
Findings of the Association for Computational Linguistics ACL 2024, pages 7639–7654
August 11-16, 2024 ©2024 Association for Computational Linguistics

DistillMIKE: Editing Distillation of Massive In-Context Knowledge Editing
in Large Language Models

Shanbao Qiao and Xuebing Liu and Seung-Hoon Na∗

Center for Advanced Image and Information Technology,
Department of Computer Science and Artificial Intelligence,

Jeonbuk National University
{joe,liuxuebing,nash}@jbnu.ac.kr

Abstract

Among the recently emerging knowledge-
editing methods, in-context knowledge edit-
ing (IKE) (Zheng et al., 2023) has shown
respectable abilities in knowledge editing in
terms of generalization and specificity. Not-
ing the promising advantages but unexplored
issues of IKE, we propose DistillMIKE as a
novel extension of IKE, i.e., editing distillation
of “Massive” In-context Knowledge Editing
in large language models (LLMs), primarily
consisting of two expansions: 1) Massive in-
context knowledge editing (MIKE), which ex-
tends IKE to a massive editing task, aims to
inject not a single edit but a set of massive
edits into LLMs. To preserve specificity, our
key novel extension is a “selective” retrieval
augmentation, where the retrieval-augmented
IKE is only applied to “in-scope” examples,
whereas the unedited model without IKE is
employed for “out-of-scope” ones. 2) Editing
distillation of MIKE using low-rank adapta-
tion (LoRA), which distills the editing abili-
ties of MIKE to the parameters of LLMs in
a manner that eliminates the need for lengthy
in-context demonstrations, thereby removing
the computational overhead encountered at the
inference time. The experimental results on
the zsRE and CounterFact datasets demon-
strate that MIKE shows state-of-the-art perfor-
mance, whereas DistilMIKE shows compara-
ble performance to MIKE. Our code is avail-
able at https://github.com/JoveReCode/
DistillMIKE.git.

1 Introduction

While large language models (LLMs) have shown
remarkable abilities across a broad spectrum of
natural language processing (NLP) tasks (Touvron
et al., 2023; OpenAI, 2023; Petroni et al., 2020),
LLMs are still limited in the coverage and veracity
of their world knowledge, thus causing reliance

*Corresponding author

on outdated knowledge (Onoe et al., 2022; Dhin-
gra et al., 2022; Liška et al., 2022), or the genera-
tion of erroneous, hallucinatory, or biased contents
(Zhao et al., 2023; Ji et al., 2023; Lazaridou et al.,
2021; Agarwal and Nenkova, 2022; Gallegos et al.,
2023). Given the evolving nature of world knowl-
edge and the need to correct inaccurate information
in LLMs, there has been a growing interest in the
“knowledge editing” task, aiming at developing a
scaled and effective editing mechanism that injects
new knowledge into LLMs or corrects false and
erroneous information in LLMs. In particular, this
paper addresses the “massive editing” task, as in
(Meng et al., 2022b), where a large number of ed-
its are provided beyond just a single correction of
an edit, the resulting editing mechanism needs to
properly update more than hundreds or thousands
of facts in LLMs simultaneously.

Among various approaches to knowledge edit-
ing, such as parameter updating (PU) (Cao et al.,
2021; Tan et al., 2024; Meng et al., 2022a,b; Li
et al., 2023; Huang et al., 2023; Dong et al., 2022a;
Madaan et al., 2022) and memory-based methods
(Mitchell et al., 2022b; Zheng et al., 2023; Onoe
et al., 2023; Zhong et al., 2023; Madaan et al.,
2022), in-context knowledge editing (IKE) has
been newly proposed, inspired by in-context learn-
ing (ICL) emerged in LLMs (Brown et al., 2020;
Dong et al., 2022b), showing noticeable editing per-
formances in terms of generalization and specificity.
Motivated by the respectable advantages of IKE,
such as its human-interpretable editing method, we
would like to go further toward expanding and im-
proving IKE by addressing the following issues:
1) Extension to massive editing tasks: IKE has
not been explored in the massive editing task, and
thus, it remains largely unclear how IKE is general-
ized to the massive editing task, how IKE performs
compared with other popular PU methods such as
MEMIT, and whether the demonstration construc-
tion previously suggested in (Zheng et al., 2023)

7639

https://github.com/JoveReCode/DistillMIKE.git
https://github.com/JoveReCode/DistillMIKE.git

is also feasible in the addressed task. 2) Resolving
the computational overhead caused by the use of
lengthy prompts: IKE incurs computational and
memory overhead at the inference stage, because
the length of an input prompt becomes a “long,”
resulting by prepending a non-trivial number of
demonstrations.

Towards a novel extension for addressing the
aforementioned issues, we propose DistillMIKE,
the editing distillation of massive in-context
knowledge editing in LLMs, which mainly con-
sists of two components:

• Massive in-context knowledge editing
(MIKE), which extends IKE to a massive edit-
ing task, leading to a retrieval-augmented IKE.
A large number of massive edits (i.e. facts) to
be injected into LLMs are first stored in a sep-
arate memory, namely the edit memory. Given
an input query prompt, IKE is then preformed
using its “relevant” edit retrieved from the edit
memory, referred to a query-matched edit. To
effectively preserve specificity, without em-
ploying IKE for all input prompts, we instead
newly propose a “selective” retrieval augmen-
tation, where the retrieval-augmented IKE is
applied only for in-scope examples, not for
other out-of-scope examples. Furthermore,
given this selective nature of applying IKE,
we further propose the use of scope-aware
demonstrations, paying attention to in-scope
cases, thus by including only “update” types
of demonstrations that are likely useful for
processing in-scope edits, but by excluding
other “retain” types, as they may be mostly
useful for out-of-scope cases.

• Editing distillation of MIKE using low-
rank adapter (LoRA) for DistillMIKE,
which distills editing abilities of MIKE to pa-
rameters of LLMs in a manner of eliminat-
ing the need of “lengthy” in-context demon-
strations, aiming at reducing the computa-
tional overhead at the inference time. Inher-
ited by the selective retrieval augmentation
of MIKE, the editing distillation of MIKE is
a multi-teacher distillation (Wu et al., 2021;
Liu et al., 2020), where the two teachers are
1) the retrieval-augmented IKE for in-scope
examples and 2) the unedited base model for
out-of-scope examples. To substantially re-
duce the number of parameters to be updated,
LoRA fine-tuning (Hu et al., 2022) is adopted

during the editing distillation, finally resulting
in DistillMIKE.

Experimental results on the zsRE and Counter-
Fact datasets demonstrate that MIKE achieves state-
of-the-art performance in the CounterFact dataset,
and DistillMIKE shows comparable performance
with MIKE and improves existing editing methods
such as IKE and MEMIT, even in the setting where
lengthy in-context demonstrations and instructions
do not appear in prompts.

Our contributions can be summarized as follows:
1) we propose MIKE, which extends IKE to the
massive editing task based on selective retrieval
augmentation depending on the scope type of an
input query; 2) we further propose DistillMIKE,
a LoRA-finetuned student model that is distilled
from multi-teacher models – IKE and unedited
base models – thereby injecting ICL prompts in
MIKE into the model parameters, thus enabling
inference without the need for lengthy demonstra-
tion prompts; and 3) the proposed MIKE and Dis-
tillMIKE show state-of-the-art and promising per-
formances on the zsRE and CounterFact datasets.

2 Related Works

Existing methods can be broadly categorized into
PU- and memory-based methods. Yao et al. (2023)
presented an extensive review of knowledge editing
methods. In this section, we briefly review selected
methods and discuss some of them in terms of the
novelty of our work.

2.1 PU methods

PU methods can be further categorized into three
approaches: Meta-learning, locate-and-edit, and
parameter expansion methods.

Meta-learning Knowledge Editor (Cao et al.,
2021) trains a hypernetwork to approximate the
parameter changes required for the model to pre-
dict new knowledge and preserve old knowledge.
MEND (Mitchell et al., 2022a) employs a hypernet-
work to transform the initial fine-tuning gradient
into a simplified representation using low-rank de-
composition to produce parameter updates. More
recently, MALMEN (Tan et al., 2024) further ex-
tended MEND to massive editing tasks by aggregat-
ing massive parameter updates into a single param-
eter update, motivated by MEMIT, demonstrating
its scalability.

7640

Locate-and-edit Dai et al. (2022) proposed the
concept of knowledge neurons for precise factual
knowledge editing at the instance level. ROME
(Meng et al., 2022a) is a pioneering study that at-
tempts to locate the model parameters associated
with the target factual knowledge and rewrite the
key-value pairs in the feed-forward network (FFN)
module with newly computed vectors. MEMIT
(Meng et al., 2022b) further expands ROME to be-
come scalable for massive editing tasks by spread-
ing weight changes over multiple model layers.
PMET (Li et al., 2023) improves MEMIT by con-
sidering the knowledge-storing role of the multi-
head self-attention (MHSA) layer, thus preventing
overestimation of the parameter updates required
for the FFN layers.

Parameter expansion In parameter expansion
methods, parameters of LLMs are enlarged by in-
tegrating the newly trained extra parameters to
store new knowledge in the original parameters.
T-Patcher (Huang et al., 2023) adds one neuron to
the last layer of FNN to handle a specific edit re-
quest, and CaliNET (Dong et al., 2022a) extends
T-Patcher by using multiple neurons to cover a set
of edits.

2.2 Memory-based Methods

IKE (Zheng et al., 2023) extensively explored ICL-
based knowledge editing by proposing a novel
method for demonstration organization that com-
prises multiple types of demonstrations designed to
simultaneously improve generalization and speci-
ficity, which are the main evaluation metrics of the
knowledge editing task. MELLO (Zhong et al.,
2023) stores edited facts externally and prompts
the language model iteratively to generate answers
that align with them.

SERAC (Mitchell et al., 2022b) stores edits in
a separate edit memory and employs a scope clas-
sifier to determine whether a query edit can be
considered an in-scope example within the edit
memory. If a query edit is classified as in-scope,
then SERAC uses a counterfactual model. Other-
wise, it uses a frozen base model for a given query
edit.

Similar to MIKE, SERAC maintains an edit
memory, reacts differently to in-scope and out-of-
scope examples, and uses a scope classifier. How-
ever, SERAC has not yet been scaled up for mas-
sive editing tasks. In addition, SERAC requires
additional training of the parametric counterfactual

model and scope classifier, whereas MIKE does
not use a PU method but relies only on the ICL
mechanism.

Although DistillMIKE is considered a PU
method, to the best of our knowledge, our work
on DistillMIKE is the first to use distillation meth-
ods for knowledge editing tasks.

3 Task Definition

To formally define the massive editing task, sup-
pose thatM is an autoregressive language model,
M(x) is the output generated by the decoding step
given a prefix sequence x, and new factual knowl-
edge to be injected intoM is represented as a set
of relational triples. More specifically, S is a set of
real-world entities or concepts, R is a set of rela-
tions, and E = {ei}Ni=1 is a set of edits (or facts) to
be injected intoM, where ei = (si, ri, o

∗
i) is the

i-th edit, i.e., a relational triple that consists of a
subject si ∈ S, a relation ri ∈ R, and an object
o∗i ∈ S. It is commonly assumed that M does
not contain each fact ei precisely; given a prefix
xi = (si, ri) as the prompt input, M(xi) = oi
is usually not equal to the target object o∗i , i.e.,
oi ̸= o∗i for most i.

The goal of knowledge editing is to obtain an
edited modelM∗ toward satisfying efficacy, gener-
alization, and specificity, for “all” edits.

• Efficacy holds if M∗(si, ri) = o∗i for
(si, ri) ∈ E .

• Generalization is satisfied if M∗(s′i, r
′
i) =

o∗i for a “paraphrased” prefix (s′i, r
′
i) ∈ I(ei),

where I(ei) is the edit scope of ei, the set of
in-scope examples.

• Specificity (or locality) holds ifM∗(s, r) =
M(s, r) for any irrelevant prefix (s, r) ∈
O(ei) where O(ei) = U − I(ei) is the set
of out-of-scope examples, given that U is a
universal set of knowledge.

Examples of an edit, its prefix, in-scope and
out-of-scope prefixes, and their correct objects are
presented in Appendix B.

4 Method

Figure 1 presents the overall architecture of the pro-
posed MIKE and DistillMIKE with a brief sketch
of their construction.

7641

Figure 1: The overall architecture of MIKE and DistillMIKE. (a) MIKE: At the training step, MIKE merely stores
all the massive “test” edits E = {ei}Ni=1 in the edit memory. At the inference time, given a query prompt q = (s, r),
MIKE first performs the fact retrieval Ret(q) to retrieve a “new fact prompt,” called the query-matched fact, eq (in
Section 4.1.1). MIKE behaves differently for in-scope and out-of-scope queries (i.e., Eq (1)); for an in-scope case
(i.e., Ret(q) ̸= ∅), MIKE further calls the demonstration selection component Demo(q) (in Section 4.1.2), and the
resulting demonstrations are further concatenated with a query q, and then they are fed to the decoding process,
resulting inM(Demo(q); q); for an out-of-scope case (i.e., Ret(q) = ∅), without demonstration selection, a query
q is only fed to the decoding process, merely givingM(q). (b) DistillMIKE: Editing distillation is performed by
taking MIKE as a teacher model and initializing a student model by the base model. Inherited from the selective
retrieval augmentation of MIKE, DistillMIKE results from a multi-teacher distillation by taking IKE and the
unedited base model as in-scope and out-of-scope teachers, respectively, thereby decomposing Led of Eq. (2) into
Like and Lbase (in Eq. (5) in Section 4.2).

• Inducing MIKE as a teacher model: i) At
the training time, given E , a set of test edits
(i.e. new facts), MIKE merely maintains E in
an external “edit memory,” without updating
parameters. ii) At the inference time, given a
query prompt q = (s, r), MIKE first applies a
fact retrieval function Ret(q), which returns
the best-matched fact eq ∈ E , called a query-
matched fact; otherwise, Ret(q) returns a null,
i.e., Ret(q) = ∅. A simple scope classification
is then performed; q is classified as an out-of-
scope case when Ret(q) = ∅; otherwise, q
becomes an in-scope case.

MIKE acts differently for in-scope and out-of-
scope cases; for an in-scope case, MIKE pre-
pares in-context demonstrations selected from
a set of “training” edits, denoted by Demo(q),
and prepends them to a query prefix x; on
the other hand, for an out-of-scope case, no
demonstration is provided in a prompt. The

resulting prompts, with or without demonstra-
tions, are fed toM to finally predict the output
sequence. With this selective retrieval aug-
mentation, the inference process of MIKE is
summarized as follows:

M∗(q) =

{
M(Demo(q); q), Ret(q) ̸= ∅
M(q), Otherwise.

(1)

• Training DistillMIKE by editing distilla-
tion using LoRA: Inspired by the work of
(Choi et al., 2023), we distill MIKE to a stu-
dent model Mst

θ with parameters θ, based
on a LoRA-based PU method, for eliminat-
ing the need for “lengthy” demonstrations for
in-scope cases. Given a set of “test” edits
E , we use its in-scope and out-of-scope test
edits as a training dataset for editing distil-
lation, denoted by I (E) = ∪ei∈EI(ei) and
O (E) = ∪ei∈EO(ei), respectively.

7642

Let pM(y|x) be the generative probability of
a sequence y, given prefix x computed using
M. The loss function used for the editing
distillation is summarized as follows:

Led = KL
(
pM∗

∥∥∥pMst
θ

)
(2)

≈
∑

q=(s,r)∈E ′
Eo∼pM∗ (·|q) log

pMst
θ
(o|q)

pM∗(o|q)

where E ′ = I (E) ∪ O (E) indicates a whole
set of training examples used for editing dis-
tillation.

To trainMst
θ using Eq. (2), we undertake the

LoRA fine-tuning method of Hu et al. (2022)
to substantially reduce the number of parame-
ters to be updated.

4.1 Teacher Model: MIKE

As in Eq. (1), the inference step of MIKE em-
ploys Ret, the “fact retrieval” function and Demo,
the “demo selection” module, whose details are
presented as follows:

4.1.1 Fact retrieval: Ret(q)
Given a query prompt q = (s, r), Ret(q) attempts
to find a query-matched fact eq by maximally
matching the subject and relation parts of q. The
matching for fact retrieval is divided into four
cases:

1) an exactly matched case with eq = ei where
ei = (si, ri, oi) ∈ E is exactly matched with
a subject and a relation of q, i.e., (si, ri) =
(s, r).

2) a uniquely subject-matched case with eq =
ei where ei = (si, ri, oi) ∈ E is uniquely
matched with a subject of q, i.e., si = s, while
no other test edits match the subject s.

3) a subject-matched but ambiguous case with
eq = top− 1(q, Es where eq is the nearest
test edit among all the subject-matched ones,
i.e., given Es = {ei = (si, ri, oi)|si = s}, an
additional dense retrieval is employed to com-
pute the similarities between an edit ei and a
query for finding the nearest edit.

4) an unmatched case with eq = ∅, where no
edits match a subject part s of q.

An illustrated example of fact retrieval is shown in
Figure 2, with more details on the process.

4.1.2 Demonstration selection: Demo(q)

As in Eq. (1), MIKE requires the demonstration
selection Demo(q) for in-scope examples when
Ret(q) = eq ̸= ∅. To be more specific, given E
a set of test edits, MIKE keeps a separate set of

“training” edits, denoted as E tr =
{
etrj

}M

j=1
. Un-

less otherwise stated, an edit refers a “test” edit,
not being a “training” edit. In contrast to a test
edit, each j-th training edit etrj is pre-associated
with a set of demonstrations, referred to as D(etrj).
Similar to (Liu et al., 2022), Demo(q) first finds
the top-k “training” edits that are most similar to
a query-matched fact eq, i.e., e′1, · · · , e′k where
e′i ∈ E tr. The demonstration filter g is then further
applied to demonstrationsD(e′i) of each i−-th near-
est training edits, resulting in g (D(e′i)). All filtered
demonstrations are concatenated and prepended as
a prompt prefix to the given query q, which is fed
to M to finally produce a predicted output. In
summary, the formal definition of Demo(q) is as
follows:

e′1, · · · , e′k = kNN
(
eq, E tr

)

Demo(q) =
[
g(D(e′1)); · · · ; g(D(e′k))

]

where kNN
(
eq, E tr

)
is an additional retrieval func-

tion that finds the top-k nearest neighbors in the
“training” edits E tr, which are the most similar to
eq; a kind of dense retrieval is deployed to compute
the similarities between a training edit etrj and eq,
whose details are presented in Appendix C.
Scope-aware demonstration filtering: g For the
demonstration filter g, we propose the scope-aware
demonstration filter for g, by using only “update”
types of demonstrations, not including other types
such as “retrain” types. This use of scope-aware
demonstrations is motivated by the selective re-
trieval nature of MIKE, where IKE is applied only
to in-scope cases and not to out-of-scope cases.
Because IKE is not applied to out-of-scope cases,
excluding “retrain” types of demonstrations may
not negatively impact the editing performance.

To formally describe the scope-aware filtering
method in g, for the j-th training edit etrj , its
demonstrations D(etrj) further consist of three
types of demonstrations: Dcp(etrj), Dud(etrj), and
Drt(etrj), which correspond to sets of copy, update,
and retrain types, respectively1, i.e., D(etrj) =

1Here, the demonstration types of copy, update and retrain
correspond to the “requested,” “paraphrased,” and “neighbor-
hood” prompts in the CounterFact dataset, respectively.

7643

(Dcp(etrj),Dup(etrj),Dtr(etrj)). In the proposed

scope-aware demonstration filter, g
(
D(etrj)

)
is de-

fined as follows:

g
(
D(etrj)

)
= Dup(etrj) (3)

The detailed examples of three types of demon-
strations are presented in Appendix H.

4.2 DistillMIKE

While MIKE presents promising results showing
state-of-the-art performance on the massive editing
task, as in Section 6, the major drawback is its
additional computational overhead at the inference
time, mainly caused by the increased prompts from
a number of demonstrations. Inspired by (Choi
et al., 2023), we would like to eliminate the need
of using a lengthy sequence of demonstrations, and
thus propose “editing distillation” from MIKE to
a student model, such that the resulting student
model, i.e., DistillMIKE, does not need to prepend
a lengthy sequence of demonstrations but only use
an input query prompt.

To substantially reduce the training cost for dis-
tillation, a student model is initialized by MEMIT
and then fine-tuned using LoRA (Hu et al., 2022),
where only a very small portion of the parame-
ters need to be updated. It is noticeable that the
proposed editing distillation of MIKE to a student
model is somehow motivated by previous studies
viewing ICL as gradient descent methods (Von Os-
wald et al., 2023; Dai et al., 2023), whereas their
results are induced under rather limited settings
such as the linear attention and few-shot learning
abilities of ICL.

Because MIKE consists of two sub-models -–
IKE and the unedited base model, the editing distil-
lation applied to DistillMIKE can be seen as a multi-
teacher distillation, similar to (Wu et al., 2021; Liu
et al., 2020). Suppose that training examples used
for editing distillation E ′ are automatically classi-
fied into in-scope and out-of-scope examples, based
on the scope classifier using Ret(q), denoted as I ′
and O′ respectively, defined as follows:

I ′ =
{
e ∈ E ′

∣∣ Ret(e) ̸= ∅
}

O′ = E ′ − I ′ (4)

The loss function of Eq. (2) is rewritten as:

Led = Like + Lbase (5)

Like ∝
∑

q=(s,r)∈I′

d=Demo(q)

Eo∼pM(·|d;q) log
pMst

θ
(o|q)

pM(o|d; q)

Lbase ∝
∑

q=(s,r)∈O′
Eo∼pM(·|q) log

pMst
θ
(o|q)

pM(o|q)

Therefore, under Eq. (5), it is clearly seen that
for a given query q, DistillMIKE results from
two teacher models – the IKE loss Like from
pM(o|Demo(q); q) and the base loss Lbase from
pM(o|q), depending on whether q ∈ I ′ or q ∈ O′.

5 Experiments

5.1 Dataset and Metrics
We evaluate MIKE and DistillMIKE on the Zero-
Shot Relation Extraction (zsRE, Levy et al.
(2017)) and CounterFact datasets (Meng et al.,
2022a) with 10,000 knowledge edits. The details
and formats of the datasets are provided in Ap-
pendix H.

For zsRE, three metrics – Efficacy, Paraphrase,
and Specificity – are employed to measure the edit-
ing capability concerning editing requests, para-
phrases, and the retaining capability for out-of-
scope examples. Detailed definitions of these met-
rics are provided in Appendix J.

For CounterFact, similar to the three metrics
used in zsRE, we compute the Efficacy Score
(ES), Paraphrase Score (PS), and Neighborhood
Score (NS) to evaluate the editing accuracy (for
editing requests and paraphrase prompts) or retain-
ing accuracy (on neighborhood prompts), respec-
tively. In addition, we report their mean differences
in magnitude terms: Efficacy Magnitude (EM),
Paraphrase Magnitude (PM), and Neighborhood
Magnitude (NM), which measure the significance
of editing. The aggregated Score (S) is calculated
as the harmonic mean of ES, PS, and NS. A de-
tailed definition can be seen in Appendix J.

The implementation details are provided in Ap-
pendix I.

5.2 Settings and Baselines
We use the GPT-J 6B model (Wang and Ko-
matsuzaki, 2021), which is a widely employed
backbone model in relevant studies, to compare
MIKE and DistillMIKE with various existing
knowledge-editing methods. In DistillMIKE, we

7644

Figure 2: An illustration of steps of the fact retrieval function Ret(q). Suppose that the edit memory stores a set
of “test” edits E . Given query q = (s, r), the goal of the fact retrieval is to find the best-matched fact in the edit
memory, consisting of three steps; 1) match both the subject s and relation r of q in the edit memory. If matched, it
returns the matched fact as the query-matched fact, eq; otherwise, goes to the next step; 2) match the subject s in the
memory. if “uniquely” matched, the matched fact becomes eq. If there exist more facts matched, goes to the next
step. Otherwise, it returns the “null”, i.e., Ret(q) = eq = ∅; 3) perform the dense retrieval by ranking a set of the
subject-matched facts. The best-matched fact is the query-matched fact eq .

adopt MEMIT as the initial student model because
it provides a good starting point for editing perfor-
mance, as discussed in Section 6.2. The baseline
methods include fine-tuning and four PU methods:
MEND (Mitchell et al., 2022a), ROME (Meng
et al., 2022a), MEMIT (Meng et al., 2022b), and
PMET (Li et al., 2023). We also include IKE,
an instance-level ICL-based method (Zheng et al.,
2023).

6 Results

6.1 Main Results

6.1.1 Editing 10k knowledge in zsRE.

Table 1 presents the comparison results of MIKE,
DistillMIKE, and other baselines on the zsRE
dataset. MIKE achieves the best overall perfor-
mance in terms of Score, with a particularly notice-
able improvement in Paraphrase. DistillMIKE also
achieves improvements over the baseline models
but shows slightly lower performance compared to
its teacher MIKE.

GPT-J, the original unedited model, shows a
Specificity score of 27.0 only on the zsRE dataset;
thus, it is likely that Specificity is not significantly
improved by varying knowledge editing methods.

6.1.2 Editing 10k knowledge in CounterFact.

We initially assesse performance using GPT-J 6B in
line with most baselines. and subsequently scale up
to the larger GPT-NeoX 20B model to demonstrate
the scalability.

Table 2 presents the comparison results of MIKE
and DistillMIKE and the baselines in terms of both
the accuracy metrics ES, PS, and NS, and the mag-
nitude metrics EM, PM, and NM.

In the comparison based on GPT-J, the proposed
MIKE and DistillMIKE significantly outperform
all baselines in terms of overall performance (i.e.,
Score). MIKE and DistillMIKE demonstrate sub-
stantial improvements in Generalization and, no-
ticeably, in Specificity. The fine-tuned (FT) model
performs well in terms of Efficacy and Generaliza-
tion, however, it shows a substantial deterioration
in Specificity. While MEND also shows admirable
Specificity, its other editing capabilities are largely
weak in the case of 10,000 edits. IKE exhibits
strong performance in terms of Efficacy and Gener-
alization but underperforms in terms of Specificity.
We clearly observe substantial performance gaps in
the Generalization between DistillMIKE and other
baseline methods, such as MEMIT, PMET, and
ICL-based methods (i.e., IKE), and the results con-

7645

Method Score ↑ Efficacy ↑ Paraphrase ↑ Specificity ↑
GPT-J 26.4 26.4 25.8 27.0
FT 42.1 69.6 64.8 24.1
MEND 20.0 19.4 18.6 22.4
ROME 2.6 21.0 19.6 0.9
MEMIT 50.7 96.7 89.7 26.6
PMET 51.0 96.9 90.6 26.7
MIKE 52.6 99.9 99.6 27.0
DistillMIKE 52.2 98.5 97.0 27.0

Table 1: Performance comparison of GPT-J (6B) with 10,000 knowledge edits on the zsRE dataset. Score is the
harmonic mean of Efficacy, Paraphrase, and Specificity. Column-wise best are in bold, second best are underlined.

Method Score Efficacy Generalization Specificity
S ↑ ES ↑ EM ↑ PS ↑ PM ↑ NS ↑ NM ↑

GPT-J 20.47 14.66 -7.40 15.06 -7.50 83.97 7.65
FT 63.54 99.91 98.24 88.14 48.65 38.67 -8.22
MEND 25.23 17.61 -12.19 20.10 -11.34 80.83 12.55
ROME 49.92 49.36 -0.03 49.51 -0.09 50.92 0.09
MEMIT 85.71 99.10 87.85 88.33 38.02 73.59 4.64
IKE 84.88 99.98 92.86 96.29 67.37 66.88 25.19
PMET 86.20 99.50 - 92.80 - 71.40 -
MIKE 90.87 99.48 95.58 98.99 83.29 77.76 2.75
DistillMIKE 89.53 97.10 73.09 95.36 63.04 78.61 13.83
GPT-NeoX 23.33 16.63 -9.10 17.77 -8.17 81.94 8.85
MEMIT 82.00 97.20 - 82.20 - 70.80 -
PMET 84.30 98.40 - 89.40 - 70.30 -
MIKE 89.43 99.51 95.89 99.05 85.87 74.62 5.17
DistillMIKE 87.43 97.40 60.97 93.74 45.03 74.75 5.90

Table 2: Performance comparison of GPT-J (6B) and GPT-NeoX (20B) with 10,000 knowledge edits on the
CounterFact dataset. Score S is the harmonic mean of ES, PS, and NS. Column-wise best are given in bold; second
best are underlined.

firm the effectiveness of editing distillation again.
On the GPT-NeoX 20B model, DistillMIKE ex-

hibits superior overall performance compared to
MEMIT and PMET, particularly demonstrating no-
ticeable improvements in Generalization and Speci-
ficity.

6.2 Ablation Study

In Table 3, we further examine the effect of using
the in-scope and out-of-scope teachers on editing
distillation, denoted by MIKEike and MIKEbase, re-
spectively, compared to the MEMIT-initialized stu-
dent model. MIKEike and MIKEbase are the runs
using M (Demo(q); q) (using our scope-aware
demonstrations) andM (q) in Eq. (1) for “all” test
queries, regardless their scope types.

MIKEike achieves near-perfect performances in
ES and PS (i.e., Efficacy and Generalization) while

showing a very low value of NS (i.e., Specificity).
By contrast, as expected, MIKEbase presents an al-
most upper bound of NS while showing low values
of ES and PS. As the initial student model, MEMIT
exhibits a balanced performance of the three met-
rics, however, its PS and NS performances are still
far lower than those of MIKEike and MIKEbase,
respectively.

Given its improved performance in Table 1-2,
it is expected that DistillMIKE benefits by inte-
grating distinct abilities from both worlds of the
two teachers, i.e., learning the “editing” ability
from MIKEike and the “retaining” ability from
MIKEbase during editing distillation. Table 3 fur-
ther shows the result of performing the “partial”
distillation using only MIKEike with Like in Eq.
(5). Compared to the full-fledged version (i.e.,
Like + Lbase), there is a substantial decrease in

7646

Model S ↑ ES ↑ PS ↑ NS ↑
MIKEike 25.02 100 99.78 10.01
MIKEbase 21.93 14.66 17.65 83.97
Student 85.71 99.10 88.33 73.59
DistillMIKE
- Like 88.37 99.25 98.45 72.91
- Like + Lbase 89.53 97.10 95.36 78.61

Table 3: Ablation study of DistillMIKE on CounterFact.
MIKEike is the in-scope teacher, MIKEbase is the out-
of-scope teacher (base model). “Student” refers to a
student model before editing distillation, initialized by
MEMIT. DistillMIKE with Like is the run of performing
the partial distillation with Like only in Eq. (5).

NS, indicating that learning the “retraining” ability
is not sufficiently done during distillation, using
Like alone.

Model Student DistillMIKE ∆NS ↓
GPT-J 83.97 51.48 32.49
6000 edits 78.29 55.49 22.80
10000 edits 73.59 72.91 0.68

Table 4: Performances of NS before and after the partial
editing distillation with Like across different settings
of MEMIT. “Student” refers to variants of MEMIT dif-
fering the number of edits among 0 (GPT-J), 6,000,
10,000 edits. “DistillMIKE” are the corresponding post-
distilled runs after performing the partial editing distil-
lation to these student models. ∆NS is the difference in
NS between before and after the editing distillation.

We believe that the use of MEMIT as a student
model leads to a good starting point, where MEMIT
already pursues a balancing mechanism in a man-
ner of keeping the “retrain” ability, and thus the
subsequent editing distillation does not seriously
cause the catastrophic forgetting problem for out-
of-scope examples.

To examine the effect of using MEMIT as a stu-
dent model, Table 4 presents the performances of
NS before and after applying the partial editing dis-
tillation, when using different versions of MEMIT
(including GPT-J) as student models, by varying
the number of edits. It is shown that as the number
of edits imposed on MEMIT increases (i.e., more
extensively “surgical” pre-parametric updates are
applied), the corresponding LoRA-distilled Dis-
tillMIKE keeps NS performances with greater sta-
bility. Thus, the results confirm that the choice of
MEMIT as a student model is indeed necessary to
achieve a balanced editing performance for Gener-
alization and Specificity.

6.3 Inference Efficiency

To examine the inference efficiency of DistillMIKE
and MIKE, Table 5 presents the average inference
times and prompt lengths “per query” of these pro-
posed models, compared to IKE and the unedited
GPT-J. MIKE achieves a significant improvement
in inference efficiency compared to IKE, mainly
due to its selective retrieval augmentation manner.
Furthermore, DistillMIKE leads to substantially
make improvements over MIKE given its manner
that does not require the retrieval augmentation,
eventually achieving similar inference efficiency to
the unedited GPT-J model.

Method Infer-time Prompt-len
GPT-J (unedited) 0.126 s 0
IKE 1.623 s 991.31
MIKE 0.360 s 470.11
DistillMIKE 0.132 s 0

Table 5: Comparison of inference efficiency on Counter-
Fact. Infer-time and Prompt-len indicate the average
“inference time” and “prompt length” per query, respec-
tively.

7 Conclusion

In this paper, we proposed MIKE, which extends
previous in-context knowledge editing methods
from the instance level to a massive scale. Fur-
thermore, we conducted an editing distillation of
MIKE to induce DistillMIKE, which implicitly in-
jects ICL prompts into model parameters, such
that DistillMIKE significantly reduces the compu-
tational overhead caused by lengthy demonstration
prompts. Extensive experiments conducted on the
zsRE and CounterFact datasets demonstrated that
MIKE and DistillMIKE surpassed existing knowl-
edge editing methods, achieving state-of-the-art
overall performance.

In future work, we would like to invent a direct
unified approach for inducing DistillMIKE, moti-
vated by existing studies that reveal that ICL can be
equivalently projected to gradient descent methods
(Von Oswald et al., 2023; Dai et al., 2023). Not-
ing that incremental learning on knowledge edit-
ing is arguably important, it would be worthy to
generalize the current editing distillation toward
“continual” distillation, given the stream of sets of
new edits. It would also be interesting to evaluate
MIKE on other knowledge editing datasets, such
as MQuAKE (Zhong et al., 2023).

7647

Limitations

Current models primarily process data
samples presented in tuple form, such as
(subject, relation, object), while real-world
natural language exhibits greater diversity and
complexity. Investigating whether the current re-
search can extend its applicability to universal text
formats is an important issue for future research. In
addition, the scope classifier proposed and utilized
in our study is currently a straightforward method
applicable to existing datasets. Further exploration
is required to develop more intricate and advanced
scope classifiers for more diverse data,

In practical applications, the iterative model up-
dates requires incremental knowledge editing. This
process involves continuing to edit new additional
knowledge on a previously edited model. There-
fore, exploring whether massive knowledge editing
can be performed stably in an incremental iterative
manner is an important avenue for future work. We
would also like to conduct experiments on larger-
scale models, such as GPT-NeoX 20B and models
from the Llama (Touvron et al., 2023) family, to
investigate the effectiveness of deploying massive
knowledge editing on larger models.

Furthermore, real-world questions are interre-
lated, and practical questions often exhibit multi-
hop characteristics for question-answering tasks.
However, exploration in the realm of multi-hop
question-answering remains limited in existing lit-
erature. We also aim to explore the application of
massive knowledge editing in multi-hop question
answering, such as extending it to the MQuAKE
(Zhong et al., 2023) dataset.

Finally, existing knowledge editing datasets are
insufficient in scale and contain a considerable
amount of noisy data. In the future, we will strive
to create a larger and more comprehensive dataset
to explore knowledge editing on a larger scale.

Acknowledgement

This work was supported by Institute of Informa-
tion & Communications Technology Planning &
Evaluation(IITP) grant funded by the Korea govern-
ment(MSIT) (RS-2023-00216011, Development
of artificial complex intelligence for conceptually
understanding and inferring like human). Shan-
bao Qiao and Xuebing Liu were also supported by
China Scholarship Council (CSC).

References
Oshin Agarwal and Ani Nenkova. 2022. Temporal ef-

fects on pre-trained models for language processing
tasks. Transactions of the Association for Computa-
tional Linguistics, 10:904–921.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Nicola De Cao, Wilker Aziz, and Ivan Titov. 2021. Edit-
ing factual knowledge in language models.

Eunbi Choi, Yongrae Jo, Joel Jang, Joonwon Jang, and
Minjoon Seo. 2023. Fixed input parameterization
for efficient prompting. In Findings of the Associa-
tion for Computational Linguistics: ACL 2023, pages
8428–8441, Toronto, Canada. Association for Com-
putational Linguistics.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao
Chang, and Furu Wei. 2022. Knowledge neurons in
pretrained transformers. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 8493–
8502, Dublin, Ireland. Association for Computational
Linguistics.

Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Shuming
Ma, Zhifang Sui, and Furu Wei. 2023. Why can GPT
learn in-context? language models secretly perform
gradient descent as meta-optimizers. In Findings of
the Association for Computational Linguistics: ACL
2023, pages 4005–4019, Toronto, Canada. Associa-
tion for Computational Linguistics.

Bhuwan Dhingra, Jeremy R. Cole, Julian Martin
Eisenschlos, Daniel Gillick, Jacob Eisenstein, and
William W. Cohen. 2022. Time-aware language mod-
els as temporal knowledge bases. Transactions of the
Association for Computational Linguistics, 10:257–
273.

Qingxiu Dong, Damai Dai, Yifan Song, Jingjing Xu,
Zhifang Sui, and Lei Li. 2022a. Calibrating factual
knowledge in pretrained language models. Findings
of Empirical Methods in Natural Language Process-
ing (EMNLP).

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong
Wu, Baobao Chang, Xu Sun, Jingjing Xu, and Zhi-
fang Sui. 2022b. A survey for in-context learning.
arXiv preprint arXiv:2301.00234.

7648

https://doi.org/10.1162/tacl_a_00497
https://doi.org/10.1162/tacl_a_00497
https://doi.org/10.1162/tacl_a_00497
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://arxiv.org/abs/2104.08164
https://arxiv.org/abs/2104.08164
https://doi.org/10.18653/v1/2023.findings-acl.533
https://doi.org/10.18653/v1/2023.findings-acl.533
https://doi.org/10.18653/v1/2022.acl-long.581
https://doi.org/10.18653/v1/2022.acl-long.581
https://doi.org/10.18653/v1/2023.findings-acl.247
https://doi.org/10.18653/v1/2023.findings-acl.247
https://doi.org/10.18653/v1/2023.findings-acl.247
https://doi.org/10.1162/tacl_a_00459
https://doi.org/10.1162/tacl_a_00459

Isabel O. Gallegos, Ryan A. Rossi, Joe Barrow,
Md Mehrab Tanjim, Sungchul Kim, Franck Dernon-
court, Tong Yu, Ruiyi Zhang, and Nesreen K. Ahmed.
2023. Bias and fairness in large language models: A
survey.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. LoRA: Low-rank adaptation of
large language models. In International Conference
on Learning Representations.

Zeyu Huang, Yikang Shen, Xiaofeng Zhang, Jie Zhou,
Wenge Rong, and Zhang Xiong. 2023. Transformer-
patcher: One mistake worth one neuron. arXiv
preprint arXiv:2301.09785.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan
Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea
Madotto, and Pascale Fung. 2023. Survey of halluci-
nation in natural language generation. ACM Comput.
Surv., 55(12).

Angeliki Lazaridou, Adhi Kuncoro, Elena Gribovskaya,
Devang Agrawal, Adam Liska, Tayfun Terzi, Mai
Gimenez, Cyprien de Masson d’Autume, Tomas Ko-
cisky, Sebastian Ruder, et al. 2021. Mind the gap:
Assessing temporal generalization in neural language
models. Advances in Neural Information Processing
Systems, 34:29348–29363.

Omer Levy, Minjoon Seo, Eunsol Choi, and Luke Zettle-
moyer. 2017. Zero-shot relation extraction via read-
ing comprehension. In Proceedings of the 21st Con-
ference on Computational Natural Language Learn-
ing (CoNLL 2017), pages 333–342.

Xiaopeng Li, Shasha Li, Shezheng Song, Jing Yang, Jun
Ma, and Jie Yu. 2023. Pmet: Precise model editing
in a transformer. arXiv preprint arXiv:2308.08742.

Adam Liška, Tomáš Kočiský, Elena Gribovskaya, Tay-
fun Terzi, Eren Sezener, Devang Agrawal, Cyprien
de Masson d’Autume, Tim Scholtes, Manzil Zaheer,
Susannah Young, Ellen Gilsenan-McMahon Sophia
Austin, Phil Blunsom, and Angeliki Lazaridou. 2022.
Streamingqa: A benchmark for adaptation to new
knowledge over time in question answering models.
arXiv preprint arXiv:2205.11388.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,
Lawrence Carin, and Weizhu Chen. 2022. What
makes good in-context examples for GPT-3? In
Proceedings of Deep Learning Inside Out (DeeLIO
2022): The 3rd Workshop on Knowledge Extrac-
tion and Integration for Deep Learning Architectures,
pages 100–114, Dublin, Ireland and Online. Associa-
tion for Computational Linguistics.

Yuang Liu, Wei Zhang, and Jun Wang. 2020. Adap-
tive multi-teacher multi-level knowledge distillation.
Neurocomputing, 415:106–113.

Aman Madaan, Niket Tandon, Peter Clark, and Yiming
Yang. 2022. Memprompt: Memory-assisted prompt
editing with user feedback.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022a. Locating and editing factual asso-
ciations in GPT. Advances in Neural Information
Processing Systems, 35.

Kevin Meng, Arnab Sen Sharma, Alex Andonian,
Yonatan Belinkov, and David Bau. 2022b. Mass
editing memory in a transformer. arXiv preprint
arXiv:2210.07229.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea
Finn, and Christopher D Manning. 2022a. Fast model
editing at scale. In International Conference on
Learning Representations.

Eric Mitchell, Charles Lin, Antoine Bosselut, Christo-
pher D Manning, and Chelsea Finn. 2022b. Memory-
based model editing at scale. In Proceedings of the
39th International Conference on Machine Learning,
volume 162 of Proceedings of Machine Learning
Research, pages 15817–15831. PMLR.

Yasumasa Onoe, Michael Zhang, Eunsol Choi, and Greg
Durrett. 2022. Entity cloze by date: What LMs know
about unseen entities. In Findings of the Associa-
tion for Computational Linguistics: NAACL 2022,
pages 693–702, Seattle, United States. Association
for Computational Linguistics.

Yasumasa Onoe, Michael Zhang, Shankar Padmanab-
han, Greg Durrett, and Eunsol Choi. 2023. Can LMs
Learn New Entities from Descriptions? Challenges
in Propagating Injected Knowledge. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 5469–5485, Toronto, Canada. Association for
Computational Linguistics.

OpenAI. 2023. Gpt-4 technical report. ArXiv,
abs/2303.08774.

Fabio Petroni, Patrick Lewis, Aleksandra Piktus, Tim
Rocktäschel, Yuxiang Wu, Alexander H Miller, and
Sebastian Riedel. 2020. How context affects lan-
guage models’ factual predictions. arXiv preprint
arXiv:2005.04611.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
arXiv preprint arXiv:1908.10084.

Chenmien Tan, Ge Zhang, and Jie Fu. 2024. Massive
editing for large language model via meta learning.
In The Twelfth International Conference on Learning
Representations.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all

7649

http://arxiv.org/abs/2309.00770
http://arxiv.org/abs/2309.00770
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.1145/3571730
https://doi.org/10.1145/3571730
https://doi.org/10.18653/v1/2022.deelio-1.10
https://doi.org/10.18653/v1/2022.deelio-1.10
https://doi.org/https://doi.org/10.1016/j.neucom.2020.07.048
https://doi.org/https://doi.org/10.1016/j.neucom.2020.07.048
https://openreview.net/pdf?id=0DcZxeWfOPt
https://openreview.net/pdf?id=0DcZxeWfOPt
https://proceedings.mlr.press/v162/mitchell22a.html
https://proceedings.mlr.press/v162/mitchell22a.html
https://doi.org/10.18653/v1/2022.findings-naacl.52
https://doi.org/10.18653/v1/2022.findings-naacl.52
https://aclanthology.org/2023.acl-long.300
https://aclanthology.org/2023.acl-long.300
https://aclanthology.org/2023.acl-long.300
https://arxiv.org/abs/2303.08774
https://openreview.net/forum?id=L6L1CJQ2PE
https://openreview.net/forum?id=L6L1CJQ2PE
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Johannes Von Oswald, Eyvind Niklasson, Ettore Ran-
dazzo, Joao Sacramento, Alexander Mordvintsev,
Andrey Zhmoginov, and Max Vladymyrov. 2023.
Transformers learn in-context by gradient descent.
In Proceedings of the 40th International Conference
on Machine Learning, volume 202 of Proceedings
of Machine Learning Research, pages 35151–35174.
PMLR.

Ben Wang and Aran Komatsuzaki. 2021. GPT-J-
6B: A 6 Billion Parameter Autoregressive Lan-
guage Model. https://github.com/kingoflolz/
mesh-transformer-jax.

Chuhan Wu, Fangzhao Wu, and Yongfeng Huang. 2021.
One teacher is enough? pre-trained language model
distillation from multiple teachers. In Findings of
the Association for Computational Linguistics: ACL-
IJCNLP 2021, pages 4408–4413, Online. Association
for Computational Linguistics.

Yunzhi Yao, Peng Wang, Bozhong Tian, Siyuan
Cheng, Zhoubo Li, Shumin Deng, Huajun Chen, and
Ningyu Zhang. 2023. Editing large language mod-
els: Problems, methods, and opportunities. CoRR,
abs/2305.13172.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, et al. 2023. A
survey of large language models. arXiv preprint
arXiv:2303.18223.

Ce Zheng, Lei Li, Qingxiu Dong, Yuxuan Fan, Zhiyong
Wu, Jingjing Xu, and Baobao Chang. 2023. Can we
edit factual knowledge by in-context learning? arXiv
preprint arXiv:2305.12740.

Zexuan Zhong, Zhengxuan Wu, Christopher D Man-
ning, Christopher Potts, and Danqi Chen. 2023.
MQuAKE: Assessing knowledge editing in language
models via multi-hop questions. arXiv preprint
arXiv:2305.14795.

A Details of MEMIT

Note the MLP weights in a Transformer (Vaswani
et al., 2017) as W that can be operated as a key-
value store, where WK ≈ V , K = [k1|k2|...]
and V = [v1|v2|...]. Given requested edits E =
{(si, ri, oi)}, language modelMθ, layers to edit
L = {L1, L2, ..., Ll}, and pre-cached covariance
constant CL of k computed from Wikipedia sam-
ples (Meng et al., 2022a). For each (si, ri, oi) ∈ E ,
a target vector zi will be computed:

zi ← hLl
i + δi, (6)

where δi is optimized by:

δi ← argmin
δi

1

P

P∑

j=1

ξi

ξi = − logPM(h
Ll
i +=δi)

[oi|xj ⊕ (si, ri)] (7)

Then for each editing layer L ∈ L, the hidden state
is updated by:

hLi ← hL−1
i + aLi +mL

i (8)

where a and m denote the "attention" and "MLP"
contributions computed from previous layers in
Transformer (Vaswani et al., 2017) model. On the
current layer, for each (si, ri, oi) ∈ E , the MLP
key is updated as follows:

kLi ← kLi =
1

P

P∑

j=1

k(xj + si) (9)

where xj represents random prefixes that aid gener-
alization across contexts. The distributed residual
ϕ over remaining layers is computed as follows:

ϕL
i ←

zi − hLl
i

l − idx(L) + 1
(10)

where idx(L) denotes the number index of L. Thus
in this layer kL = {kLi } and ϕL = {ϕL

i }.
To update the MLP weights in the editing lay-

ers, for each layer L ∈ L, the adding weight is
computed as follows:

∆L ← ϕLkL
T
(CL + kLkL

T
)−1, (11)

Finally, in current layer L the MLP weights are
updated as follows:

WL ←WL +∆L, (12)

After the above updating performed on all the edit-
ing layers, we can obtain the parametric updated
modelMθ∗ .

B Edit Examples

Here, we present additional examples on Coun-
terFact, which edit the factual answers to pseudo-
factual ones:
example1:

• Editing request ei: "The 46th president of the
US is Biden".

7650

https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.mlr.press/v202/von-oswald23a.html
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://doi.org/10.18653/v1/2021.findings-acl.387
https://doi.org/10.18653/v1/2021.findings-acl.387
https://doi.org/10.48550/arXiv.2305.13172
https://doi.org/10.48550/arXiv.2305.13172

• Editing Prefix (si, ri): "The 46th president of
the US is". Predict o∗: "Biden".

• In-scope prefix (Paraphrase) (s′i, r
′
i) ∈ I(ei):

"The winner of the 46th US presidential elec-
tion is". Predict o∗: "Biden".

• Out-of-scope prefix (s, r) ∈ O(ei): "The
president of Colombia is". Predict o: "Petro".

example2:

• Editing request ei: "Fiat Multipla is a product
of IBM".

• Editing prefix (si, ri): "Fiat Multipla is a
product of ". Predict o∗: "IBM".

• In-scope prefix (s′i, r
′
i) ∈ I(ei): "Fiat Multi-

pla is produced by". Predict o∗: "IBM".

• Out-of-scope prefix (s, r) ∈ O(ei): "Fiat
Brevetti is created by". Predict o: "Fiat".

example3:

• Editing request ei: "Tor Endresen, who is a
citizen of Nigeria".

• Editing prefix (si, ri): "Tor Endresen, who is
a citizen of ". Predict o∗: "Nigeria".

• In-scope prefix (s′i, r
′
i) ∈ I(ei): "Tor En-

dresen holds a citizenship from". Predict o∗:
"Nigeria".

• Out-of-scope prefix (s, r) ∈ O(ei): "Leon-
hard Hess Stejneger, a citizen of ". Predict o:
"Norway".

example4:

• Editing request ei: "Kirsti Huke plays opera".

• Editing prefix (si, ri): "Kirsti Huke plays ".
Predict o∗: "opera".

• In-scope prefix (s′i, r
′
i) ∈ I(ei): "Kirsti Huke

performs". Predict o∗: "opera".

• Out-of-scope prefix (s, r) ∈ O(ei): "Zeena
Parkins performs". Predict o: "jazz".

C Details of kNN Function

We use the dense retrieval for the kNN based on the
cosine similarity between the training edit eTj and
the given requested edit ei. More precisely, sup-
pose thatMsent is an additional sentence encoder,
whereMsent(s) ∈ Rd is the sentence vector for a
given sentence s. For notational convenience, given
an edit e = (s, r, o),Msent(e) =Msent([s; r; o])
where [s; r; o] is the natural language format that
concatenates s, r, and o using a proper verbalizing
template. The similarity between e = (s, r, o) and
e′ = (s, r, o) is defined as follows:

sim(e, e′) = cos(Msent(e),Msent(e
′)) (13)

For a given edit ei ∈ E , kNN (ei, T) is defined as
follows:

top-k
{
(etj , sim(ei, e

t
j))

}M

j=1
(14)

where top-k is the operator for selecting the top-k
elements given a set of pairs of objects and their as-
sociated similarities. ForMsent, we deploy a pre-
trained sentence encoder (Reimers and Gurevych,
2019).

D Ablation: KL-Divergence

We further present the KL divergences in ES, PS,
and NS between the MEMIT-initialized student
models under different scales of parametric updat-
ing and the teacher model of full DistillMIKE in
Figure 3. The KL divergences on ES, PS, and PS
are computed using Eq. (2) but summing over three
types of query examples, namely copy-scope, in-
scope, and out-of-scope ones, corresponding to E ,
O (E), and O (E), respectively.

KLES =
∑

q=(s,r)∈E
Eo∼pM∗ (·|q) log

pMst
θ
(o|q)

pM∗(o|q)

KLPS =
∑

q=(s,r)∈I(E)
Eo∼pM∗ (·|q) log

pMst
θ
(o|q)

pM∗(o|q)

KLNS =
∑

q=(s,r)∈O(E)
Eo∼pM∗ (·|q) log

pMst
θ
(o|q)

pM∗(o|q)

(15)

This demonstrates that when using more exten-
sive pre-parametric updating, the distribution gap
between the output logits of the student and teacher
models decreases. This also provides evidence that
pre-parametric updating leads to faster convergence
and better distillation results.

7651

Figure 3: Plots of KL-divergences on ES, PS, and PS using Eq. (15) between the teacher MIKE and the MEMIT-
initialized student model under different parametric updating scales, varying number of edits imposed on the
MEMIT-based initialization. The more edits are imposed using MEMIT for initializing the student model during the
pre-editing stage, the smaller KL divergences between DistillMIKE and MIKE. The results confirm that the choice
of using MEMIT-initialized student models with more edits is necessary for pursuing the stability during editing
distillation.

E ICL Demonstration

The ICL demonstration is shown in Table 6.

Type Demonstration

update
New Fact: Willy Brandt, who is employed by Boeing
Prompt: Willy Brandt, who works for Boeing

New Fact Prompt: Willy Brandt, who is employed by Boeing
query Prompt (edit): Willy Brandt, who is employed by?

Prompt (paraphrase): Willy Brandt worked in?
Prompt (neighborhood): Joseph Reinach used to worked in?

Table 6: Single example of our demonstration.

F Ablation of the Number of
Demonstrations

We further tested the affect of using different num-
bers of demonstrations on performance of MIKE.
As shown in Table 7, reducing the number of
demonstrations decreases Generalization, primarily
because we rely exclusively on update-type demon-
strations, which are specifically designed to en-
hance Generalization.

G Retrieval-based Demonstration
Construction of Demo(q)

In the pre-editing stage, a set of “training” ed-
its with their pre-associated demonstrations are
prepared in advance; The j-th training edit etrj
is pre-associated with its demonstrations of copy,

Setting Score ES PS NS
k=0 89.73 99.48 93.92 78.53
k=4 89.75 99.48 98.02 75.92
k=8 89.92 99.47 98.79 75.85
k=12 90.87 99.48 98.99 77.76

Table 7: Ablation of the number of demonstrations on
CounterFact. k denote the number of demonstrations
used in MIKE.

update and retrain types, denoted by D(etrj) =(
Dcp(etrj),Dud(etrj),Drt(etrj)

)
.

Figure 4 illustrates Demo(q) of the retrieval-
based demonstration construction.

H Datasets

In zsRE, each knowledge sample consists of one
factual statement (editing request) along with its
paraphrase, and a natural question unrelated to the
editing request. In CounterFact, each knowledge
sample includes a factual statement, two paraphrase
prompts, and 10 neighborhood prompts, amounting
to 21,919 samples.

H.1 Dataset Format

Dataset Format Example of CounterFact
dataset:
{

"case_id": 0,

7652

Figure 4: An illustration of obtaining the scope-aware demonstrations in Demo(q). We first prepare a set of “training”
edits with their pre-associated demonstrations used as a pool for demonstration selection. Given a q = (s, r),
suppose that the query-matched fact eq ̸= ∅ is available, using the retrieval function Ret(q) in Section ??. Then, the
additional retrieval function kNN (eq, Etr) is performed to the top-k nearest neighbors in the “training” edits Etr,
denoted by e′1, · · · , e′k. The scope-aware demonstration selection is further performed by taking only the update-type
demonstrations of the top-k training edits, thus finally resulting in Demo(q) = [Dup(e′1); · · · ;Dup(e′k)].

"requested_rewrite": {
"prompt": "The mother tongue of is",
"target_new": “str": "English",,
"target_true": "str": "French",,
"subject": "Danielle Darrieux"

},
"paraphrase_prompts": [

"Danielle Darrieux, a native",
"Danielle Darrieux spoke the language"

],
"neighborhood_prompts": [

"The native language of Montesquieu is",
"The native language of Raymond Barre is",
"Jacques is a native speaker of",
. . . (10 prompts in total)

],
"attribute_prompts": [

"The mother tongue of Douglas Adams is",
. . . (10 prompts in total)

],
"generation_prompts": [

"Danielle Darrieux’s mother tongue is",
. . . (10 prompts in total)

]
}

Dataset Format Example of zsRE dataset:

{
"case_id": 0,
"requested_rewrite": {

"prompt": "What university did {} attend?",
"subject": "Watts Humphrey",
"target_new":

"str": "Illinois Institute of Technology"
"target_true":

"str": "<|endoftext|>"
},
"paraphrase_prompts": [

"What university did Watts Humphrey take
part in? "

],
"neighborhood_prompts": [

"prompt":
"nq question: who played desmond doss

father?",
"target": " Hugo"

]
}

7653

I Implementation Details

To facilitate a fair comparison with related work,
we conducted experiments using the GPT-J 6B
model. We use the sentence-transformer toolkit
as a retriever for any retrieval process.

For the zsRE (Levy et al., 2017) dataset, we
extract 10,000 samples as the editing/test set to per-
form massive knowledge editing following related
works (Meng et al., 2022b; Li et al., 2023), and
use the remaining set (172,282 samples) as the re-
trieval corpus for ICL demonstration construction.
We follow IKE to use 12 “update” demonstrations,
but we do not use the “copy” and “retain” type.

For the CounterFact (Meng et al., 2022a) dataset,
the original dataset comprises 21,919 samples.
However, some samples may involve editing of
new facts with the same prefix (s, r), leading to
conflicts in multiple knowledge editing. To address
this, we filtered the dataset following (Meng et al.,
2022b), resulting in a total of 20,877 samples. We
also use 10,000 samples as the editing/test set and
utilize the remaining samples as a retrieval corpus
to construct ICL demonstrations.

For distillation, we distill all the in-scope sam-
ples from the editing set and all out-of-scope sam-
ples from zsRE (only one is provided). However,
for the CounterFact dataset, we use two out-of-
scope samples (the dataset provides 10). This does
not hinder the improvement in NS performance on
the CounterFact dataset because the neighbors of
the same editing request are usually similar; thus,
each neighbor possesses a certain level of represen-
tativeness. We consider this an indication of the
model’s generalization on “out-of-scope” scenar-
ios.

All of our experiments were conducted on
NVIDIA A6000 GPUs.

J Detailed Definition of Evaluation
Metrics

zsRE Metrics
For Efficacy and Paraphrase:

E[o∗ = argmaxM∗(s, r)], (16)

where (s, r) is the prefix query for an editing re-
quest or its paraphrase.
For Specificity:

E[o = argmaxPM∗(s, r)], (17)

where (s, r) is the prefix query for an unrelated
statement. The overall Score is the harmonic mean

of the above three metrics that reflects the inte-
grated performance of the model.
CounterFact Metrics
Accuracy Terms:
For Efficacy Score (ES) and Paraphrase Score (PS):

E[P∗
M(o∗|(s, r)) > PM∗(o|(s, r))], (18)

where (s, r) denotes the prefix query of the editing
request (for ES) or the paraphrase prompt (for PS).
For Neighborhood Score (NS):

E[PM∗(o∗|(s, r)) < PM∗(o|(s, r))]. (19)

where (s, r) denotes the prefix query of the neigh-
borhood prompt.
Magnitude Terms:

Note that Magnitude metrics do not represent
the editing quality and have no absolute positive-
correlation with editing accuracy across different
methods.
For Efficacy Magnitude (EM) and Paraphrase Mag-
nitude (PM):

E[PM∗(o∗|(s, r))− PM∗(o|(s, r))], (20)

where (s, r) denotes the prefix query of the editing
request (for ES) or the paraphrase prompt (for PS).
For Neighborhood Magnitude (NM):

E[PM∗(o|u(s, r))− PM∗(o∗|u(s, r))]. (21)

where (s, r) denotes the prefix query of the neigh-
borhood prompt.

7654

