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Abstract

Large language models (LLMs) excel in natu-
ral language processing but demand intensive
computation. To mitigate this, various quanti-
zation methods have been explored, yet they
compromise LLM performance. This paper
unveils a previously overlooked type of out-
liers in LLMs. Such outliers are found to al-
locate most of the attention scores on initial
tokens of input, termed as pivot tokens, which
are crucial to the performance of quantized
LLMs. Given that, we propose IntactKV to
generate the KV cache of pivot tokens loss-
lessly from the full-precision model. The ap-
proach is simple and easy to combine with ex-
isting quantization solutions with no extra in-
ference overhead. Besides, INTACTKV can
be calibrated as additional LLM parameters to
boost the quantized LLMs further with mini-
mal training costs. Mathematical analysis also
proves that INTACTKV effectively reduces the
upper bound of quantization error. Empirical
results show that INTACTKV brings consistent
improvement over various quantization meth-
ods across different LLMs and downstream
tasks, leading to the new state-of-the-art for
LLM quantization. The codes are available at
https://github.com/ruikangliu/IntactKV.

1 Introduction

Large language models (LLMs) have achieved re-
markable progress in various tasks and benchmarks
in natural language processing (Brown et al., 2020;
Bubeck et al., 2023; Touvron et al., 2023a; Team
et al., 2023). Nonetheless, the rise of LLMs also
increases computational intensity and memory re-
quirements. This motivates various research to
decrease the inference cost of LLMs, e.g., quanti-
zaiton (Frantar et al., 2022; Shao et al., 2024; Lin
et al., 2023), pruning (Frantar and Alistarh, 2023;
Liu et al., 2023b; Sun et al., 2023; Zhang et al.,

*† Corresponding author.

2024), and speculative decoding (Chen et al., 2023;
Leviathan et al., 2023; Cai et al., 2024), e.t.c.

Among these methods, network quantization
converts the network parameters or activations
from floating-point to fixed-point formats, which is
a popular technique to reduce the model size and
computational resources. Nevertheless, quantiza-
tion inevitably affects the performance of LLMs.
The leading cause comes from the outliers in LLM
activations, which are sensitive to network quanti-
zation (Dettmers et al., 2022; Xiao et al., 2023; Lin
et al., 2023). As workarounds, there are efforts to
either use mixed-precision formats (Dettmers et al.,
2022) or re-scale network weights of the outlier
channels (Lin et al., 2023). These methods are all
built based on the premise that outliers persist in
fixed channels across all tokens. However, we find
this is not the case for all outliers in LLMs.

In this paper, we discover a new type of out-
lier that is overlooked by previous quantization
methods. These outliers exhibit extremely high
values at only the [BOS] and some other common
tokens (e.g., “,” and “.”) at the beginning of the
input, which is referred to as pivot tokens. We
find the extreme values of these outliers make the
self-attention concentrate on the pivot tokens, leav-
ing the rest of the tokens untouched. This is also
known as attention sinks (Xiao et al., 2024), which
is critical to the model performance (Xiao et al.,
2024; Bondarenko et al., 2023). The effect of quan-
tization on these pivot tokens should be carefully
studied to improve the quantized LLMs.

Towards that end, we are motivated to propose
INTACTKV, a simple strategy that is orthogonal
to most existing quantization solutions. The key
idea behind INTACTKV is to generate the lossless
KV cache of pivot tokens from the full-precision
model. By keeping the KV cache of pivot tokens
intact, quantization error accumulated on the out-
put of self-attention will be effectively alleviated
in the rest of the decoding steps. The integration
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clipped activation

(a) Output activations of
LLaMA-30B Layer 24

clipped activation

(b) Output activations of
LLaMA-2-7B Layer 24
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(c) Attention map of
LLaMA-30B Layer 24
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(d) Attention map of
LLaMA-2-7B Layer 24

Figure 1: Visualizations of Transformer output and attention scores of LLaMA-30B and LLaMA-2-7B. Observations:
(1) There are token-specific outliers that can be orders of magnitudes larger than the rest of the tokens (enlarged in the
box). Such tokens occur at the [BOS] token, the 28th token "’" in LLaMA-30B and 13th token "." in LLaMA-2-7B,
which are referred to as pivot tokens; (2) These outliers over pivot tokens make the attention scores concentrated on
themselves, which are likely to be affected by quantization. More details can be found in Appendix C.1.
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(d) LLaMA-2-70B

Figure 2: The mean squared error (MSE) of the last Transformer layer and attention layers w.r.t. the varying sizes of
INTACTKV. Observations: (1) The MSE continues to drop as the size of INTACTKV increases. (2) Including the
pivot tokens’ KV cache in INTACTKV leads to the most significant decrease in the quantization loss, demonstrating
the importance of the pivot tokens’ KV cache. More experiment details can be found in Appendix D.

of INTACTKV comes with no additional inference
overhead. Moreover, INTACTKV can also serve as
extra trainable parameters in addition to the LLM
backbone. The calibration process of INTACTKV
follows the convention of PTQ (Bai et al., 2022;
Frantar et al., 2022), which further decreases the
quantization error. To get more insights from IN-
TACTKV, we also provide mathematical analysis
and the results show that INTACTKV can effec-
tively lower the upper bound of quantization error.

Empirical results show that INTACTKV consis-
tently improves the capability of different quan-
tization methods (e.g. AWQ (Lin et al., 2023),
GPTQ (Frantar et al., 2022), OmniQuant (Shao
et al., 2024) and QuaRot (Ashkboos et al., 2024))
on various open-sourced LLMs (e.g., LLaMA and
Vicuna) across different tasks and benchmarks such
as PPL, MMLU, commonsense QA, and MT-bench,
achieving new state-of-the-art results for weight-
only quantization as well as weight and activation
quantization, e.g., lossless INT4 weight-only quan-
tization for Vicuna-v1.3-13B on commonsense QA
tasks. Moreover, calibrating INTACTKV with INT4
quantization even matches the full-precision model

on aligning with human preferences, as evaluated
by GPT-4 (Bubeck et al., 2023) on MT-bench.

2 Motivation

2.1 Preliminaries on LLM Quantization
Network quantization is popularly studied in the
literature of efficient LLMs (Frantar et al., 2022;
Lin et al., 2023; Shao et al., 2024). It allows larger
throughput by reducing the model size and leads
to practical inference speedup. Given the full-
precision weight w, quantization aims to convert it
to the low-bit representation ŵ. The general b-bit
uniform quantization Qb(·) can be represented as

ŵ = Qb(w) = s ·ΠΩ(b)(w/s), (1)

where s is the quantization step size, and ΠΩ(b) is
the projection function onto the set of b-bit integers
Ω(b) = {0, 1, ..., 2b − 1}. While we mainly focus
on weight-only quantization, Equation 1 can be
similarly used to quantize activations and KV cache
of LLMs to increase the inference throughput (Xiao
et al., 2023; Shao et al., 2024; Hooper et al., 2024).

Following most existing works in LLM quan-
tization, we focus on post-training quantiza-
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tion (PTQ) (Frantar et al., 2022; Lin et al., 2023),
since it does not introduce extra training overhead
as those in quantization-aware training (QAT) (Liu
et al., 2023a; Li et al., 2024). Quantization in-
evitably downgrades LLMs in low-bit settings,
where the outliers in quantized LLMs are found
to be the cause of the deterioration (Dettmers et al.,
2022). In the next, we study the details of how
these outliers affect the LLM quantization.

2.2 Revisiting Outliers in LLMs
We discover a new type of outlier that is spe-
cific to particular tokens, which leads the atten-
tion sink (Xiao et al., 2024) that is critical to the
performance of LLMs.

A New Variant of Outlier. Different from the
outliers that persist in several fixed channels across
different tokens (Dettmers et al., 2022; Xiao et al.,
2023; Lin et al., 2023), we find a new variant of
outlier that is specific to some initial tokens of
the input sequence. By visualizing the activation
of Transformer layer output in Figure 1a and Fig-
ure 1b, there exist peaks with magnitudes over 1e3.
These outliers can be hundreds of times larger than
the previous outliers that persist in fixed channels
across all tokens, as enlarged in Figure 1a and
Figure 1b. More visualizations can be found in
Appendix C. It is found that such huge outliers
usually occur at the [BOS] token and some other
uninformative initial tokens (e.g., "." or ",") at par-
ticular channels, regardless of the rest of the input
sequence. We thus name these tokens pivot tokens
given their dominating values in the activation. Re-
cently, a concurrent work (Sun et al., 2024) also
discovers such outliers with more detailed studies.

Pivot Tokens Exhibit Attention Sinks. We hy-
pothesize that the outliers over these pivot tokens
may propagate to queries and keys in the self-
attention. Consequently, the attention scores will
be concentrated on these pivot tokens than the rest
ones, a.k.a attention sinks (Xiao et al., 2024). To
verify the hypothesis, we plot the attention scores
in Figure 1c and Figure 1d. It can be found that
the pivot tokens indeed dominate the attention
scores, especially for the first token (i.e., [BOS] ).
This corresponds to the observations in attention
sinks (Xiao et al., 2024), which are empirically
verified to be critical to the model performance.
The recent study by (Bondarenko et al., 2023) also
shows that concentrating on these tokens naturally
helps the attention head do nothing but simply a

partial update of the residual. In the decoding stage
of LLMs, all generated tokens need to interact with
pivot tokens through self-attention. However, as
mentioned in Section 2.1, network quantization
would inevitably distort the output from the full-
precision model. The concentrated scores of pivot
tokens thus can be further deviated by quantization,
which downgrades the model performance.

3 Method

In this section, we introduce INTACTKV, a sim-
ple and easy-to-implement method to improve the
quantized LLMs. The key idea behind this is to
keep the KV cache of the pivot tokens intact, i.e.,
without any distortion raised by quantization. An
overview of our method can be found in Figure 3.

3.1 Preserving the KV Cache of Pivot Tokens

According to Section 2.2, the attention sinks of
pivot tokens are likely to deteriorate by quantiza-
tion. To alleviate this issue, we propose INTAC-
TKV, a simple yet effective strategy to keep these
pivot tokens intact. Specifically, as illustrated in
Figure 3a, we leverage the full-precision LLM to
generate the lossless KV cache of pivot tokens,
which is saved offline. The quantized LLM then
loads INTACTKV as the prefix to concatenate with
the rest of the KV cache and continues with the reg-
ular auto-regressive decoding process. The pseudo
code of the inference scheme with INTACTKV is
presented in Figure 3b.

In order to study the benefits of INTACTKV, we
conduct a preliminary test on the mean squared
error (MSE) of the attention and transformer layer
output. From Figure 2, it is natural that the increas-
ing size of INTACTKV gives the monotonically de-
creasing MSE on both the attention and transformer
layers. More importantly, it is found the pivot to-
kens observed in Section 2.2 (e.g., [BOS] and other
delimiter tokens) give the most significant decrease
on the MSE, which demonstrates the importance of
their KV cache. This aligns with the observations
in Figure 1 that pivot tokens exhibit outliers with
extreme values and attention sinks.

The Choice of Pivot Tokens and INTACTKV. It
is the key design to choose the pivot tokens and the
associated INTACTKV. Given the observations in
Figure 2, one can naively pick pivot tokens with the
most MSE reduction for INTACTKV. However, this
is in fact not the case. Since INTACTKV acts as the
prefix to the KV cache of quantized LLMs, it must
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Full-precision LLM

USER INPUT: Please generate a story in 500 words

Quantized LLM

…

IntactKVs

…

The Rest KV Cache

System Prompt: [BOS] A chat between … intelligence assistant ... . USER:

Saved offline

[BOS] A USER: Please generate words …

Decoding

(a) The overview of INTACTKV.

#1 def inference(fp16_model, quantized_model,
#2 queries, prompt):
#3 # get IntactKV
#4 intactkv = fp16_model(
#5 input=prompt
#6 ).past_key_values
#7
#8 # discard the full-precision model
#9 del fp16_model
#10
#11 # inference with IntactKV
#12 outputs = []
#13 for query in queries:
#14 output = quantized_model(
#15 input=query[len(prompt):],
#16 past_key_values=intactkv
#17 )
#18 outputs.append(output)
#19
#20 return outputs

Algorithm: Pseudo code for Inference with IntactKV

(b) Pseudo Code of Inference.

Figure 3: The overview of the proposed INTACTKV applied for the supervised fine-tuned LLM. The full-precision
model takes the system prompt as input and generates the INTACTKV losslessly as the prefix concatenated with the
rest of the KV cache of quantized LLMs. INTACTKV can be further calibrated by minimizing the mean squared
error L between the full-precision and quantized LLMs.

start from the very first token, and be consecutive in
length. This ensures it to be input agnostic, and the
full-precision LLMs can be safely discarded once
INTACTKV is generated. Next, we provide practi-
cal solutions to this problem for different LLMs.

• For pre-trained LLMs, we propose the INTAC-
TKV of size one that only contains [BOS] KV
cache. It is a convention to prepend [BOS] to
the input of pre-trained LLMs. Moreover, as
illustrated in Section 2, [BOS] is the pivot to-
ken with extreme outlier and attention scores.
Besides, the KV cache of [BOS] has a great
impact on the MSE of the quantized model.
Employing a lossless [BOS] KV cache is thus
believed to decrease the quantization loss.

• For supervised fine-tuned (SFT) models,
when the input follows the system prompt, we
argue that extending INTACTKV to the same
length of the system prompt can further im-
prove quantized LLMs. In addition to [BOS],
other tokens appearing at the beginning of
the input sequence also have the potential to
serve as pivot tokens (see Figure 1). The sys-
tem prompt is usually prepended to the input,
which allows it to cover more pivot tokens. As
shown in Figure 2, remedying the quantiza-
tion error of these pivot tokens’ KV cache can
be helpful to compensate for the quantization
error. We find that for Vicuna models, system
prompt is enough to cover all the pivot tokens,
more details can be found in Appendix C.3.

Overhead of INTACTKV. Finally, we highlight
that INTACTKV does not introduce extra latency
overhead during inference. Besides, as INTACTKV
is pre-computed, the pre-filling stage of the quan-
tized LLMs can be accelerated as well. The mem-
ory overhead to save INTACTKV is also negligible
compared with the LLM backbone. For instance,
there are only 34 tokens of the system prompt for
Vicuna-v1.5-7B, and thus INTACTKV takes only
0.13% of the LLM model parameters.

3.2 INTACTKV as Trainable Parameters
Since INTACTKV is pre-computed and saved of-
fline, it can be treated as extra trainable parameters
aside from the LLM backbone to further boost the
quantized LLMs. Despite there being no informa-
tion loss at the pivot tokens, the quantization may
still introduce errors to the KV cache during the de-
coding stage. As shown in Figure 3a, we calibrate
INTACTKV to compensate for the quantization er-
ror accumulated in the following tokens. While
there are various metrics to characterize the quanti-
zation discrepancy (Frantar et al., 2022; Shao et al.,
2024; Liu et al., 2023a), we adopt the mean squared
error of the transformer layer output between the
full-precision LLM and quantized LLM, a simple
yet most widely used metric, i.e.,

L(Θ) =
1

2

L∑

l=1

∥fl(w,x)− fl(ŵ,x; Θ)∥22, (2)

where Θ denotes the set of INTACTKV, fl is the
mapping function for the l-th Transformer layer,
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and L is the number of Transformer layers in
LLM. x is the input sequence, while w, ŵ are full-
precision and quantized weights respectively. Note
that the full-precision model is only required dur-
ing the calibration process, and it can be safely
discarded afterward. It is empirically found that
calibration of system prompt INTACTKV in SFT
models generally gives more improvement than
the calibration of [BOS] INTACTKV in pre-trained
LLMs. This matches the intuition that a larger size
of INTACTKV increases the potential to compen-
sate for quantization errors.

As we focus on the post-training quantization,
the training of INTACTKV is highly lightweight
since the only learnable parameters introduced are
INTACTKV, i.e., the KV cache of pivot tokens. It
takes only as few as 20 epochs on a calibration
set with 128 samples. Besides, training with a
quantized model further lowers the memory cost.
The calibration process takes about only 10 minutes
for a 7B model and less than 20 minutes for a 13B
model on one computing device.

3.3 Theoretical Analysis

In this section, we provide a theoretical view of how
the proposed INTACTKV benefits the quantized
LLM. For the clarity of presentation, our analysis is
built on the self-attention module of a Transformer
layer, while it can be readily extended to the FFN
module and multiple layers.

Specifically, we denote K,V ∈ Rn×d as the
KV cache during the decoding stage, and q ∈ Rd

is the query vector, where n and d are the sequence
length and head dimension. Recall that the output
of each attention head h ∈ Rd is computed as

h = softmax(qK⊤/
√
d)V WO, (3)

where WO ∈ Rd×d is the weight matrix of the pro-
jection layer. By quantizing the LLMs, there will
be errors accumulated on the KV cache, denoted as
∆K,∆V ∈ Rn×d. Therefore, we are interested in
showing how ∆K and ∆V are propagated to the
change of attention head ∆h, and to what extent
INTACTKV alleviates the distortion.

Theorem 1. Given the query vector q ∈ Rd and
the change of KV caches ∆K,∆V ∈ Rn×d, the
change of the attention head ∆h is bounded by

∥∆h∥2 ≤C1∥∆K∥2,∞∥∆V ∥F +

+ C2∥∆K∥2,∞ + C3∥∆V ∥F ,

where C1 = n3/2√
d
C3∥q∥2, C2 = C1∥V ∥2 and

C3 = ∥WO∥2.

The proof to Theorem 1 can be found in Ap-
pendix 7. We preserve the terms w.r.t. ∆K and
∆V of interests, and leave the rest as constants.
Note that ∆K can be further separated by the
pivot tokens ∆Kp and rest tokens ∆K\p, and sim-
ilar notations hold for ∆V . Therefore, we have
∥∆K∥2,∞ = max

(
∥∆Kp∥2,∞, ∥∆K\p∥2,∞

)
,

and ∥∆V ∥F =
√
∥∆Vp∥2F + ∥∆V\p∥2F . With

INTACTKV we have ∥∆Kp∥2,∞ = ∥∆Vp∥F = 0
since they are generated losslessly, which decreases
the upper bound of ∥∆h∥2. Moreover, it can fur-
ther reduce the bound by incorporating more pivot
tokens. This also aligns with the observation in
Figure 2 that a larger size of INTACTKV gives a
lower MSE of the attention module.

4 Experiments

4.1 Settings

Models. We evaluate the proposed INTACTKV
on various sizes of open-sourced LLMs, including
LLaMA (Touvron et al., 2023a) (7B-65B), LLaMA-
2 (Touvron et al., 2023b) (7B-70B), Vicuna-
v1.3 (Chiang et al., 2023) (7B-33B) and Vicuna-
v1.5 (7B-13B). We denote models that keep intact
[BOS] KV as INTACTKV[B], and models that keep
intact system prompt KV as INTACTKV[P].

Quantization Methods. We mainly consider
weight-only quantization methods, including
round-to-nearest quantization (RTN), GPTQ (Fran-
tar et al., 2022), the state-of-the-art OmniQuant
(Shao et al., 2024) and AWQ (Lin et al., 2023).
For GPTQ, we use AutoGPTQ with C4 calibration
set following (Frantar et al., 2022) to reproduce
all results. For AWQ and OmniQuant, we use the
official code or checkpoint with Pile (Gao et al.,
2020) and WikiText2 (Merity et al., 2016) calibra-
tion set respectively, following (Lin et al., 2023;
Shao et al., 2024). More implementation details
can be found in Appendix E. We adopt asymmetric
group-wise quantization with a group size of 128
and mainly focus on INT3 and INT4 quantization
since INT8 is empirically lossless on various task
metrics (Dettmers et al., 2022).

Our INTACTKV can be readily combined with
these existing weight-only quantization methods,
and the experiment results are shown in Section 4.2.
Moreover, aside from weight-only quantization, the
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Method LLaMA-7B LLaMA-13B LLaMA-30B LLaMA-65B LLaMA-2-7B LLaMA-2-13B LLaMA-2-70B

FP16 7.36 6.82 6.15 5.83 7.28 6.75 5.73

RTN 9.15 7.89 6.85 6.33 8.97 7.60 6.27
+INTACTKV[B] 8.52 7.66 6.69 6.20 8.61 7.48 6.13

GPTQ 8.59 7.49 6.73 6.29 9.58 7.43 6.33
+INTACTKV[B] 8.30 7.42 6.62 6.23 9.27 7.36 6.28

OmniQuant 8.26 7.39 6.65 6.18 8.35 7.43 6.12
+INTACTKV[B] 8.25 7.39 6.64 6.18 8.33 7.40 6.11

AWQ 8.26 7.38 6.59 6.16 8.31 7.32 6.05
+INTACTKV[B] 8.12 7.36 6.54 6.12 8.18 7.29 6.04

Table 1: INT3-group128 weight-only quantization results of LLaMA and LLaMA-2 Models on C4 dataset.

Task Acc MMLU (5 shot) average Common Sense QA (0 shot) average

Vicuna Family v1.5-7B v1.5-13B v1.3-7B v1.3-13B v1.3-33B v1.5-7B v1.5-13B v1.3-7B v1.3-13B v1.3-33B

FP16 49.84% 55.78% 47.12% 52.10% 59.30% 65.33% 68.38% 64.52% 67.22% 69.53%

RTN 44.62% 51.44% 39.33% 44.56% 53.18% 61.36% 66.12% 59.05% 63.43% 67.33%
+INTACTKV[B] 45.93% 51.89% 41.74% 46.73% 55.20% 61.94% 65.91% 61.26% 63.94% 67.95%

GPTQ 43.99% 52.95% 40.12% 47.83% 55.84% 58.61% 66.34% 59.56% 65.11% 66.66%
+INTACTKV[B] 44.86% 52.49% 41.55% 48.53% 56.32% 59.12% 66.53% 60.46% 65.13% 67.93%

OmniQuant 46.62% 52.82% 42.95% 48.23% 55.21% 62.30% 65.58% 60.89% 64.62% 67.61%
+INTACTKV[B] 46.27% 52.67% 43.85% 48.31% 55.51% 62.01% 65.67% 60.66% 64.89% 67.61%

AWQ 46.45% 52.92% 43.08% 48.56% 56.09% 62.18% 66.51% 60.75% 64.56% 67.67%
+INTACTKV[B] 46.87% 53.58% 44.67% 49.05% 56.91% 62.49% 66.93% 61.93% 65.02% 67.90%

Table 2: INT3-group128 weight-only quantization results of Vicuna models on 5-shot MMLU and 0-shot QA tasks.

proposed INTACTKV can be similarly applied for
KV cache quantization and extended to activation
quantization, as detailed in Section 4.3 and Sec-
tion 4.4. It is worth noting that the integration of
INTACTKV with weight-only/KV cache/activation
quantization comes with no extra inference cost and
works as an effective plugin to effectively boost the
accuracy of quantized models.

Evaluation. For pre-trained LLMs (i.e., LLaMA
and LLaMA-2), we report the perplexity (PPL) of
language generation on C4 (Raffel et al., 2020)
and WikiText2 (Merity et al., 2016) dataset. For
SFT models (i.e., Vicuna-v1.3 and v1.5), we con-
duct evaluation over a wide range of downstream
tasks. We test the zero and five-shot performance
on the Massively Multitask Language Understand-
ing (MMLU) (Hendrycks et al., 2020) benchmark.
Meanwhile, we also evaluate seven zero-shot com-
monsense QA tasks: OBQA (Mihaylov et al.,
2018), WinoGrande (Sakaguchi et al., 2021), ARC-
Challenge, ARC-Easy (Clark et al., 2018), BoolQ
(Clark et al., 2019), HellaSwag (Zellers et al.,
2019), and LAMBADA (Paperno et al., 2016). Ad-
ditionally, we evaluate quantized Vicuna on MT-
bench (Zheng et al., 2023), a high-quality dataset
consisting of 80 open-ended multi-turn questions,
to gauge their alignment with human preferences.
The responses generated by quantized models are

judged by GPT-4 with a total score of 10. More
evaluation details can be found in Appendix F.

Implementation Details For evaluation on PPL,
MMLU, and commonsense QA tasks, we adopt
INTACTKV[B] that only includes [BOS] KV since
the input sequence of these tasks does not use any
system prompt. For evaluation of SFT models on
MT-bench, we adopt INTACTKV[P] to keep an in-
tact system prompt KV cache. The system prompt
of Vicuna can be found in Appendix B. For training
the cached INTACTKV, we randomly sample 128
samples from ShareGPT1 dataset as our calibration
dataset, consisting of multi-turn ChatGPT (Ope-
nAI, 2022) conversations. The layer-wise MSE
loss defined in Equation 2 is calculated on the re-
sponse of ChatGPT. We use AdamW optimizer
with learning rate 2× 10−4, training for 160 opti-
mizer update steps with a gradient accumulation
step of 16, i.e., 20 epochs. As mentioned in Sec-
tion 3.2, training INTACTKV[B] leads to compa-
rable performance compared with vanilla INTAC-
TKV. Instead, the calibration of INTACTKV[P] has
more potential to improve quantized LLMs with
longer system prompt. Thus, we primarily eval-
uate the INTACTKV[P] with KV cache of system
prompt as trainable parameters in the following ex-

1https://huggingface.co/datasets/Aeala/
ShareGPT_Vicuna_unfiltered
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Method MMLU (0 shot) MMLU (5 shot)

Hums STEM Social Others Avg Hums STEM Social Others Avg

FP16 47.89% 39.96% 58.86% 57.34% 50.77% 49.78% 40.46% 60.61% 58.24% 52.10%

RTN 42.06% 32.87% 47.61% 49.51% 43.02% 42.42% 34.46% 50.34% 51.57% 44.56%
+INTACTKV[B] 42.49% 35.35% 50.37% 52.44% 44.98% 44.65% 36.98% 53.04% 52.84% 46.73%

GPTQ 45.06% 35.88% 52.23% 51.26% 46.09% 45.82% 37.57% 54.83% 53.64% 47.83%
+INTACTKV[B] 44.72% 35.42% 52.94% 52.07% 46.22% 45.61% 38.34% 55.83% 55.31% 48.53%

OmniQuant 43.51% 36.85% 52.16% 53.05% 46.18% 45.91% 37.44% 55.31% 54.94% 48.23%
+INTACTKV[B] 44.19% 36.61% 53.33% 53.52% 46.72% 46.27% 37.54% 54.99% 54.94% 48.31%

AWQ 45.14% 36.18% 52.55% 53.79% 46.84% 46.65% 37.64% 55.54% 54.87% 48.56%
+INTACTKV[B] 45.91% 36.65% 53.75% 54.60% 47.64% 46.57% 38.40% 56.03% 55.95% 49.05%

Table 3: INT3-group128 weight-only quantization results of Vicuna-v1.3-13B on MMLU benchmarks.

#bits Method OBQA WinoGrande ARC-C ARC-E BoolQ HellaSwag LAMBADA Avg

FP16 - 45.40% 71.03% 47.70% 73.70% 82.81% 77.00% 72.91% 67.22%

w3g128

RTN 44.00% 70.96% 44.03% 67.30% 80.40% 73.33% 64.00% 63.43%
+INTACTKV[B] 44.80% 69.93% 45.05% 68.35% 79.42% 74.81% 65.22% 63.94%

GPTQ 45.20% 69.77% 46.08% 70.33% 81.90% 74.89% 67.59% 65.11%
+INTACTKV[B] 44.00% 70.80% 44.97% 70.75% 81.35% 75.03% 69.03% 65.13%

OmniQuant 45.20% 69.22% 45.22% 68.90% 80.95% 74.72% 68.15% 64.62%
+INTACTKV[B] 45.40% 70.32% 45.31% 68.86% 81.28% 74.52% 68.52% 64.89%

AWQ 42.80% 68.98% 46.08% 68.98% 81.31% 74.97% 68.78% 64.56%
+INTACTKV[B] 43.20% 69.46% 46.16% 69.74% 81.80% 75.11% 69.67% 65.02%

w4g128

RTN 45.20% 71.43% 48.04% 73.15% 82.87% 76.56% 70.62% 66.84%
+INTACTKV[B] 44.80% 71.51% 47.44% 73.36% 82.75% 77.01% 70.99% 66.84%

GPTQ 44.60% 70.01% 47.87% 73.32% 82.23% 76.55% 71.78% 66.62%
+INTACTKV[B] 45.00% 71.35% 46.76% 73.02% 83.33% 77.00% 71.55% 66.86%

OmniQuant 45.60% 70.56% 46.76% 73.02% 82.81% 76.74% 70.41% 66.56%
+INTACTKV[B] 45.20% 71.43% 46.25% 72.52% 82.63% 76.90% 70.31% 66.46%

AWQ 45.20% 70.32% 47.27% 73.91% 82.81% 76.79% 71.32% 66.80%
+INTACTKV[B] 45.60% 71.19% 47.10% 73.32% 82.72% 76.95% 71.38% 66.89%

Table 4: Weight-only quantization results of Vicuna-v1.3-13B on seven 0-shot commonsense QA tasks.

periments. For weight and activation quantization,
we further quantize INTACTKV to lower bits to
avoid extra inference overhead, which only incurs
negligible accuracy loss. More details of activation
quantization can be found in Section 4.4.

4.2 Main Results

Results on Language Generation Tasks. We
first integrate our proposed INTACTKV with RTN,
GPTQ, OmniQuant, and AWQ on LLaMA and
LLaMA-2 models. The effect of this integration
on model accuracy is measured by the perplex-
ity (PPL) metric, with results on the C4 dataset
detailed in Table 1, and results on the WikiText2
dataset in Table 7. As indicated in these tables,
INTACTKV notably enhances the generative capa-
bilities of quantized models across various LLMs
and quantization methods, with AWQ+INTACTKV
consistently achieving new state-of-the-art (SOTA)
results. These findings demonstrate the efficacy
of INTACTKV in improving quantized LLMs and

particularly highlight the effectiveness of utilizing
the lossless KV cache from full-precision models.
We provide more experiment results on LLaMA-
3 and other heterogeneous LLMs (e.g. OPT) in
Appendix G.1. INTACTKV significantly improves
different quantized LLMs, especially for LLaMA-3
models with larger quantization error. These results
further prove the compatibility of our INTACTKV
with various LLM backbones.

Results on MMLU Tasks. For SFT models,
we implement INTACTKV on the quantized Vi-
cuna models and evaluate the multi-task problem-
solving ability on the MMLU benchmark. Ta-
ble 3 presents the detailed zero-shot and five-shot
results for Vicuna-v1.3-13B. The results demon-
strate that INTACTKV significantly enhances the
performance of quantized models across all cate-
gories of tasks and various quantization methods
for Vicuna-v1.3-13B. Moreover, performance of
Vicuna family under the five-shot setting is out-
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Figure 4: Results of weight and KV cache quantization with different bit-widths on 5-shot MMLU benchmark. Note
that this is additional to INT3/4 weight-only quantization. Blue and red lines indicate quantizing model weights to
INT3 and INT4, respectively. We apply asymmetric per-head dynamic quantization to the KV cache.

Method Vicuna-v1.5-7B Vicuna-v1.5-13B

FP16 5.31 5.52

RTN 4.34 5.13
+INTACTKV[P] 4.72 5.27
+INTACTKV[P]+Cal 4.73 5.30

OmniQuant 4.78 5.05
+INTACTKV[P] 4.94 5.10
+INTACTKV[P]+Cal 4.85 5.24

AWQ 4.74 5.17
+INTACTKV[P] 4.68 5.34
+INTACTKV[P]+Cal 4.84 5.44

Table 5: GPT-4 evaluation of INT3-group128 weight-
only quantized Vicuna-v1.5 models on MT-Bench. The
scores are on a scale of 10.

lined in Table 2. Remarkably, INTACTKV achieves
an average improvement of 1.05% over Omni-
Quant and 0.8% over AWQ across five model sizes,
with AWQ+INTACTKV exhibiting superior perfor-
mance over all the other quantized models. More
results on MMLU are provided in Appendix G.2.

Results on Commonsense QA Tasks. We fur-
ther evaluate the quantized Vicuna models on
zero-shot commonsense QA tasks. The results of
Vicuna-v1.3-13B, as detailed in Table 4, indicate
that INTACTKV enables significant improvements
over various quantization methods. For example,
AWQ+INTACTKV surpasses the average accuracy
of AWQ by 0.46% under INT3-g128 quantization.
Additionally, Table 2 presents the average accu-
racy for various sizes of Vicuna models. In these
evaluations, our INTACTKV leads to an average
accuracy improvement of 0.45% across different
LLMs and quantization methods, which strongly
demonstrates the efficacy of our proposed INTAC-
TKV. More results on commonsense QA tasks can
be found in Appendix G.3.

Results on MT-Bench. To evaluate the quantized
models’ generation capabilities in multi-turn con-
versations and their alignment with human pref-

erences, we use GPT-4 to score the responses of
quantized models on MT-Bench. We also calibrate
INTACTKV, denoted as INTACTKV+Cal. From
Table 5, INTACTKV significantly boosts the quan-
tized model and INTACTKV+Cal further enhances
generation quality by compensating for the quan-
tization error. For example, the 3-bit Vicuna-v1.5-
13B quantized by AWQ has been improved from
5.17 to 5.34 by using the INTACTKV, which can
be further boosted to 5.44 with trainable INTAC-
TKV. We provide INT4 quantization results in Ta-
ble 13. Remarkably, with trainable INTACTKV,
AWQ+INTACTKV even matches the full-precision
model under INT4 quantization, while all other
methods clearly lag behind the full-precision model.
These results demonstrate the effectiveness of IN-
TACTKV as well as treating INTACTKV as train-
able parameters. Notably, the training process for
the 7B model takes only 10 minutes on a single
computing device, which is quite lightweight. In
Appendix H, we further demonstrate the effective-
ness of calibrating INTACTKV by comparing it
with group bias tuning, a commonly used fine-
tuning strategy for quantized models. INTACTKV
calibration can achieve better or comparable results
with group bias tuning while using significantly
fewer trainable parameters. Besides, INTACTKV
calibration serves as a more versatile calibration
strategy for quantized models, which is suitable for
various quantization settings.

4.3 Extension to KV Cache Quantization

INTACTKV can be readily applied to KV cache
quantization to further decrease memory require-
ments. We employ a mixed-precision strategy that
keeps INTACTKV in FP16 while the rest of the
KV cache is quantized to lower bits. This only
induces negligible memory overhead since INTAC-
TKV only contains the KV cache of the first few
tokens. Note that this does not bring any additional

7723



Method LLaMA-7B LLaMA-13B LLaMA-2-7B LLaMA-2-13B LLaMA-3-8B

C4 WikiText2 C4 WikiText2 C4 WikiText2 C4 WikiText2 C4 WikiText2

FP16 7.36 5.69 6.82 5.08 7.28 5.48 6.75 4.89 9.48 6.15

OmniQuant 17.03 12.17 15.65 11.16 21.40 14.74 16.24 12.28 - -
+INTACTKV[B] 16.24 11.32 13.87 10.04 20.01 13.70 15.91 11.00 - -

QuaRot 8.23 6.29 7.40 5.55 8.30 6.11 7.51 5.39 13.42 8.21
+INTACTKV[B] 8.05 6.15 7.32 5.45 8.12 5.97 7.25 5.21 12.23 7.54

Table 6: INT4 weight and activation quantization results of LLaMA models on C4 and WikiText2 datasets.

inference costs since in the workflow of KV cache
quantization, all quantized KV cache needs to be
de-quantized back to FP16 before the matrix mul-
tiplication. Keeping INTACTKV in FP16 reduces
the overhead of de-quantization, i,e., we only need
to cheaply concatenate the FP16 INTACTKV with
the rest de-quantized KV cache together. From Fig-
ure 4, INTACTKV notably improves AWQ across
different models and KV cache bit widths under the
INT3 weight quantization. For INT4 weight quan-
tization, AWQ+INTACTKV still gains an average
accuracy increase of 0.27% over the original quan-
tized model. We also notice that quantizing the
KV cache to INT8 leads to almost no performance
drop on the MMLU benchmark. When equipped
with INTACTKV, INT8 KV cache can even sur-
pass vanilla AWQ-quantized models with FP16 KV
cache, especially under INT3 weight quantization.

4.4 Extension to Activation Quantization

In Table 6, we provide experiment results of com-
bining INTACTKV with OmniQuant (Shao et al.,
2024) and QuaRot (Ashkboos et al., 2024) for
weight and activation quantization. The implemen-
tation details can be found in Appendix E. To avoid
extra inference costs, we need to quantize the whole
KV cache to lower bits and can not keep the KV
cache of pivot tokens intact. However, as detailed
in Appendix I, we find that INTACTKV has a sig-
nificantly smoother distribution compared with the
rest of the KV cache. Therefore, the full-precision
INTACTKV can be readily quantized to lower bits
with negligible accuracy loss, thus rendering IN-
TACTKV amenable to weight and activation quan-
tization with no extra inference costs. As shown in
Table 6, our INTACTKV significantly surpasses the
performance of original quantized models for two
different quantization methods, improving the PPL
by 1.07 for OmniQuant and 0.31 for QuaRot on
average. When combined with QuaRot, our INTAC-
TKV archives new state-of-the-art (SOTA) results
on INT4 weight and activation quantization.

5 Conclusions

In this paper, we propose INTACTKV, a simple and
easy-to-combine method to improve large language
model quantization. The research is motivated by
the previously overlooked outliers over pivot to-
kens, which lead to attention sinks that are critical
to the performance of quantized LLMs. By gener-
ating INTACTKV with the full-precision model, the
quantization error accumulated over the attention
scores can be effectively alleviated. INTACTKV
can also be calibrated as additional parameters to
the LLM backbone, further improving the quan-
tized LLMs. Experiments show that combining
the proposed INTACTKV gives consistent improve-
ment on various sizes of LLMs and across multiple
downstream tasks, leading to new state-of-the-art
results for large language model quantization.

6 Limitations

More experiments may be needed for LLM evalu-
ation. LLMs are being applied to a wide range of
tasks, posing high demands on various model abili-
ties. When quantizing LLMs to low bits, these abil-
ities may be affected to varying degrees. Therefore,
a comprehensive evaluation is required to gauge
the capabilities of quantized LLMs. Although we
experiment on several downstream tasks, such as
PPL, MMLU, commonsense QA, and MT-bench,
we note that this may not be enough to assess all
abilities of LLMs. For example, how long context
affects quantized models still remains unknown.

7 Ethics Statement

The development of LLM quantization techniques
can further democratize LLMs, lowering the costs
of LLM serving and enabling more people to get ac-
cess to advanced AI assistants. Nonetheless, LLM
itself may inherit certain social biases from training
data concerning gender, race, etc. Quantization can
not mitigate such biases. Therefore, caution must
be taken when using quantized LLMs.
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A Proof of Theorem 1

Proof. Denote the output of the softmax function
as the score s, i.e., s = softmax(qK

⊤
√
d
), and also

define the error output from the softmax function
as ∆s. To show the error of the attention head, we
first justify how the error propagates from the score
to the attention head.

∥∆h∥2 =
∥∥[(s+∆s)(V +∆V )− sV ]WO

∥∥
2

≤ (∥∆s∥2∥V +∆V ∥2 + ∥s∥2∥∆V ∥2) ∥WO∥2
≤

(
∥∆s∥2(∥V ∥2+∥∆V ∥F ) + ∥∆V ∥F

)
∥WO∥2,

where the inequalities are because

∥x+ y∥2 ≤ ∥x∥2+∥y∥2, ∥sV ∥2 ≤ ∥s∥2∥V ∥2,

and ∥s∥2 ≤ ∥s∥1 = 1, ∥V ∥2 ≤ ∥V ∥F .
Next, we characterize the error of score ∥∆s∥2.

This is not easy as the error propagates through
the softmax function. To proceed, we need the
relative condition number of the softmax function.
As indicated in (Blanchard et al., 2021),

∥softmax(x+∆x)−softmax(x)∥∞
∥softmax(x)∥∞

≤κ(x)
∥∆x∥∞
∥x∥∞

,

where κ(x) = n∥x∥∞ (x ∈ Rn) is an upper
bound of the relative condition number of the soft-
max function. Let x = qK⊤/

√
d and ∆x =

q∆K⊤/
√
d, we have

∥∆s∥∞
∥s∥∞

≤ n∥∆x∥∞ ≤ n√
d
∥q∥2∥∆K∥2,∞.

Considering that the output of the softmax function
is a probability, we have ∥s∥∞ ≤ 1. Therefore, we
obtain

∥∆s∥2 ≤
√
n∥∆s∥∞ ≤ n2/3

√
d
∥q∥2∥∆K∥2,∞.

Combining the above ingredients, we derive the
main results of the Theorem 1.

B System Prompt of Vicuna Models

[BOS] A chat between a curious user and an artificial intelligence 
assistant. The assistant gives helpful, detailed, and polite answers 
to the user’s questions. USER:

Figure 5: System Prompt of Vicuna Models.

C Visualization of Activations and
Attention Map

C.1 Implementation Details

We use ShareGPT dataset for our visualizations,
where each sample starts with Vicuna system
prompt of length 34. We use a randomly sampled
sequence of length 128 to visualize the output acti-
vations and plot the corresponding attention map
of the first 64 tokens for better visualization. The
attention score is mean pooled over different heads.

C.2 Visualization of LLaMA Models

We provide more visualizations of the output ac-
tivations and attention map of LLaMA models in
Figure. 6–14. Similar to our observations in Sec-
tion 2, we find that pivot tokens only appear at the
very beginning of the input sequence, and [BOS] al-
ways serves as a pivot token.

C.3 Visualization of Vicuna Models

We provide more visualizations of the output ac-
tivations and attention map of Vicuna models in
Figure. 15–19. Although Vicuna models demon-
strate stronger performance than LLaMA models
of the same size, we are surprised to find that the
position of pivot tokens remains unchanged for
Vicuna and LLaMA models of the same size. Be-
sides, as shown in Figure. 15–19, we find that the
Vicuna system prompt is enough to cover all the
pivot tokens in all Vicuna models.

C.4 Visualization of OPT and Mistral Models

To demonstrate the prevalence of pivot tokens in
LLMs, we provide more visualizations on OPT
and Mistral models in Figure. 20–21. The results
show that the pivot tokens with extreme outliers
are ubiquitous in various LLMs.

D Experiment Details of Figure 2

We plot the quantization loss of the last Trans-
former layer as well as the total quantization loss
of all attention layers with respect to the size of
INTACTKV on four different models, i.e., LLaMA-
13B, LLaMA-30B, LLaMA-2-7B, and LLaMA-
2-70B, covering different model types and model
sizes. We use lossless INTACTKV generated by
the full-precision model to quantify the effect of
INTACTKV on the quantized model. INTACTKV
of size s can ensure that the KV cache of the first s
tokens of the input sequence are generated by the
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Method LLaMA-7B LLaMA-13B LLaMA-30B LLaMA-65B LLaMA-2-7B LLaMA-2-13B LLaMA-2-70B

FP16 5.69 5.08 4.09 3.52 5.48 4.89 3.33

RTN 6.98 5.88 4.84 4.22 6.65 5.52 3.99
+INTACTKV[B] 6.52 5.70 4.69 4.05 6.40 5.44 3.84

GPTQ 6.62 5.68 4.75 4.20 7.29 5.52 4.02
+INTACTKV[B] 6.51 5.62 4.63 4.12 7.00 5.46 3.97

OmniQuant 6.20 5.46 4.59 3.95 6.10 5.32 3.81
+INTACTKV[B] 6.18 5.46 4.58 3.95 6.10 5.31 3.80

AWQ 6.34 5.53 4.60 3.95 6.25 5.32 3.75
+INTACTKV[B] 6.23 5.49 4.54 3.89 6.14 5.29 3.72

Table 7: INT3-group128 weight-only quantization results of LLaMA and LLaMA-2 models on WikiText2 dataset.

Method LLaMA-3-8B LLaMA-3-70B

C4 WikiText2 C4 WikiText2

FP16 9.48 6.15 7.20 2.87

RTN 18.96 12.05 18.65 8.01
+INTACTKV[B] 16.89 10.77 14.11 5.43

GPTQ 51.69 26.14 5.1E4 5.1E4
+INTACTKV[B] 13.08 8.32 3.5E4 4.5E4

OmniQuant 14.46 9.09 9.04 5.29
+INTACTKV[B] 13.99 8.88 8.83 5.02

AWQ 12.69 8.15 8.55 4.66
+INTACTKV[B] 12.42 7.97 8.35 4.41

Table 8: INT3-group128 weight-only quantization re-
sults of LLaMA-3 on C4 and WikiText2 datasets.

full-precision model and thus lossless. Quantiza-
tion loss is computed with MSE loss between the
output activations of the quantized model and the
full-precision model. We sample 128 sequences
from the ShareGPT dataset to construct the val-
idation set, each with a common prompt prefix
of length 34. MSE loss is calculated on the to-
kens after the common prompt prefix. We quantize
the model weights to 3 bits using round-to-nearest
quantization with a group size of 128.

E Quantization Method Details

We carefully reproduce the results of various quan-
tization methods with their official code or released
checkpoint.

Weight-only Quantization. For GPTQ, we use
AutoGPTQ2 with C4 calibration set following
(Frantar et al., 2022) to reproduce all results. We
turn the quantization option "–desc_act" on to quan-
tize weight columns in order of decreasing activa-
tion size, which is a heuristic rule empirically found
to be effective for GPTQ. For AWQ (Lin et al.,
2023), we directly load the officially released quan-
tization parameters of LLaMA models for evalua-
tion and reproduce results on Vicuna models with

2https://github.com/AutoGPTQ/AutoGPTQ

Method OPT-6.7B Mistral-7B

C4 WikiText2 C4 WikiText2

FP16 12.75 10.83 8.39 5.30

RTN 36.18 23.91 9.65 6.20
AWQ 13.39 11.38 9.29 5.95
+INTACTKV[B] 13.37 11.32 9.25 5.93

Table 9: INT3-group128 weight-only quantization re-
sults of OPT and Mistral on C4 and WikiText2 datasets.

their official code3 using Pile (Gao et al., 2020)
calibration set. For weight-only quantization of
OmniQuant, we reproduce results with their official
code4 using WikiText2 (Merity et al., 2016) calibra-
tion set. We only activate the option "–lwc" to learn
the weight clipping parameters for both LLaMA
and Vicuna models, following (Shao et al., 2024).
Additionally, for OmniQuant+INTACTKV[B], we
directly integrate INTACTKV[B] into the training
process of OmniQuant to adapt the weight clipping
parameters to INTACTKV[B], which is found to be
effective and introduces no extra training costs.

Weight and Activation Quantization. For
weight and activation quantization of OmniQuant,
it is difficult to integrate INTACTKV[B] into train-
ing with the learnable equivalent transformation,
so we reuse the official checkpoint of LLaMA and
LLaMA-2 models. When combining INTACTKV
with OmniQuant, we quantize INTACTKV to lower
bits to avoid additional inference overhead. We do
not include OmniQuant results on LLaMA-3 mod-
els since the option "–let" is not compatible with
GQA (Group Query Attention). For QuaRot (Ashk-
boos et al., 2024), we reproduce all the results
with their official code5 using WikiText2 (Merity
et al., 2016) calibration set. We do not quantize
INTACTKV to lower bits since QuaRot adopts a

3https://github.com/mit-han-lab/llm-awq
4https://github.com/OpenGVLab/OmniQuant
5https://github.com/spcl/QuaRot
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Model Method MMLU (0 shot) MMLU (5 shot)

Hums STEM Social Others Avg Hums STEM Social Others Avg

Vicuna-v1.5-7B

FP16 45.40% 38.67% 56.16% 55.92% 48.74% 45.78% 39.50% 58.14% 57.46% 49.84%

RTN 42.06% 34.16% 50.47% 50.59% 44.17% 40.68% 38.60% 50.31% 50.56% 44.62%
GPTQ 39.89% 33.00% 48.10% 48.46% 42.19% 40.30% 36.28% 50.76% 50.09% 43.99%
OmniQuant 42.72% 36.38% 51.93% 53.55% 45.88% 42.70% 37.97% 54.31% 53.08% 46.62%
AWQ 42.08% 35.55% 51.61% 51.54% 44.95% 42.55% 38.93% 53.10% 52.78% 46.45%
+INTACTKV[B] 42.42% 35.42% 51.71% 51.57% 45.06% 42.95% 38.60% 54.37% 53.15% 46.87%

Vicuna-v1.5-13B

FP16 50.48% 43.70% 62.72% 62.74% 54.54% 51.97% 44.96% 65.26% 62.40% 55.78%

RTN 46.61% 41.32% 58.92% 57.53% 50.69% 47.14% 42.81% 59.38% 58.17% 51.44%
GPTQ 48.35% 40.99% 59.25% 57.99% 51.38% 49.63% 43.04% 60.22% 60.09% 52.95%
OmniQuant 49.73% 41.02% 59.31% 58.33% 51.94% 49.18% 44.17% 60.45% 58.91% 52.82%
AWQ 48.82% 41.72% 61.03% 58.30% 52.16% 49.52% 43.01% 61.72% 58.73% 52.92%
+INTACTKV[B] 49.31% 42.18% 61.20% 59.28% 52.68% 50.31% 43.37% 61.91% 59.93% 53.58%

Vicuna-v1.3-7B

FP16 44.31% 36.28% 53.23% 53.70% 46.71% 44.23% 38.34% 53.82% 53.15% 47.12%

RTN 38.09% 31.58% 42.35% 44.32% 39.06% 36.81% 32.77% 43.87% 44.79% 39.33%
GPTQ 39.09% 32.57% 44.59% 46.73% 40.66% 36.94% 33.90% 45.08% 45.81% 40.12%
OmniQuant 41.40% 34.06% 48.07% 48.06% 42.82% 40.98% 35.19% 48.23% 48.03% 42.95%
AWQ 40.49% 32.44% 47.06% 49.57% 42.29% 39.64% 36.22% 48.72% 49.11% 43.08%
+INTACTKV[B] 41.76% 32.94% 47.74% 49.72% 43.01% 41.93% 36.58% 50.37% 50.77% 44.67%

Vicuna-v1.3-13B

FP16 47.89% 39.96% 58.86% 57.34% 50.77% 49.78% 40.46% 60.61% 58.24% 52.10%

RTN 42.06% 32.87% 47.61% 49.51% 43.02% 42.42% 34.46% 50.34% 51.57% 44.56%
GPTQ 45.06% 35.88% 52.23% 51.26% 46.09% 45.82% 37.57% 54.83% 53.64% 47.83%
OmniQuant 43.51% 36.85% 52.16% 53.05% 46.18% 45.91% 37.44% 55.31% 54.94% 48.23%
AWQ 45.14% 36.18% 52.55% 53.79% 46.84% 46.65% 37.64% 55.54% 54.87% 48.56%
+INTACTKV[B] 45.91% 36.65% 53.75% 54.60% 47.64% 46.57% 38.40% 56.03% 55.95% 49.05%

Vicuna-v1.3-33B

FP16 53.73% 44.14% 67.63% 63.54% 56.98% 57.66% 46.32% 69.32% 64.25% 59.30%

RTN 49.88% 40.13% 61.33% 58.42% 52.26% 51.26% 42.54% 61.75% 57.71% 53.18%
GPTQ 51.22% 40.03% 61.85% 59.47% 53.05% 54.05% 44.04% 64.35% 61.35% 55.84%
OmniQuant 51.22% 42.18% 64.06% 60.39% 54.21% 53.94% 44.10% 63.21% 59.81% 55.21%
AWQ 51.69% 42.74% 63.41% 61.38% 54.57% 54.56% 44.10% 65.36% 60.67% 56.09%
+INTACTKV[B] 52.09% 42.68% 63.70% 62.03% 54.91% 55.79% 44.90% 65.62% 61.47% 56.91%

Table 10: INT3-group128 weight-only quantization results of Vicuna models on MMLU benchmarks.

mixed-precision self-attention quantization strat-
egy and can not utilize the integer multiplications
for self-attention operations. Therefore, maintain-
ing INTACTKV in FP16 will not bring any extra
inference costs for QuaRot.

F Evaluation Details

PPL. We evaluate PPL following the new eval-
uation setting in GPTQ official code6, except that
we substitute the first token of each text segment
with [BOS] token to evaluate the performance of
INTACTKV.

MMLU. We evaluate MMLU following the orig-
inal MMLU implementation7 for 0-shot and 5-shot
tasks. We note that when using Vicuna, it is consid-
ered more appropriate to fit the input sequences into
the Vicuna system prompt. However, the original
MMLU implementation does not use the Vicuna
system prompt for Vicuna models. In our experi-
ments on Vicuna models, we find that naively fit-

6https://github.com/ist-daslab/gptq
7https://github.com/hendrycks/test/pull/13

ting the original MMLU prompt into the Vicuna
system prompt will harm the final accuracy. Since
prompt engineering is out of scope for this paper,
we choose to follow the original evaluation setting
that does not use the Vicuna system prompt for
MMLU evaluation on Vicuna models.

Common Sense Reasoning Tasks. For the seven
zero-shot common sense reasoning tasks, we adopt
the open-sourced lm-evaluation-harness8 library
for evaluation. Similar to PPL evaluation, to as-
sess the performance of INTACTKV, we prepend
[BOS] token to the beginning of each input se-
quence. For the evaluation of Vicuna models,
we also follow the evaluation protocol in lm-
evaluation-harness and do not use a system prompt.

MT-bench. MT-bench employs a GPT-4 model
to score the generated content. In our experiments,
we find that the scores given by GPT-4 can vary
for the same generated content even when the gen-

8https://github.com/EleutherAI/
lm-evaluation-harness
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Model Method MMLU (0 shot) MMLU (5 shot)

Hums STEM Social Others Avg Hums STEM Social Others Avg

Vicuna-v1.5-7B

FP16 45.40% 38.67% 56.16% 55.92% 48.74% 45.78% 39.50% 58.14% 57.46% 49.84%

RTN 44.65% 38.47% 53.95% 54.41% 47.61% 44.87% 39.13% 56.45% 55.34% 48.59%
GPTQ 44.87% 37.08% 54.44% 53.86% 47.37% 45.44% 38.83% 57.33% 56.14% 49.10%
OmniQuant 44.97% 38.80% 55.57% 56.32% 48.59% 45.53% 39.40% 57.20% 57.50% 49.53%
AWQ 45.08% 37.41% 55.64% 55.31% 48.11% 45.44% 38.97% 56.94% 55.74% 48.95%
+INTACTKV[B] 45.25% 37.51% 55.93% 55.58% 48.31% 45.33% 39.60% 57.36% 55.74% 49.14%

Vicuna-v1.5-13B

FP16 50.48% 43.70% 62.72% 62.74% 54.54% 51.97% 44.96% 65.26% 62.40% 55.78%

RTN 50.01% 43.41% 62.33% 62.00% 54.06% 51.31% 43.14% 63.54% 61.63% 54.61%
GPTQ 50.20% 42.31% 61.62% 61.41% 53.60% 50.10% 43.97% 62.72% 61.01% 54.07%
OmniQuant 49.99% 43.97% 62.40% 62.03% 54.19% 51.67% 43.90% 63.05% 61.81% 54.84%
AWQ 50.10% 42.94% 61.68% 61.66% 53.77% 52.31% 44.43% 63.18% 61.84% 55.20%
+INTACTKV[B] 50.14% 42.84% 61.78% 61.91% 53.84% 52.31% 44.37% 63.67% 61.91% 55.31%

Vicuna-v1.3-7B

FP16 44.31% 36.28% 53.23% 53.70% 46.71% 44.23% 38.34% 53.82% 53.15% 47.12%

RTN 42.78% 36.55% 51.74% 51.48% 45.41% 42.23% 37.08% 52.10% 51.94% 45.53%
GPTQ 43.40% 34.46% 52.06% 53.45% 45.70% 43.78% 36.41% 53.49% 52.41% 46.32%
OmniQuant 43.12% 34.59% 52.45% 52.31% 45.46% 43.04% 37.67% 52.75% 53.08% 46.33%
AWQ 43.53% 36.22% 53.01% 52.53% 46.11% 43.36% 37.74% 53.46% 52.68% 46.52%
+INTACTKV[B] 43.57% 36.51% 52.29% 53.27% 46.20% 43.51% 37.44% 53.17% 52.62% 46.43%

Vicuna-v1.3-13B

FP16 47.89% 39.96% 58.86% 57.34% 50.77% 49.78% 40.46% 60.61% 58.24% 52.10%

RTN 47.16% 39.00% 56.52% 56.63% 49.64% 49.25% 39.63% 57.85% 57.74% 51.03%
GPTQ 46.95% 39.30% 57.39% 56.23% 49.74% 49.05% 39.46% 59.02% 57.65% 51.16%
OmniQuant 47.52% 39.40% 57.98% 57.37% 50.34% 49.03% 40.09% 59.34% 58.11% 51.47%
AWQ 48.03% 39.43% 56.94% 56.76% 50.15% 49.44% 40.49% 59.57% 57.65% 51.63%
+INTACTKV[B] 47.91% 39.60% 57.69% 56.79% 50.31% 49.54% 40.23% 60.12% 57.71% 51.74%

Vicuna-v1.3-33B

FP16 53.73% 44.14% 67.63% 63.54% 56.98% 57.66% 46.32% 69.32% 64.25% 59.30%

RTN 53.18% 44.27% 66.88% 62.95% 56.52% 56.73% 45.73% 68.09% 62.49% 58.18%
GPTQ 52.92% 44.90% 67.05% 63.66% 56.77% 57.13% 45.96% 67.63% 63.11% 58.41%
OmniQuant 53.22% 44.43% 67.73% 63.26% 56.73% 56.83% 45.46% 68.67% 62.31% 58.25%
AWQ 53.22% 44.40% 67.63% 63.54% 56.87% 56.85% 45.69% 68.80% 63.66% 58.65%
+INTACTKV[B] 53.37% 44.40% 67.50% 63.63% 56.91% 57.07% 45.96% 68.51% 63.63% 58.70%

Table 11: INT4-group128 weight-only quantization results of Vicuna models on MMLU benchmarks.

eration temperature of GPT-4 is set to 0. Besides,
content generation for the writing and roleplay cate-
gories has a relatively high generation temperature
of 0.7, which also results in variations in the fi-
nal score. To faithfully assess the performance of
the quantized model and decrease the variations
in the final score, we run the content generation
process of each model 3 times with random seeds
42, 43, and 44. We report the mean score of three
trials as the final score in Table 5 and Table 13.
Also, we note that GPT-4-Turbo has been shown
to be smarter than GPT-49, and in our experiments,
we find that GPT-4-Turbo can give more stable
scores than GPT-4 while having a much lower price.
Therefore, we evaluate the generation results on
MT-bench with the latest gpt-4-0125-preview API
(i.e., GPT-4-Turbo) provided by OpenAI to further
reduce variations in the final score.

9https://huggingface.co/spaces/lmsys/
chatbot-arena-leaderboard

G More Experiment Results

G.1 PPL Results

We provide PPL results of LLaMA and LLaMA-2
models on WikiText2 in Table 7, and PPL results of
LLaMA-3 models in Table 8. These results affirm
INTACTKV’s effectiveness in restoring the capabil-
ities of quantized models. Moreover, in Table 9, we
conduct experiments on more heterogeneous back-
bones like OPT and Mistral, which further proves
the compatibility of our INTACTKV with various
LLM backbones.

G.2 MMLU Results

We provide INT3-group128 weight-only quanti-
zation results on MMLU in Table 10, and INT4-
group128 weight-only quantization results on
MMLU in Table 11. For INT3-group128 quan-
tization, AWQ+INTACTKV consistently improves
AWQ in every experiment setting and outperforms
OmniQuant for nine out of ten settings. For INT4-
group128 quantization, AWQ+INTACTKV leads to
relatively less improvement over AWQ compared

7730

https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard
https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard


Model #bits Method OBQA WinoGrande ARC-C ARC-E BoolQ HellaSwag LAMBADA Avg

Vicuna-V1.5-7B

FP16 - 45.00% 69.53% 45.73% 71.25% 80.92% 73.78% 71.12% 65.33%

w3g128

RTN 40.60% 66.22% 43.77% 67.89% 77.86% 71.46% 61.75% 61.36%
GPTQ 39.40% 64.72% 40.87% 65.07% 74.77% 66.32% 59.09% 58.61%
OmniQuant 43.00% 66.46% 43.69% 67.72% 78.59% 70.53% 66.12% 62.30%
AWQ 41.60% 67.56% 42.66% 67.85% 78.96% 71.32% 65.28% 62.18%

+INTACTKV[B] 42.20% 67.64% 41.98% 68.52% 79.02% 71.24% 66.82% 62.49%

w4g128

RTN 43.40% 68.98% 44.80% 71.09% 82.05% 73.32% 69.28% 64.70%
GPTQ 43.60% 69.77% 44.62% 70.20% 74.01% 72.61% 68.27% 63.30%
OmniQuant 43.40% 69.06% 44.37% 71.17% 81.83% 72.90% 70.13% 64.69%
AWQ 43.80% 68.59% 45.73% 71.09% 82.02% 73.51% 69.42% 64.88%

+INTACTKV[B] 44.00% 68.90% 45.90% 71.63% 82.29% 73.52% 69.61% 65.12%

Vicuna-v1.5-13B

FP16 - 45.40% 71.51% 50.68% 74.87% 85.29% 77.50% 73.43% 68.38%

w3g128

RTN 43.60% 71.27% 48.55% 72.81% 82.91% 74.55% 69.18% 66.12%
GPTQ 43.00% 70.09% 48.98% 72.98% 84.43% 74.80% 70.11% 66.34%
OmniQuant 43.60% 69.85% 47.78% 71.17% 82.45% 74.16% 70.04% 65.58%
AWQ 45.40% 69.38% 48.38% 71.89% 84.46% 75.24% 70.85% 66.51%

+INTACTKV[B] 45.40% 70.32% 48.38% 72.14% 85.20% 75.23% 71.86% 66.93%

w4g128

RTN 44.80% 71.51% 49.15% 73.78% 85.20% 76.70% 72.62% 67.68%
GPTQ 45.80% 70.96% 50.51% 73.99% 85.47% 76.70% 73.43% 68.12%
OmniQuant 44.40% 70.80% 50.09% 73.86% 85.29% 76.79% 72.39% 67.66%
AWQ 45.60% 72.85% 49.49% 74.07% 85.72% 77.37% 72.37% 68.21%

+INTACTKV[B] 45.40% 73.09% 49.57% 74.45% 85.66% 77.32% 72.75% 68.32%

Vicuna-V1.3-7B

FP16 - 43.80% 69.46% 44.54% 71.89% 78.07% 73.93% 69.98% 64.52%

w3g128

RTN 41.80% 63.38% 38.91% 63.47% 76.57% 68.92% 60.29% 59.05%
GPTQ 40.00% 65.90% 41.55% 66.16% 70.73% 69.66% 62.95% 59.56%
OmniQuant 42.00% 66.06% 39.68% 66.67% 75.69% 70.45% 65.65% 60.89%
AWQ 42.40% 66.69% 39.51% 65.40% 77.06% 70.53% 63.69% 60.75%

+INTACTKV[B] 43.60% 68.43% 39.16% 67.30% 77.28% 71.20% 66.54% 61.93%

w4g128

RTN 42.20% 67.80% 43.00% 70.66% 75.50% 73.16% 68.37% 62.96%
GPTQ 45.20% 68.82% 42.41% 70.45% 67.58% 72.50% 67.40% 62.05%
OmniQuant 43.40% 67.96% 44.28% 71.46% 76.42% 73.22% 68.81% 63.65%
AWQ 43.60% 68.03% 43.26% 71.68% 75.87% 73.44% 68.45% 63.48%

+INTACTKV[B] 43.80% 68.59% 42.92% 71.84% 76.79% 73.49% 69.57% 63.86%

Vicuna-V1.3-13B

FP16 - 45.40% 71.03% 47.70% 73.70% 82.81% 77.00% 72.91% 67.22%

w3g128

RTN 44.00% 70.96% 44.03% 67.30% 80.40% 73.33% 64.00% 63.43%
GPTQ 45.20% 69.77% 46.08% 70.33% 81.90% 74.89% 67.59% 65.11%
OmniQuant 45.20% 69.22% 45.22% 68.90% 80.95% 74.72% 68.15% 64.62%
AWQ 42.80% 68.98% 46.08% 68.98% 81.31% 74.97% 68.78% 64.56%

+INTACTKV[B] 43.20% 69.46% 46.16% 69.74% 81.80% 75.11% 69.67% 65.02%

w4g128

RTN 45.20% 71.43% 48.04% 73.15% 82.87% 76.56% 70.62% 66.84%
GPTQ 44.60% 70.01% 47.87% 73.32% 82.23% 76.55% 71.78% 66.62%
OmniQuant 45.60% 70.56% 46.76% 73.02% 82.81% 76.74% 70.41% 66.56%
AWQ 45.20% 70.32% 47.27% 73.91% 82.81% 76.79% 71.32% 66.80%

+INTACTKV[B] 45.60% 71.19% 47.10% 73.32% 82.72% 76.95% 71.38% 66.89%

Vicuna-V1.3-33B

FP16 - 47.80% 74.35% 51.79% 74.71% 83.91% 80.38% 73.74% 69.53%

w3g128

RTN 46.60% 72.53% 49.06% 72.18% 83.12% 78.06% 69.73% 67.33%
GPTQ 44.80% 71.74% 47.01% 70.12% 83.64% 77.79% 71.51% 66.66%
OmniQuant 45.40% 73.64% 48.63% 72.35% 83.55% 77.98% 71.73% 67.61%
AWQ 45.60% 73.32% 50.68% 71.63% 82.39% 78.55% 71.49% 67.67%

+INTACTKV[B] 44.80% 73.56% 51.11% 72.60% 82.78% 78.55% 71.90% 67.90%

w4g128

RTN 47.20% 73.88% 51.62% 74.12% 83.58% 79.86% 73.24% 69.07%
GPTQ 47.00% 73.48% 50.85% 73.06% 83.67% 80.31% 72.50% 68.70%
OmniQuant 48.80% 74.19% 50.68% 73.91% 83.79% 79.83% 73.28% 69.21%
AWQ 47.00% 73.16% 50.85% 73.82% 84.19% 79.77% 73.32% 68.87%

+INTACTKV[B] 45.60% 73.24% 50.94% 74.12% 84.28% 79.70% 73.14% 68.72%

Table 12: Weight-only quantization results of Vicuna models on seven 0-shot commonsense QA tasks.

with INT3-group128 quantization, but still outper-
forms AWQ in nine out of ten experiment settings,
and performs on par with OmniQuant.

G.3 Commonsense QA Results

We conduct experiments on seven zero-shot com-
monsense QA tasks for the Vicuna family with

both INT3-group128 and INT4-group128 weight-
only quantization. The results are shown in
Table 12. For INT3-group128 quantization,
AWQ+INTACTKV significantly surpasses all base-
lines in four out of five experiment settings. For
INT4-group128 quantization, AWQ+INTACTKV
improves AWQ and outperforms OmniQuant in
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Method Vicuna-v1.5-7B Vicuna-v1.5-13B

FP16 5.31 5.52

RTN 5.18 5.47
OmniQuant 5.09 5.48
AWQ 5.22 5.28
+INTACTKV[P] 5.32 5.35
+INTACTKV[P]+Cal 5.36 5.50

Table 13: GPT-4 evaluation of INT4-group128 weight-
only quantized Vicuna-v1.5 models on MT-Bench. The
scores are on a scale of 10.

four out of five experiment settings, demonstrating
the superiority of INTACTKV.

G.4 MT-Bench Results

We provide INT4-group128 quantization results
on MT-bench in Table 13. As can be seen, IN-
TACTKV leads to an average increase of 0.09 in
the final score. Remarkably, with trainable INTAC-
TKV, AWQ even matches the full-precision model
under INT4 quantization, while all other methods
clearly lag behind the full-precision model.

H Effectiveness of Calibrating
INTACTKV

We conduct more experiments on MT-Bench to fur-
ther demonstrate the effectiveness of calibrating IN-
TACTKV. We adopt a commonly used fine-tuning
method for quantized models that tunes the quan-
tization bias term (used in non-symmetric quanti-
zation) in every quantization group as a baseline
method, termed "group bias tuning". Both "group
bias tuning" and "calibrating INTACTKV" are fur-
ther tuned based on "AWQ+INTACTKV[P]". We
use the same calibration set containing 128 sam-
ples and train 20 epochs for a fair comparison.
As shown in Table 14, although calibrating IN-
TACTKV uses fewer trainable parameters, it still
achieves better or comparable results compared
with group bias tuning, demonstrating the effective-
ness of calibrating INTACTKV. Also, we note that
"calibrating INTACTKV" can be adopted for any
quantization setting, while "group bias tuning" is
only suitable for non-symmetric and group-wise
quantization, making our proposed method a more
versatile calibration strategy for quantized models.

I Adapting INTACTKV for Activation
Quantization

It is non-trivial to integrate INTACTKV into activa-
tion quantization. For activation quantization, the

Method INT3-group128 INT4-group128

AWQ 5.17 5.28
+INTACTKV[P] 5.34 5.35
+INTACTKV[P]+gbias 5.31 5.47
+INTACTKV[P]+Cal 5.44 5.50

Table 14: Evaluation of different calibration methods
on MT-bench. "gbias" denotes group bias tuning and
"Cal" denotes calibrating INTACTKV.

whole KV cache needs to be quantized to low bits
to exploit integer multiplications in self-attention,
which contradicts our idea of keeping pivot to-
kens’ KV cache intact. However, as shown in Ta-
ble 15, the distribution of the pivot tokens’ KV
cache is much smoother than that of the non-pivot
tokens’ KV cache, which implies that INTACTKV
is amenable to quantization. Therefore, we adopt
a straightforward solution to adapt INTACTKV for
activation quantization that directly quantizes IN-
TACTKV to lower bits with RTN. As shown in
Table 16, quantizing INTACTKV incurs minimal
accuracy loss. For example, quantizing INTACTKV
to 4 bits only results in an average PPL increase
of 0.05 on WikiText2 compared with full-precision
INTACTKV, which is negligible.

J Links to Officially Released LLMs

We provide download links to some officially re-
leased LLMs used in our experiments in Table 17.
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Method Pivot K Cache Pivot V Cache Non-pivot K Cache Non-pivot V Cache

AbsMax Std AbsMax Std AbsMax Std AbsMax Std

LLaMA-7B 3.15 0.38 0.63 0.04 13.91 1.58 2.34 0.46
LLaMA-13B 3.02 0.35 0.73 0.05 13.69 1.56 2.62 0.49
LLaMA-2-7B 2.76 0.30 0.79 0.05 14.28 1.65 2.23 0.42
LLaMA-2-13B 2.73 0.27 0.75 0.05 14.60 1.62 2.57 0.44
LLaMA-3-8B 3.30 0.37 0.57 0.03 15.86 2.19 1.54 0.27

Table 15: The statistical results of pivot tokens’ and non-pivot tokens’ KV cache. The maximum absolute value and
standard deviation are calculated on a sequence of length 1024 and averaged over all layers.

Method LLaMA-7B LLaMA-13B LLaMA-2-7B LLaMA-2-13B

C4 WikiText2 C4 WikiText2 C4 WikiText2 C4 WikiText2

OmniQuant 17.03 12.17 15.65 11.16 21.40 14.74 16.24 12.28
+INTACTKV[B] (FP16) 16.26 11.30 13.89 10.00 19.97 13.61 15.77 10.94
+INTACTKV[B] 16.24 11.32 13.87 10.04 20.01 13.70 15.91 11.00

Table 16: The effect of quantizing INTACTKV to lower bits. We show the INT4 weight and activation quantization
results of LLaMA models on C4 and WikiText2 datasets. INTACTKV[B] (FP16) indicates keeping INTACTKV in 16
bits, which incurs extra inference costs. INTACTKV[B] indicates quantizing INTACTKV to lower bits (i.e., 4 bits).

Model Download URL

LLaMA-2-7B https://huggingface.co/meta-llama/Llama-2-7b
LLaMA-2-13B https://huggingface.co/meta-llama/Llama-2-13b
LLaMA-2-70B https://huggingface.co/meta-llama/Llama-2-70b
LLaMA-3-8B https://huggingface.co/meta-llama/Meta-Llama-3-8B

LLaMA-3-70B https://huggingface.co/meta-llama/Meta-Llama-3-70B
Vicuna-v1.3-7B https://huggingface.co/lmsys/vicuna-7b-v1.3
Vicuna-v1.3-13B https://huggingface.co/lmsys/vicuna-13b-v1.3
Vicuna-v1.3-33B https://huggingface.co/lmsys/vicuna-33b-v1.3
Vicuna-v1.5-7B https://huggingface.co/lmsys/vicuna-7b-v1.5
Vicuna-v1.5-13B https://huggingface.co/lmsys/vicuna-13b-v1.5

Table 17: Download links to officially released LLMs.
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(a) Output activations of
LLaMA-7B Layer 0

(b) Output activations of
LLaMA-7B Layer 8

(c) Output activations of
LLaMA-7B Layer 16

(d) Output activations of
LLaMA-7B Layer 24
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(f) Attention map of
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(g) Attention map of
LLaMA-7B Layer 16

0 10 20 30 40 50 60

0

10

20

30

40

50

60

5

10

15

20

25

30

(h) Attention map of
LLaMA-7B Layer 24

Figure 6: Magnitude of the output activations and attention map in LLaMA-7B.

(a) Output activations of
LLaMA-13B Layer 8

(b) Output activations of
LLaMA-13B Layer 16

(c) Output activations of
LLaMA-13B Layer 24

(d) Output activations of
LLaMA-13B Layer 32
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(e) Attention map of
LLaMA-13B Layer 8
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(g) Attention map of
LLaMA-13B Layer 24
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(h) Attention map of
LLaMA-13B Layer 32

Figure 7: Magnitude of the output activations and attention map in LLaMA-13B.
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(a) Output activations of
LLaMA-30B Layer 8

(b) Output activations of
LLaMA-30B Layer 24

(c) Output activations of
LLaMA-30B Layer 40

(d) Output activations of
LLaMA-30B Layer 56
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(f) Attention map of
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(g) Attention map of
LLaMA-30B Layer 40
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(h) Attention map of
LLaMA-30B Layer 56

Figure 8: Magnitude of the output activations and attention map in LLaMA-30B.

(a) Output activations of
LLaMA-65B Layer 16

(b) Output activations of
LLaMA-65B Layer 32

(c) Output activations of
LLaMA-65B Layer 48

(d) Output activations of
LLaMA-65B Layer 64
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(f) Attention map of
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(g) Attention map of
LLaMA-65B Layer 48
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(h) Attention map of
LLaMA-65B Layer 64

Figure 9: Magnitude of the output activations and attention map in LLaMA-65B.
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(a) Output activations of
LLaMA-2-7B Layer 0

(b) Output activations of
LLaMA-2-7B Layer 8

(c) Output activations of
LLaMA-2-7B Layer 16

(d) Output activations of
LLaMA-2-7B Layer 24
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(f) Attention map of
LLaMA-2-7B Layer 8
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(g) Attention map of
LLaMA-2-7B Layer 16
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(h) Attention map of
LLaMA-2-7B Layer 24

Figure 10: Magnitude of the output activations and attention map in LLaMA-2-7B.

(a) Output activations of
LLaMA-2-13B Layer 8

(b) Output activations of
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(c) Output activations of
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(f) Attention map of
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(h) Attention map of
LLaMA-2-13B Layer 32

Figure 11: Magnitude of the output activations and attention map in LLaMA-2-13B.
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(a) Output activations of
LLaMA-2-70B Layer 16

(b) Output activations of
LLaMA-2-70B Layer 32

(c) Output activations of
LLaMA-2-70B Layer 48

(d) Output activations of
LLaMA-2-70B Layer 64
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(e) Attention map of
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(f) Attention map of
LLaMA-2-70B Layer 32
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(g) Attention map of
LLaMA-2-70B Layer 48
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(h) Attention map of
LLaMA-2-70B Layer 64

Figure 12: Magnitude of the output activations and attention map in LLaMA-2-70B.
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(f) Attention map of
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(g) Attention map of
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(h) Attention map of
LLaMA-3-8B Layer 24

Figure 13: Magnitude of the output activations and attention map in LLaMA-3-8B.
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(a) Output activations of
LLaMA-3-70B Layer 16

(b) Output activations of
LLaMA-3-70B Layer 32

(c) Output activations of
LLaMA-3-70B Layer 48

(d) Output activations of
LLaMA-3-70B Layer 64
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(f) Attention map of
LLaMA-3-70B Layer 32
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(g) Attention map of
LLaMA-3-70B Layer 48
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(h) Attention map of
LLaMA-3-70B Layer 64

Figure 14: Magnitude of the output activations and attention map in LLaMA-3-70B.

(a) Output activations of
Vicuna-v1.3-7B Layer 0

(b) Output activations of
Vicuna-v1.3-7B Layer 8

(c) Output activations of
Vicuna-v1.3-7B Layer 16

(d) Output activations of
Vicuna-v1.3-7B Layer 24
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(f) Attention map of
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(g) Attention map of
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(h) Attention map of
Vicuna-v1.3-7B Layer 24

Figure 15: Magnitude of the output activations and attention map in Vicuna-v1.3-7B. The tokens before the red
dashed line correspond to the Vicuna system prompt.
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(a) Output activations of
Vicuna-v1.3-13B Layer 8

(b) Output activations of
Vicuna-v1.3-13B Layer 16

(c) Output activations of
Vicuna-v1.3-13B Layer 24

(d) Output activations of
Vicuna-v1.3-13B Layer 32
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(e) Attention map of
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0 10 20 30 40 50 60

0

10

20

30

40

50

60
5

10

15

20

25

30

35

40

(f) Attention map of
Vicuna-v1.3-13B Layer 16
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(g) Attention map of
Vicuna-v1.3-13B Layer 24
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Figure 16: Magnitude of the output activations and attention map in Vicuna-v1.3-13B. The tokens before the red
dashed line correspond to the Vicuna system prompt.
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(c) Output activations of
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(d) Output activations of
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Figure 17: Magnitude of the output activations and attention map in Vicuna-v1.3-33B. The tokens before the red
dashed line correspond to the Vicuna system prompt.
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(a) Output activations of
Vicuna-v1.5-7B Layer 0

(b) Output activations of
Vicuna-v1.5-7B Layer 8

(c) Output activations of
Vicuna-v1.5-7B Layer 16

(d) Output activations of
Vicuna-v1.5-7B Layer 24
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(e) Attention map of
Vicuna-v1.5-7B Layer 0
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(f) Attention map of
Vicuna-v1.5-7B Layer 8
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(g) Attention map of
Vicuna-v1.5-7B Layer 16
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Vicuna-v1.5-7B Layer 24

Figure 18: Magnitude of the output activations and attention map in Vicuna-v1.5-7B. The tokens before the red
dashed line correspond to the Vicuna system prompt.
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(b) Output activations of
Vicuna-v1.5-13B Layer 16
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(f) Attention map of
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Figure 19: Magnitude of the output activations and attention map in Vicuna-v1.5-13B. The tokens before the red
dashed line correspond to the Vicuna system prompt.
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(a) Output activations of
OPT-6.7B Layer 0

(b) Output activations of
OPT-6.7B Layer 8

(c) Output activations of
OPT-6.7B Layer 16

(d) Output activations of
OPT-6.7B Layer 24
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(f) Attention map of
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(h) Attention map of
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Figure 20: Magnitude of the output activations and attention map in OPT-6.7B.
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Figure 21: Magnitude of the output activations and attention map in Mistral-7B.
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