@inproceedings{meng-etal-2024-chartassistant,
title = "{C}hart{A}ssistant: A Universal Chart Multimodal Language Model via Chart-to-Table Pre-training and Multitask Instruction Tuning",
author = "Meng, Fanqing and
Shao, Wenqi and
Lu, Quanfeng and
Gao, Peng and
Zhang, Kaipeng and
Qiao, Yu and
Luo, Ping",
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2024",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-acl.463/",
doi = "10.18653/v1/2024.findings-acl.463",
pages = "7775--7803",
abstract = "Charts play a vital role in data visualization, understanding data patterns, and informed decision-making. However, their unique combination of graphical elements (e.g., bars, lines) and textual components (e.g., labels, legends) poses challenges for general-purpose multimodal models. While vision-language models trained on chart data excel in comprehension, they struggle with generalization. To address these challenges, we propose ChartAssistant, a chart-based vision-language model for universal chart comprehension and reasoning. ChartAssistant leverages ChartSFT, a comprehensive dataset covering diverse chart-related tasks with basic (e.g. bars and pies) and specialized (e.g. radars, and bubbles) chart types. It undergoes a two-stage training process, starting with pre-training on chart-to-table parsing to align chart and text, followed by multitask instruction-following fine-tuning. This approach enables ChartAssistant to achieve competitive performance across various chart tasks. Experimental results demonstrate significant performance gains over the state-of-the-art UniChart and ChartLlama methods, especially outperforming them on real-world chart data with zero-shot setting. The code and data are available at https://github.com/OpenGVLab/ChartAst."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="meng-etal-2024-chartassistant">
<titleInfo>
<title>ChartAssistant: A Universal Chart Multimodal Language Model via Chart-to-Table Pre-training and Multitask Instruction Tuning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Fanqing</namePart>
<namePart type="family">Meng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wenqi</namePart>
<namePart type="family">Shao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Quanfeng</namePart>
<namePart type="family">Lu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Peng</namePart>
<namePart type="family">Gao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kaipeng</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yu</namePart>
<namePart type="family">Qiao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ping</namePart>
<namePart type="family">Luo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Charts play a vital role in data visualization, understanding data patterns, and informed decision-making. However, their unique combination of graphical elements (e.g., bars, lines) and textual components (e.g., labels, legends) poses challenges for general-purpose multimodal models. While vision-language models trained on chart data excel in comprehension, they struggle with generalization. To address these challenges, we propose ChartAssistant, a chart-based vision-language model for universal chart comprehension and reasoning. ChartAssistant leverages ChartSFT, a comprehensive dataset covering diverse chart-related tasks with basic (e.g. bars and pies) and specialized (e.g. radars, and bubbles) chart types. It undergoes a two-stage training process, starting with pre-training on chart-to-table parsing to align chart and text, followed by multitask instruction-following fine-tuning. This approach enables ChartAssistant to achieve competitive performance across various chart tasks. Experimental results demonstrate significant performance gains over the state-of-the-art UniChart and ChartLlama methods, especially outperforming them on real-world chart data with zero-shot setting. The code and data are available at https://github.com/OpenGVLab/ChartAst.</abstract>
<identifier type="citekey">meng-etal-2024-chartassistant</identifier>
<identifier type="doi">10.18653/v1/2024.findings-acl.463</identifier>
<location>
<url>https://aclanthology.org/2024.findings-acl.463/</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>7775</start>
<end>7803</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T ChartAssistant: A Universal Chart Multimodal Language Model via Chart-to-Table Pre-training and Multitask Instruction Tuning
%A Meng, Fanqing
%A Shao, Wenqi
%A Lu, Quanfeng
%A Gao, Peng
%A Zhang, Kaipeng
%A Qiao, Yu
%A Luo, Ping
%Y Ku, Lun-Wei
%Y Martins, Andre
%Y Srikumar, Vivek
%S Findings of the Association for Computational Linguistics: ACL 2024
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F meng-etal-2024-chartassistant
%X Charts play a vital role in data visualization, understanding data patterns, and informed decision-making. However, their unique combination of graphical elements (e.g., bars, lines) and textual components (e.g., labels, legends) poses challenges for general-purpose multimodal models. While vision-language models trained on chart data excel in comprehension, they struggle with generalization. To address these challenges, we propose ChartAssistant, a chart-based vision-language model for universal chart comprehension and reasoning. ChartAssistant leverages ChartSFT, a comprehensive dataset covering diverse chart-related tasks with basic (e.g. bars and pies) and specialized (e.g. radars, and bubbles) chart types. It undergoes a two-stage training process, starting with pre-training on chart-to-table parsing to align chart and text, followed by multitask instruction-following fine-tuning. This approach enables ChartAssistant to achieve competitive performance across various chart tasks. Experimental results demonstrate significant performance gains over the state-of-the-art UniChart and ChartLlama methods, especially outperforming them on real-world chart data with zero-shot setting. The code and data are available at https://github.com/OpenGVLab/ChartAst.
%R 10.18653/v1/2024.findings-acl.463
%U https://aclanthology.org/2024.findings-acl.463/
%U https://doi.org/10.18653/v1/2024.findings-acl.463
%P 7775-7803
Markdown (Informal)
[ChartAssistant: A Universal Chart Multimodal Language Model via Chart-to-Table Pre-training and Multitask Instruction Tuning](https://aclanthology.org/2024.findings-acl.463/) (Meng et al., Findings 2024)
ACL