semantic change: highlighting the top-8
semantically changed words with significant semantic change (∆ = ✓) and bottom-8 stable words with minimal
semantic change (∆ = ✗) on SemEval En. Baseline is a sense-aware sentence encoder only. #Synsets shows the
number of synsets in WordNet.13

Models Gold WordNet Frequency
#Synsets C1 C2

Baseline 0.757 0.427 -0.182 -0.062
SDMLdiag 0.750 0.355 -0.205 -0.121
SDMLfull 0.774 0.404 -0.122 -0.037

Table 9: Correlation analysis of model prediction with
SCD task, polysemy (#Synsets), and word frequency
using Spearman’s rank correlation on SemEval En.

ing/enhancing the effect of frequency/polysemy
will likely lead to further improvements in SCD
performance.

Much prior work on SCD use the Euclidean
distance (or cosine similarity) for measuring se-
mantic change scores of words (Laicher et al.,
2021; Giulianelli et al., 2022; Rosin et al., 2022;
Rosin and Radinsky, 2022; Cassotti et al., 2023),
which (a) weights all dimensions equally, and (b)
does not consider cross-dimensional correlations.
However, our experimental results show that Eu-
clidean distance is a suboptimal choice for this
purpose and learning a Mahalanobis distance met-

ric is more appropriate.

6 Conclusion

We proposed a supervised two-staged SCD
method to address two challenges in the SCD
tasks: 1) models must obtain sense-aware embed-
dings of target words over time, and 2) due to the
lack of labelled training data, SCD is often an un-
supervised task using conventional distance met-
rics. For the first challenge, we propose to learn a
sense-aware encoder. Next, we address the second
challenge by learning a sense-aware distance met-
ric to compare sense-aware embeddings. In both
stages, we used WiC datasets to provide sense-
level supervision. Experimental results show that
our proposed method, SDML, achieves strong per-
formance in four SCD benchmarks. Moreover,
SDML achieves significant performance improve-
ment in WiC benchmarks. Our findings highlight
the importance of learning both a sense-aware en-
coder and a sense-aware distance metric.
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Limitations

We show that our method can achieve strong per-
formance in three languages (English, German,
and Russian). However, due to the limited training
datasets, our method cannot perform well in other
languages such as Swedish and Latin. A potential
solution to address this limitation and to further
improve our method for languages not covered by
existing WiC training datasets, is to explore the
possibility of using cross-lingual language trans-
fer methods.

Ethical Considerations

In this paper, we focus on detecting semantic
changes of words over time. We did not create
new datasets and used existing datasets for WiC
and SCD for training and evaluation. To the best
of our knowledge, no ethical issues have been re-
ported related to those datasets. However, we used
publicly available and pretrained MLMs in this pa-
per, and some of those MLM are known to encode
unfair social biases such as gender or race (Basta
et al., 2019). It is possible that some of those so-
cial biases will be present (and possibly have been
amplified) during the sense-aware encoder train-
ing process. Therefore, we consider it to be an
important and necessary task to evaluate the sense-
aware encoder that we trained for any social biases
before it is used in downstream tasks.
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2019. Evaluating the underlying gender bias in
contextualized word embeddings. In Proceedings
of the First Workshop on Gender Bias in Natu-
ral Language Processing. Association for Compu-
tational Linguistics, Florence, Italy, pages 33–39.
https://doi.org/10.18653/v1/W19-3805.

Christin Beck. 2020. DiaSense at SemEval-
2020 task 1: Modeling sense change via pre-
trained BERT embeddings. In Proceedings of
the Fourteenth Workshop on Semantic Evalua-
tion. International Committee for Computational
Linguistics, Barcelona (online), pages 50–58.
https://doi.org/10.18653/v1/2020.semeval-1.4.

Dallas Card. 2023. Substitution-based semantic
change detection using contextual embeddings. In
Anna Rogers, Jordan Boyd-Graber, and Naoaki
Okazaki, editors, Proceedings of the 61st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers). Association for
Computational Linguistics, Toronto, Canada, pages
590–602. https://doi.org/10.18653/v1/2023.acl-
short.52.

Pierluigi Cassotti, Lucia Siciliani, Marco DeGem-
mis, Giovanni Semeraro, and Pierpaolo Basile.
2023. XL-LEXEME: WiC pretrained model for
cross-lingual LEXical sEMantic changE. In Pro-
ceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume
2: Short Papers). Association for Computational
Linguistics, Toronto, Canada, pages 1577–1585.
https://doi.org/10.18653/v1/2023.acl-short.135.

Yair Censor and Stravoz A. Zenios. 1997. Parellel Op-
timization. Oxford University Press.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsu-
pervised cross-lingual representation learning at
scale. In Dan Jurafsky, Joyce Chai, Natalie
Schluter, and Joel Tetreault, editors, Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics. Association for Com-
putational Linguistics, Online, pages 8440–8451.
https://doi.org/10.18653/v1/2020.acl-main.747.

7579

https://doi.org/10.18653/v1/2023.findings-emnlp.520
https://doi.org/10.18653/v1/2023.findings-emnlp.520
https://doi.org/10.18653/v1/2023.findings-emnlp.520
https://doi.org/10.18653/v1/2023.findings-emnlp.520
https://doi.org/10.18653/v1/2023.findings-emnlp.520
https://doi.org/10.18653/v1/2023.findings-acl.429
https://doi.org/10.18653/v1/2023.findings-acl.429
https://doi.org/10.18653/v1/2023.findings-acl.429
https://doi.org/10.18653/v1/2023.findings-acl.429
https://aclanthology.org/2021.paclic-1.3
https://aclanthology.org/2021.paclic-1.3
https://aclanthology.org/2021.paclic-1.3
https://aclanthology.org/2021.paclic-1.3
https://doi.org/10.28995/2075-7182-2021-20-16-30
https://doi.org/10.28995/2075-7182-2021-20-16-30
https://doi.org/10.28995/2075-7182-2021-20-16-30
https://doi.org/10.28995/2075-7182-2021-20-16-30
https://doi.org/10.18653/v1/W19-3805
https://doi.org/10.18653/v1/W19-3805
https://doi.org/10.18653/v1/W19-3805
https://doi.org/10.18653/v1/2020.semeval-1.4
https://doi.org/10.18653/v1/2020.semeval-1.4
https://doi.org/10.18653/v1/2020.semeval-1.4
https://doi.org/10.18653/v1/2020.semeval-1.4
https://doi.org/10.18653/v1/2023.acl-short.52
https://doi.org/10.18653/v1/2023.acl-short.52
https://doi.org/10.18653/v1/2023.acl-short.52
https://doi.org/10.18653/v1/2023.acl-short.52
https://doi.org/10.18653/v1/2023.acl-short.135
https://doi.org/10.18653/v1/2023.acl-short.135
https://doi.org/10.18653/v1/2023.acl-short.135
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747


Paul Cook and Suzanne Stevenson. 2010. Automati-
cally identifying changes in the semantic orientation
of words. In Proceedings of the Seventh Interna-
tional Conference on Language Resources and Eval-
uation (LREC’10). European Language Resources
Association (ELRA), Valletta, Malta.

Jason V. Davis, Brian Kulis, Prateek Jain, Suvrit
Sra, and Inderjit S. Dhillon. 2007. Information-
theoretic metric learning. In Proceedings of
the 24th International Conference on Machine
Learning. Association for Computing Machinery,
New York, NY, USA, ICML ’07, page 209–216.
https://doi.org/10.1145/1273496.1273523.

Jeffrey Dean and Sanjay Ghemawat. 2004. Mapre-
duce: Simplified data processing on large clusters.
In OSDI’04: Sixth Symposium on Operating Sys-
tem Design and Implementation. San Francisco, CA,
pages 137–150.

Marco Del Tredici, Raquel Fernández, and Gemma
Boleda. 2019. Short-term meaning shift: A distri-
butional exploration. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers). Association for Computational Linguis-
tics, Minneapolis, Minnesota, pages 2069–2075.
https://doi.org/10.18653/v1/N19-1210.

Haim Dubossarsky, Simon Hengchen, Nina Tah-
masebi, and Dominik Schlechtweg. 2019. Time-
out: Temporal referencing for robust modeling of
lexical semantic change. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics. Association for Computa-
tional Linguistics, Florence, Italy, pages 457–470.
https://doi.org/10.18653/v1/P19-1044.

Christiane Fellbaum and George Miller. 1998. Word-
Net: An electronic lexical database. MIT press.
https://ieeexplore.ieee.org/book/6267389.

Mario Giulianelli, Andrey Kutuzov, and Lidia Pivo-
varova. 2022. Do not fire the linguist: Grammat-
ical profiles help language models detect seman-
tic change. In Nina Tahmasebi, Syrielle Montar-
iol, Andrey Kutuzov, Simon Hengchen, Haim Du-
bossarsky, and Lars Borin, editors, Proceedings of
the 3rd Workshop on Computational Approaches to
Historical Language Change. Association for Com-
putational Linguistics, Dublin, Ireland, pages 54–
67. https://doi.org/10.18653/v1/2022.lchange-1.6.

R. Hadsell, S. Chopra, and Y. LeCun. 2006. Dimen-
sionality reduction by learning an invariant map-
ping. In 2006 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition - Vol-
ume 2 (CVPR’06). IEEE, volume 2, pages 1735–
1742.

William L. Hamilton, Jure Leskovec, and Dan Ju-
rafsky. 2016. Diachronic word embeddings re-
veal statistical laws of semantic change. In Pro-

ceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume
1: Long Papers). Association for Computational
Linguistics, Berlin, Germany, pages 1489–1501.
https://doi.org/10.18653/v1/P16-1141.

Zellig Harris. 1954. Distributional structure. Word
10(23):146–162.

Yoon Kim, Yi-I Chiu, Kentaro Hanaki, Darshan
Hegde, and Slav Petrov. 2014. Temporal anal-
ysis of language through neural language mod-
els. In Proceedings of the ACL 2014 Work-
shop on Language Technologies and Computa-
tional Social Science. Association for Computa-
tional Linguistics, Baltimore, MD, USA, pages 61–
65. https://doi.org/10.3115/v1/W14-2517.

Vivek Kulkarni, Rami Al-Rfou, Bryan Perozzi, and
Steven Skiena. 2015. Statistically significant detec-
tion of linguistic change. In WWW 2015. pages 625–
635.

Andrey Kutuzov and Mario Giulianelli. 2020. UiO-
UvA at SemEval-2020 task 1: Contextualised em-
beddings for lexical semantic change detection. In
Proceedings of the Fourteenth Workshop on Seman-
tic Evaluation. International Committee for Compu-
tational Linguistics, Barcelona (online), pages 126–
134. https://doi.org/10.18653/v1/2020.semeval-
1.14.

Andrey Kutuzov, Lilja Ovrelid, Terrence Szymanski,
and Erik Velldal. 2018. Diachronic word embed-
dings and semantic shifts: a survey. In Proceedings
of the 27th International Conference on Compu-
tational Linguistics. Association for Computational
Linguistics, Santa Fe, New Mexico, USA, pages
1384–1397. https://aclanthology.org/C18-1117.

Andrey Kutuzov and Lidia Pivovarova. 2021. Three-
part diachronic semantic change dataset for Rus-
sian. In Nina Tahmasebi, Adam Jatowt, Yang Xu,
Simon Hengchen, Syrielle Montariol, and Haim Du-
bossarsky, editors, Proceedings of the 2nd Inter-
national Workshop on Computational Approaches
to Historical Language Change 2021. Association
for Computational Linguistics, Online, pages 7–13.
https://doi.org/10.18653/v1/2021.lchange-1.2.

Andrey Kutuzov, Lidia Pivovarova, and Mario
Giulianelli. 2021. Grammatical profiling for
semantic change detection. In Arianna Bisazza
and Omri Abend, editors, Proceedings of the
25th Conference on Computational Natural
Language Learning. Association for Compu-
tational Linguistics, Online, pages 423–434.
https://doi.org/10.18653/v1/2021.conll-1.33.

Severin Laicher, Sinan Kurtyigit, Dominik
Schlechtweg, Jonas Kuhn, and Sabine Schulte im
Walde. 2021. Explaining and improving BERT per-
formance on lexical semantic change detection. In
Proceedings of the 16th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Student Research Workshop. Association

7580

https://doi.org/10.1145/1273496.1273523
https://doi.org/10.1145/1273496.1273523
https://doi.org/10.1145/1273496.1273523
https://doi.org/10.18653/v1/N19-1210
https://doi.org/10.18653/v1/N19-1210
https://doi.org/10.18653/v1/N19-1210
https://doi.org/10.18653/v1/P19-1044
https://doi.org/10.18653/v1/P19-1044
https://doi.org/10.18653/v1/P19-1044
https://doi.org/10.18653/v1/P19-1044
https://ieeexplore.ieee.org/book/6267389
https://doi.org/10.18653/v1/2022.lchange-1.6
https://doi.org/10.18653/v1/2022.lchange-1.6
https://doi.org/10.18653/v1/2022.lchange-1.6
https://doi.org/10.18653/v1/2022.lchange-1.6
https://doi.org/10.18653/v1/P16-1141
https://doi.org/10.18653/v1/P16-1141
https://doi.org/10.18653/v1/P16-1141
https://doi.org/10.3115/v1/W14-2517
https://doi.org/10.3115/v1/W14-2517
https://doi.org/10.3115/v1/W14-2517
https://doi.org/10.3115/v1/W14-2517
https://doi.org/10.18653/v1/2020.semeval-1.14
https://doi.org/10.18653/v1/2020.semeval-1.14
https://doi.org/10.18653/v1/2020.semeval-1.14
https://doi.org/10.18653/v1/2020.semeval-1.14
https://doi.org/10.18653/v1/2020.semeval-1.14
https://aclanthology.org/C18-1117
https://aclanthology.org/C18-1117
https://aclanthology.org/C18-1117
https://doi.org/10.18653/v1/2021.lchange-1.2
https://doi.org/10.18653/v1/2021.lchange-1.2
https://doi.org/10.18653/v1/2021.lchange-1.2
https://doi.org/10.18653/v1/2021.lchange-1.2
https://doi.org/10.18653/v1/2021.conll-1.33
https://doi.org/10.18653/v1/2021.conll-1.33
https://doi.org/10.18653/v1/2021.conll-1.33
https://doi.org/10.18653/v1/2021.eacl-srw.25
https://doi.org/10.18653/v1/2021.eacl-srw.25


for Computational Linguistics, Online, pages 192–
202. https://doi.org/10.18653/v1/2021.eacl-srw.25.

Angeliki Lazaridou, Adhiguna Kuncoro, Elena Gri-
bovskaya, Devang Agrawal, Adam Liska, Tay-
fun Terzi, Mai Gimenez, Cyprien de Mas-
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Supplementary Materials

A Details of ITML

In this section, we describe the method we
use to learn a sense-aware distance metric,
h(w1,w2;A), that measures the semantic dis-
tance between two sense-aware embeddings w1 =
f(w, s1;θ) and w2 = f(w, s2;θ), for w in two
sentences s1 and s2, respectively. For the ease of
reference, we re-write (2) below as (6), defining
this distance metric.

h(w1,w2;A) = (w1 −w2)
⊤A(w1 −w2) (6)

Here, A ∈ Rd×d is a Mahalanobis matrix (as-
sumed to be positive definite) that defines a
(squared) distance metric.

To learn the Mahalanobis distance matrix A in
(6), we use training instances (w, s1, s2, y) from a
WiC dataset for a target word w and two sentences
s1 and s2, where y = 1 indicates that w has the
same meaning in both s1 and s2, whereas y = 0
indicates that w takes different meanings.

We consider two types of constraints that must
be satisfied by h as follows. For instances where
y = 1, the distance between w1 and w2 is re-
quired to be greater than a distance lower bound
ℓ such that, h(w1,w2) ≥ ℓ. Likewise, for in-
stances where y = 0, the distance between w1

and w2 is required to be lower than a distance up-
per bound u such that, h(w1,w2) ≤ u. Recall
that there exists a bijection (up to a scaling func-
tion) between the set of Mahalanobis distances and
the set of the equal mean (denoted by µ) multi-
variate Gaussian distributions given by p(w;A) =
1
Z exp

(
−1

2h(w,µ;A)
)
, where Z is a normalising

constant and A−1 is the covariance of the distri-
bution. We can use this bijection to measure the
distance between two Mahalanobis distance func-
tions parametrised by A0 and A using the relative
entropy ( KL-divergence) between the correspond-
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ing multivariate Gaussians, given by (7).

KL(p(w;A0)||p(w;A)) =

∫
p(w;A0) log

p(w;A0)

p(w;A)

(7)

Relative entropy is a non-negative and convex
function in A. The overall optimisation problem
is given by (8).

min
A

KL(p(w;A0)||p(w;A))

subject to h(w1,w2) ≤ u y = 1, (8)

h(w1,w2) ≥ ℓ y = 0.

The optimisation problem given in (8) can be
expressed as a particular type of Bregman diver-
gence, which can be efficiently solved using the
Bregman’s method (Censor and Zenios, 1997).
We use the ITML algorithm proposed by Davis
et al. (2007) to learn A, which is described in Al-
gorithm 1. We arrange the sense-aware represen-
tations f(w, s1) and f(w, s2) for each instance
(w, s1, s2, y) as columns to create the input ma-
trix X ∈ Rd×2n, where d is the dimensionality of
the sense-aware embeddings produced by the en-
coder trained in § 3.1, and n is the total number of
training instances in the WiC dataset. The initial
value of the distance matrix, A0 is set to the iden-
tity matrix, which corresponds to computing the
Euclidean distance. The upper bound, u, is set to
the distance that covers the top 5% of the distances
between positive instances (i.e. y = 1), while the
lower bound, l, is set to the distance that covers the
bottom 5% of the distances between the negative
instances (y = 0).

B Data Statistics

We provide the full data statistics for the SCD
benchmarks in Table 4.

Algorithm 1 Information Theoretic Metric Learn-
ing (ITML)
Input: input matrix X, labels y, distance thresholds [l, u],

input Mahalanobis matrix A0, slack parameter γ
Output: Mahalanobis matrix A
1: # Initialise A, λ, and ξ
2: A← A0

3: for i = 1 to n do
4: λi ← 0
5: ξi ← u if yi = 1 else l
6: end for
7: # Optimise A
8: repeat
9: for i = 1 to n do

10: obtain i-th instance (w1,w2, yi) from X and y
11: d← h(w1,w2;A) in (6)
12: δ ← 1 if yi = 1 else −1
13: α← min(λi, δ(1/d− γ/ξi)/2)
14: ξi ← γξi/(γ + δαξi)
15: λi ← λi − α
16: β ← δα/(1− δαd)
17: A← A + βα(w1 −w2)(w1 −w2)

⊤A
18: end for
19: until convergence
20: return A
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Dataset Language Time Period #Targets #Sentences #Tokens #Types

SemEval-2020 Task 1

English 1810–1860 37 254k 6.5M 87k
1960–2010 354k 6.7M 150k

German 1800–1899 48 2.6M 70.2M 1.0M
1946–1990 3.5M 72.3M 2.3M

Swedish 1790–1830 31 3.4M 71.0M 1.9M
1895–1903 5.2M 110.0M 3.4M

Latin B.C. 200–0 40 96k 1.7M 65k
0–2000 463k 9.4M 253k

RuShiftEval Russian
1700–1916

99
3.3k 97k 39k

1918–1990 3.3k 78k 34k
1992–2016 3.3k 78k 35k

Table 10: Full statistics of the SCD datasets.
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