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Abstract
When first deploying an anomaly detection
system, e.g., to detect out-of-scope queries in
chatbots, there are no observed data, making
data-driven approaches ineffective. Zero-shot
anomaly detection methods offer a solution to
such "cold-start" cases, but unfortunately they
are often not accurate enough. This paper stud-
ies the realistic but underexplored cold-start
setting where an anomaly detection model is
initialized using zero-shot guidance, but sub-
sequently receives a small number of contami-
nated observations (namely, that may include
anomalies). The goal is to make efficient use
of both the zero-shot guidance and the obser-
vations. We propose ColdFusion, a method
that effectively adapts the zero-shot anomaly
detector to contaminated observations. To sup-
port future development of this new setting, we
propose an evaluation suite consisting of evalu-
ation protocols and metrics.

1 Introduction

Anomaly detection methods aim to flag data that
violate accepted norms. For example, a customer
support chatbot may be designed to answer queries
about particular intents (in-scope) but not about
other intents (out-of-scope). Unlike related tasks
such as out-of-scope intent discovery and classifi-
cation, which rely on large labeled in-scope data,
anomaly detection approaches relax the labeling
assumption and treat the problem as a one-class
classification task (Lin et al., 2020; Zhang et al.,
2021b; Mou et al., 2022; Zheng et al., 2020; Zhan
et al., 2021; Lin and Xu, 2019; Zeng et al., 2021;
Zhang et al., 2021a; Xu et al., 2020). Most anomaly
detection methods (Reiss et al., 2021; Qiu et al.,
2021; Zhang et al., 2023) require previous obser-
vations for training and are effective when many
past observations are available. Such methods are
not effective for systems just after deployment, as
they lack access to any past observations. Zero-
shot anomaly detection (Jeong et al., 2023; Li et al.,

2024; Zhou et al., 2024) uses descriptions of the
normal classes and does not require training data.
While zero-shot methods can be used for freshly
deployed systems, they result in reduced accuracy
as the descriptions often fail to properly express
the distribution of real data.

We explore the cold-start setting which provides
two types of guidance: i) a textual description of
each normal class, serving as initial guidance, such
as predefined topic names in chatbot systems; ii)
a stream of t contaminated observations (that may
include anomalies), e.g., real user queries. It is par-
ticularly relevant in real-world applications where,
shortly after deployment, a short stream of user
queries becomes available but the queries are not
labeled into intent types and some of them are out-
of-scope. To our knowledge, the only work that
deals with a similar setting (Jeong et al., 2023)
assumes prior knowledge of anomalies, that obser-
vations come from a single normal class and that
they are not contaminated by anomalies.

To tackle the cold-start setting, we present Cold-
Fusion, a method for adapting a zero-shot model
given the distribution of a limited observation
stream. Our method is very effective, achieving
considerably better results than pure zero-shot and
observation-based methods. To encourage future
research on this promising new setting, we provide
evaluation protocols and metrics.
Our contributions are:

1. Proposing the new setting of cold-start
anomaly detection.

2. Presenting ColdFusion for tackling the setting.

3. Introducing a dedicated evaluation suite con-
sisting of evaluation protocols and metrics.

2 Cold-Start Anomaly Detection

Task Definition. In the cold-start setting, a
model has access to K class descriptions Dprior =
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Figure 1: ColdFusion assigns each of the t observations
to their nearest class, then adapts the embeddings of
each class towards the assigned observations.

{c1, c2, ..., cK} and a stream of t observations
Dt = {x1, x2, ..., xt}, where t is small. We de-
note the percentage of anomalous observations as
the contamination ratio r%. An observation x ei-
ther comes from one of the K normal classes or is
anomalous, but we do not have access to the class
or anomaly label. The task is to learn a model S
to map each training sample x to an anomaly score
such that high values indicate anomalous samples.

Application to chatbots. Our practical motiva-
tion is identifying out-of-scope queries in a recently
deployed chatbot. We observe a stream of queries
sent to the chatbot, as well as descriptions of all
allowed intents. At time step t + 1, we leverage
both Dt and Dprior to classify a given query xt+1

as in-scope (INS) or out-of-scope (OOS).

3 Method

3.1 Recap: Zero-Shot Anomaly Detection
Zero-shot (ZS) anomaly detection maps each data
point x to an anomaly score S(x). Notably, ZS
methods do not require past data, instead they are
guided by a set of distinct normal class names
{c1, c2, ..., cK} provided by the user. A pre-trained
feature extractor ϕ maps each of the class names ck,
and observations xt to deep embeddings ϕ(ck) and
ϕ(xt). It then computes the distance d (often L2 or
Cosine) between the embeddings of the example
and each of the class names. The final anomaly
score is given by the distance to the nearest class:

Szs(x) = min
k

{d(ϕ(x), ϕ(ck))}Kk=1 (1)

High anomaly scores serve as indicators of anoma-
lies. The anomaly score can be converted to a
binary label by choosing a threshold α such that
y = 0 if S(x) < α and y = 1 if S(x) ≥ α.

Zero-shot anomaly detection can be used for
OOS query detection by first specifying a set of

Algorithm 1: ColdFusion
Input: Dprior, Dt, p, query x.
Output: Anomaly score Sadapt(x).
Step 1: Encode class descriptions and

observations: ϕ(Dprior), ϕ(Dt);
Step 2: Assign observations to classes

based on nearest class descriptor:
a(x) = argmink{d(ϕ(x), ϕ(ck))}Kk=1;

Step 3: Adapt class embeddings:
zk = median(ϕ(ck), {ϕ(x)|a(x) = k});

Step 4: Compute anomaly score for x:
Sadapt(x) = mink{d(ϕ(x), zk)}Kk=1;

allowed intents. Then a deep encoder extracts the
embeddings of the target user query and intent de-
scriptions. Finally, the method labels the user query
as OOS if it is far from all allowed intent names.

3.2 Limitations of Existing Methods

In practice, it is impossible to provide perfect class
descriptions, and therefore zero-shot anomaly de-
tection often does not achieve sufficient accuracy.
On the other hand, if the number of observations is
limited, observation-based anomaly detection meth-
ods, such as K-nearest neighbors, struggle for three
key reasons: i) the observations may not include all
in-scope classes; ii) it is hard to estimate the true
distribution of normal data from a few samples; iii)
the observations may be contaminated by anoma-
lies. Empirically, observation-based methods un-
derperform ZS methods for small t (see Tab. 1 and
Fig. 2).

3.3 Our Method: ColdFusion

To bridge the gap between ZS and observation-
based methods, we propose ColdFusion (illustrated
in Fig. 1), a method for cold-start anomaly de-
tection using domain adaptation. It improves ZS
anomaly detection using the t observations in two
key stages: i) assigning observations to classes;
ii) adapting ZS class embeddings based on the as-
signed observations.

Assignment. We assign each of the t observa-
tions to the nearest class as measured in the feature
space ϕ. We denote the class assignment of obser-
vation x as a(x). More formally:

a(x) = argmin
k

{d(ϕ(x), ϕ(ck))}Kk=1 (2)

We further define Ck, the set of all observations
assigned to class k as Ck = {ϕ(x)|a(x) = k}.
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Method
AUC2

10% AUC2
25% AUC2

50% AUC2
100%

B77 C-Bank C-Cards B77 C-Bank C-Cards B77 C-Bank C-Cards B77 C-Bank C-Cards

G
T

E

ZS 78.9 83.1 81.8 78.9 83.1 81.8 78.9 83.1 81.8 78.9 83.1 81.8
DN2 76.7 64.8 70.0 76.2 76.0 75.6 75.9 80.2 79.6 75.3 82.2 80.2
ColdFusion 81.7 82.3 84.8 81.8 87.0 87.3 81.9 88.6 88.7 82.3 89.2 89.0

M
PN

E
T ZS 81.8 82.7 80.1 81.8 82.7 80.1 81.8 82.7 80.1 81.8 82.7 80.1

DN2 78.3 69.7 69.8 78.2 78.9 76.9 77.6 82.3 80.9 76.3 83.6 81.1
ColdFusion 83.3 84.4 84.1 82.8 87.8 86.0 82.8 88.8 87.8 83.0 89.4 88.3

Table 1: AUC2
t̃ results, with contamination of r = 5%. Best results are in bold.

Method
AUC2

10% AUC2
25%

B77 C-Bank C-Cards B77 C-Bank C-Cards

K-means 80.0 79.2 83.7 78.9 84.0 87.0
Mean 81.6 80.8 84.7 81.7 86.4 87.5
MI 81.6 82.3 84.8 81.8 87.0 87.1
Median 81.7 82.3 84.8 81.8 87.0 87.3

Table 2: AUC2
t̃ results, with contamination of r = 5%

using the GTE model. MI refers to multiple iterations
with median adaptation. Best results are in bold.

Adaptation. We now adapt each class embed-
ding by considering both the initial class descrip-
tion and the assigned observations. Concretely, the
adapted code for each class is the median of the set
containing the embedding of the class descriptions
and the embeddings of all assigned observations:

zk = median({ϕ(ck)} ∪ Ck) (3)

We chose the median and not mean for contamina-
tion robustness. Note that this step will not modify
the embedding of classes with no observations.

Anomaly scoring. ColdFusion uses the same
anomaly scoring as ZS except that the class codes
are the adapted {zk}Kk=1 instead of the encod-
ing of the original description i.e., Sadapt(x) =
mink{d(ϕ(xt+1), zk)}Kk=1.

4 Experiments

Experimental setting. Our experiments simulate
the deployment of an OOS query detection sys-
tem. We first randomly sort the queries so that
each query has a unique time t, modeling a query
stream. At each time t, we train a model using the t
available observations and the K class names, and
evaluate the model on the entire test set.
Datasets. We use three evaluation datasets,
Banking77-OOS and CLINC-OOS segmented
into CLINC-Banking and CLINC-Credit_Cards.
Banking77-OOS (Casanueva et al., 2020; Zhang
et al., 2021c) consists of 13, 083 customer service

queries, categorized into 77 fine-grained intents
within the online banking domain. Among these,
50 intents are in-scope, while the remaining 27 are
OOS queries. CLINC-OOS (Larson et al., 2019;
Zhang et al., 2021c), derived from the broader
CLINC dataset, consists of two domains: "Bank-
ing" and "Credit cards", each featuring 10 in-scope
and 5 OOS intents. The training sets for each do-
main include 500 in-scope queries, while the test
sets contain 850 queries, with 350 designated as
OOS instances. Notably, our setting is unsuper-
vised i.e., observations do not include intent labels
for training. Further details are in App. B.1.
Feature extractor & class encoding. We explored
two feature encoders, namely the GTE model (Li
et al., 2023) and MPNET (Song et al., 2020), both
pre-trained on a large corpus of text pairs across
various domains. We found that directly encoding
intent topic names using these encoders did not
meet our performance expectations (See Sec. 5).
To overcome this challenge, we leverage ChatGPT
to generate a query corresponding to each topic
and utilize these generated queries as class descrip-
tions instead of the intent topic names. For further
details, please refer to App. A.
Baselines. We compare ColdFusion (Sec. 3.3)
to several baselines. These include the zero-shot
model (ZS), detailed in Sec. 3.1, which relies solely
on the generated normal class descriptions. Addi-
tionally, we consider DN2, an observation-based
anomaly detection method proposed by (Reiss
et al., 2021). DN2 computes the anomaly score
of an observation by its deep 1-nearest neighbor
distance versus the previous observations Dt. For
implementation details refer to App. B.2.
Evaluation metrics. We propose a new metric to
evaluate the cold-start setting, which emphasizes
high-accuracy shortly after deployment (low t). At
each time step t, we evaluate the performance of
the anomaly scores model using the Area Under the
Receiver Operation Characteristic (AUROC) curve.
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(a) Banking77-OOS (b) CLINC-Banking (c) CLINC-Credit_Cards

Figure 2: Performance trends with contamination r = 5% using the GTE model over time demonstrate the
superiority of our ColdFusion method over other baseline approaches.

We obtain an AUROC score for every time step, and
we denote them as {AUC(t)}Tt=1. We summarize
this t vs. AUROC curve by the area under it up to

time t. This is denoted as AUC2
t̃
=

∑t
t′=1 AUC(t′)

t ,
where t̃ = t

T , the fraction of the training set used.
The AUC2

t̃
metric provides a concise summary of

the model’s accuracy freshly after deployment.

4.1 Results
We present our results in Tab. 1 and Fig. 2. ColdFu-
sion consistently outperforms all baselines across
the evaluated datasets by a large margin. Particu-
larly, we see that DN2 performs poorly, especially
with small t, and the zero-shot baseline (ZS) main-
tains constant performance over time. Conversely,
our approach performs well even for low t values,
and improves over time. The presence of anomalies
in the data stream poses a challenge for DN2, as it
solely relies on the observed contaminated stream.
This reliance often leads to occasional decreases
in performance for DN2, highlighting the vulner-
ability of methods that exclusively depend on the
observed data without considering the underlying
anomalies. Furthermore, our method’s robustness
to different feature encoders, as evidenced by con-
sistent trends in both the GTE and MPNET models,
suggests that it is not reliant on a single feature
extractor. Results for different contamination are
in App. C.

5 Ablation Study

Class embedding adaptation method. We inves-
tigate several variations of the adaptation method,
shown in Tab. 2. i) Replacing our assignment and
adaptation stages with K-means notably reduces
performance, mainly due to its less effective ran-
dom initialization method vs. our descriptor initial-
ization; ii) Iterating multiple steps of assignment

Method B77 C-Bank C-Cards

G
T

E Naive 76.9 60.7 69.8
Generated 78.9 83.1 81.8

M
PN

E
T Naive 79.8 69.6 73.7

Generated 81.8 82.7 80.1

Table 3: Comparison of ZS models in terms of AUROC.
As ZS models maintain constant performance over time
and are not exposed to data, AUC2

t̃ and contaminations
are irrelevant. Best results are in bold.

and adaptation, each time assigning to the adapted
center, fails to outperform ColdFusion. The single
iteration of ColdFusion is preferred, since multiple
iterations increase the computational cost. Addi-
tionally, the results in Tab. 2 show that median
adaptation is slightly better than using the mean on
the evaluated datasets.

Effectiveness of generated queries. In Tab. 3, we
examine the impact of a naive ZS detector that sim-
ply encodes the intent names, compared to our ZS
approach, which uses ChatGPT to generate a query
for each intent and then encodes the generated
query as the class embedding. The results highlight
that naive encoding of intent names alone yields
subpar performance, whereas our pre-processing
procedure considerably improves results.

6 Conclusion

We introduced the new setting of cold-start
anomaly detection, modeling freshly deployed
anomaly detection systems. Our proposed solu-
tion, ColdFusion, is a method for adapting zero-
shot anomaly detection to align with an observation
stream. We introduced an evaluation protocol and
metrics for comparing future methods.

7610



Limitations

Our proposed method has several limitations. i)
Not all deployed anomaly detection systems en-
counter the generalized cold-start problem and in-
deed in the case where there are many observations
and very few anomalies, it is sometimes better to
use observation-driven methods e.g., DN2 (Reiss
et al., 2021). However, we believe that it is a com-
mon issue, particularly in domains like chatbots; ii)
Our approach relies on user-provided guidance for
zero-shot detection, which is not always available;
iii) We assume a low contamination ratio; if this
ratio is significantly higher, the effectiveness of our
method may decrease.

Ethics Statement

Cold-start anomaly detection can have several bene-
fits for society, including improving online services
security by identifying fraudulent activities, unau-
thorized access and enhancing chatbot functionality
by filtering out irrelevant queries early. However, it
may also have some less positive use cases, such as
being used for surveillance or profiling individuals
without their consent. Our research is not geared
towards these less positive use cases.
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A Zero-Shot Anomaly Detection

Zero-shot (ZS) anomaly detection assigns an
anomaly score S(x) to each data point x without
relying on past data. Instead, it is guided by a set of
class names {c1, c2, ..., cK} provided by the user.
To tackle this challenge, we leverage ChatGPT to
generate a user query corresponding to each class
topic name. We use these generated queries as class
descriptions instead of the intent topic names.

Query Generation: Utilizing ChatGPT-3.5, we
generate a user query for each topic to serve as our
class descriptions. Here, [DOMAIN] represents the
chatbot domain (e.g., "Banking"). We employ the
following template: "Generate queries that some-
one would ask a chatbot in [DOMAIN]. Generate
one-sentence queries for each of the following top-
ics: {c1, c2, ..., cK}." This process yields a set of
K user queries, denoted by {qk}Kk=1.

A pre-trained feature extractor ϕ maps each gen-
erated class name qk and observation x to deep
embeddings ϕ(qk) and ϕ(x). Subsequently, we
compute the L2 distance between the example em-
beddings and each generated user query. The final
anomaly score is determined by the distance to the
nearest class:

Szs(x) = min
k

{d(ϕ(x), ϕ(ck))}Kk=1

Alg. 2 outlines our zero-shot model.
A comparison between naive class names and

generated queries is presented in Tab. 3.

B Experimental Details

B.1 Datasets
We employ three widely used datasets, Banking77-
OOS and CLINC-OOS (which is split into CLINC-
Banking and CLINC-Credit_Cards), to evaluate
our anomaly detection approach.

Banking77-OOS. Banking77-OOS (Casanueva
et al., 2020; Zhang et al., 2021c) is an annotated in-
tent classification dataset designed for online bank-
ing queries. Comprising 13, 083 customer service
queries, each query is labeled with one of 77 fine-
grained intents within the banking domain. The
dataset focuses on fine-grained, single-domain in-
tent detection. Of these 77 intents, Banking77-
OOS incorporates 50 in-scope intents, while the
out-of-scope (OOS) queries are constructed based
on 27 held-out in-scope intents. The training set
consists of 5,095 in-scope user queries, and the test
set comprises 3,080 user queries, including 1,080
OOS instances.

Algorithm 2: Zero-Shot Detector
Input: Dprior, ϕ, query x.
Output: Anomaly score Szs(x).
Step 1: Generate user queries using
ChatGPT and Dprior: {qk}Kk=1;

Step 2: Encode generated queries:
{ϕ(qk)}Kk=1 and input query: ϕ(x);

Step 3: Compute anomaly score for x:
Szs(x) = mink{dϕ(x), ϕ(qk))Kk=1;

CLINC-OOS. CLINC-OOS (Larson et al.,
2019; Zhang et al., 2021c) emanates from the
broader CLINC dataset, encompassing 15 intent
classes across 10 different domains, with integrated
out-of-scope examples. For our evaluation, we fo-
cus on two domains: "Banking" and "Credit cards".
Each domain is characterized by 5 in-scope and
10 out-of-scope intents. The training set for each
domain comprises 500 in-scope user queries, while
the test set includes 850 user queries, with 350
designated as out-of-scope instances.

B.2 Implementation Details & Baselines

Our implementation relies on two feature encoders:
the GTE model (Li et al., 2023) and MPNET (Song
et al., 2020), both pre-trained on a large corpus
of text pairs across various domains. We use the
HuggingFace library for both models. Specifically,
for the GTE model, we employ the "thenlper/gte-
large" model checkpoint, while for MPNET, we
use the "sentence-transformers/all-mpnet-base-v2"
model checkpoint. It’s noteworthy that all baselines
are using the same feature encoders in our compar-
isons. We use L2 as a distance metric. For DN2
(Reiss et al., 2021), the implementation involves
encoding Dt and the target query x with our feature
encoder ϕ, followed by computing the 1-nearest-
neighbor distance to ϕ(Dt). We employ the faiss
library for nearest-neighbor distance computations.
In our ColdFusion in order to be robust to anoma-
lies, we excluded observations assigned to class k
but are further than τ . Formally, we define Ck, as
the set of all observations assigned to class k as:

Ck = {ϕ(x)|a(x) = k, d(ϕ(x), ϕ(ck)) ≤ τ}

We set τ by first computing the distances between
all samples and their assigned centers, sorting them,
and choosing τ as the 90% percentile. An ablation
study on this parameter is in App. C.
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Method
AUC2

10% AUC2
25% AUC2

50% AUC2
100%

B77 C-Bank C-Cards B77 C-Bank C-Cards B77 C-Bank C-Cards B77 C-Bank C-Cards

G
T

E

ZS 78.9 83.1 81.8 78.9 83.1 81.8 78.9 83.1 81.8 78.9 83.1 81.8
DN2 74.6 71.2 71.6 77.5 79.4 79.1 78.8 82.9 82.9 79.2 84.7 85.7
ColdFusion 79.0 85.1 85.2 80.9 86.9 87.6 81.8 87.7 88.7 82.3 89.1 89.1

M
PN

E
T ZS 81.8 82.7 80.1 81.8 82.7 80.1 81.8 82.7 80.1 81.8 82.7 80.1

DN2 76.6 74.7 70.7 79.1 82.4 78.5 80.1 85.7 82.7 80.5 86.9 84.8
ColdFusion 80.6 87.0 85.2 81.7 89.0 87.6 82.5 89.5 89.0 83.2 90.0 89.1

Table 4: AUC2
t̃ results, with contamination of r = 2.5%. Best results are in bold.
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50% AUC2
100%

B77 C-Bank C-Cards B77 C-Bank C-Cards B77 C-Bank C-Cards B77 C-Bank C-Cards

G
T

E

ZS 78.9 83.1 81.8 78.9 83.1 81.8 78.9 83.1 81.8 78.9 83.1 81.8
DN2 70.6 67.2 71.3 72.5 77.5 78.1 73.4 80.5 81.1 73.8 80.8 81.9
ColdFusion 77.4 83.4 86.4 78.9 87.0 87.1 79.9 88.4 87.9 80.8 88.9 88.2

M
PN

E
T ZS 81.8 82.7 80.1 81.8 82.7 80.1 81.8 82.7 80.1 81.8 82.7 80.1

DN2 72.3 72.8 70.7 74.5 82.4 78.0 75.3 84.8 80.9 75.3 84.1 80.9
ColdFusion 79.9 85.5 85.4 81.1 88.1 86.9 81.8 88.9 87.8 82.6 89.2 88.0

Table 5: AUC2
t̃ results, with contamination of r = 7.5%. Best results are in bold.

C More Results & Analysis

Contamination Ratios. We extend our analysis
by considering additional contamination ratios of
r% = 2.5 and r% = 7.5, as shown in Tables 4
and 5, respectively. Additionally, we present visual
insights into ColdFusion’s adaptive performance
over time through the figures presented in Fig. 3,
Fig. 4, Fig. 5, and Fig. 6. Across all contamina-
tion ratios, ColdFusion consistently outperforms
all baselines by a significant margin, reinforcing
our approach’s robustness and effectiveness. These
supplementary results further support the stability
and reliability of ColdFusion’s performance trends
observed in the main analysis.

Effect of τ . Table 6 provides an ablation analysis
of different τ parameters as defined in Eq. B.2. We
observe that selecting the 50% and 75% percentiles
yields suboptimal performance compared to using
the 90% and 100% percentiles. These percentiles
involve minimal filtering. Interestingly, there is
a slight improvement in performance when em-
ploying the 90% percentile compared to the 100%
percentile.

D Related Works

Out-of-scope intent discovery. Out-of-scope
(OOS) intent discovery involves clustering new,
unknown intents to identify potential development
directions and expand the capabilities of dialogue
systems. Prior works (Lin et al., 2020; Zhang et al.,
2021b; Mou et al., 2022) in this domain have ex-

plored semi-supervised clustering using labeled
in-domain data. Methods such as pre-training a
BERT encoder with cross-entropy loss (Lin et al.,
2020; Zhang et al., 2021b) and utilizing similar-
ity constrained or supervised contrastive losses
(Khosla et al., 2020) to learn discriminative features
(Mou et al., 2022) aim to transfer intent representa-
tions. However, these approaches face challenges
related to in-domain overfitting, where represen-
tations learned from in-scope data may not gen-
eralize well to OOS data. In contrast to this line
of work, our approach focuses on detecting OOS
intents rather than discovering them. Notably, our
setting involves unlabeled in-scope intents, and our
model’s prior knowledge is limited to intent names.

Out-of-scope intent classification. OOS intent
classification is categorized based on the use of ex-
tensive labeled OOS intent samples during training.
The first category involves methods that use OOS
samples during training, treating OOS intent classi-
fication as a (n+1)-class classification task (Zheng
et al., 2020; Zhan et al., 2021). In contrast, the sec-
ond category aims to minimize intra-class variance
and maximize inter-class variance to widen the
margin between in-scope and OOS intents (Lin and
Xu, 2019; Zeng et al., 2021). Some approaches
(Zhang et al., 2021a; Xu et al., 2020; Zeng et al.,
2021) incorporate Gaussian distribution into the
learned intent features to aid OOS detection. Our
work stands apart from this line of research as it
specifically addresses OOS intents, where in-scope
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intents (topics) lack labels, and the model has no
information or exposure to any OOS intents.

Classical anomaly detection methods. Detect-
ing anomalies in images has been researched for
several decades. The methods follow three main
paradigms: i) Reconstruction - this paradigm first
attempts to characterize the normal data by a set
of basis functions and then attempts to reconstruct
a new example using these basis functions, typ-
ically under some constraint such as sparsity or
weights with a small norm. Samples with high
reconstruction errors are atypical of normal data
distribution and anomalous. Some notable meth-
ods include: principal component analysis (Jolliffe,
2011) and K-nearest neighbors (kNN) (Eskin et al.,
2002); ii) Density estimation - another paradigm
is to first estimate the density of normal data. A
new test sample is denoted as anomalous if its esti-
mated density is low. Parametric density estimation
methods include Ensembles of Gaussian Mixture
Models (EGMM) (Glodek et al., 2013), and non-
parametric methods include kNN (which is also a
reconstruction-based method) as well as kernel den-
sity estimation (Latecki et al., 2007). Both types
of methods have weaknesses: parametric methods
are sensitive to parametric assumptions about the
nature of the data whereas non-parametric methods
suffer from the difficulty of accurately estimating
density in high-dimensions; iii) One-class classi-
fication (OCC) - this paradigm attempts to fit a
parametric classifier to distinguish between normal
training data and all other data. The classifier is
then used to classify new samples as normal or
anomalous. Such methods include one-class sup-
port vector machine (OCSVM) (Scholkopf et al.,
2000) and support vector data description (SVDD)
(Tax and Duin, 2004).

Deep learning for anomaly detection. This line
of work is based on the idea of initializing a neural
network with pre-trained weights and then obtain-
ing stronger performance by further adaptation of
the training data. DeepSVDD (Ruff et al., 2018)
suggested to first train an auto-encoder on the nor-
mal training data, and then using the encoder as
the initial feature extractor. Moreover, since the en-
coder features are not specifically fitted to anomaly
detection, DeepSVDD adapts to the encoder train-
ing data. However, this naive training procedure
leads to catastrophic collapse. An alternative di-
rection is to use features learned from auxiliary
tasks on large-scale external datasets. Transferring
pre-trained features for out-of-distribution detec-

tion has been proposed by (Hendrycks et al., 2019).
It was recently established (Reiss et al., 2021) that
given sufficiently powerful representations, a sim-
ple criterion based on the kNN distance to the nor-
mal training data achieves strong performance. The
best performing methods (Reiss et al., 2021, 2022;
Reiss and Hoshen, 2023) combine pre-training on
external datasets and a second finetuning stage on
the provided normal samples in the training set,
but they require many data observations and as-
sume that the observations are not contaminated.
To our knowledge, the only work that deals with a
similar setting (Jeong et al., 2023) assumes prior
knowledge of anomalies, that observations come
from a single normal class and that they are not
contaminated by anomalies.
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(a) Banking77-OOS (b) CLINC-Banking (c) CLINC-Credit_Cards

Figure 3: Performance trends with contamination r = 2.5% using the MPNET model over time.

(a) Banking77-OOS (b) CLINC-Banking (c) CLINC-Credit_Cards

Figure 4: Performance trends with contamination r = 5% using the MPNET model over time.

(a) Banking77-OOS (b) CLINC-Banking (c) CLINC-Credit_Cards

Figure 5: Performance trends with contamination r = 7.5% using the MPNET model over time.

(a) Banking77-OOS (b) CLINC-Banking (c) CLINC-Credit_Cards

Figure 6: Performance trends with contamination r = 7.5% using the GTE model over time.
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τ
AUC2

10% AUC2
25% AUC2

50% AUC2
100%

B77 C-Bank C-Cards B77 C-Bank C-Cards B77 C-Bank C-Cards B77 C-Bank C-Cards

τ = perc(ϕ(Dt), 50%) 80.1 80.4 80.7 80.6 83.6 83.0 80.7 85.1 84.6 81.3 86.5 85.4
τ = perc(ϕ(Dt), 75%) 81.8 81.9 83.0 81.9 85.5 84.8 81.8 87.4 86.7 82.1 88.2 87.7
τ = perc(ϕ(Dt), 100%) 82.0 81.1 85.0 82.1 86.0 86.7 81.8 88.0 88.0 82.3 89.0 88.5
τ = perc(ϕ(Dt), 90%) 81.7 82.3 84.8 81.8 87.0 87.3 81.9 88.6 88.7 82.3 89.2 89.0

Table 6: AUC2
t̃ results using the GTE model, with contamination of r = 5%. Best results are in bold.
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