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Abstract

Relation extraction (RE) extracts structured tu-
ples of relationships (e.g. friend, enemy) be-
tween entities (e.g. Sherlock Holmes, John Wat-
son) from text, with exciting potential appli-
cations. Hundreds of RE papers have been
published in recent years; do their evaluation
practices inform these goals? We review recent
surveys and a sample of recent RE methods
papers, compiling 38 datasets currently being
used. Unfortunately, many have frequent label
errors, and ones with known problems continue
to be used. Many datasets focus on produc-
ing labels for a large number of relation types,
often through error-prone annotation methods
(e.g. distant supervision or crowdsourcing), and
many recent papers rely exclusively on such
datasets. We draw attention to a promising
alternative: datasets with a small number of
relations, often in specific domains like chem-
istry, finance, or biomedicine, where it is pos-
sible to obtain high quality expert annotations;
such data can more realistically evaluate RE
performance. The research community should
consider more often using such resources.

1 Introduction

Relation extraction (RE) methods extract tuple
structures from unstructured text, where structures
consist of types of relationships, e.g. is a member
of an organization, and entities involved with them,
e.g. Samuel Gompers, American Federation of La-
bor. Ding et al. (2021); Nadgeri et al. (2021); Xu
and Barbosa (2019); Trisedya et al. (2019); Han
et al. (2021) claim that applications of these meth-
ods include populating knowledge graphs, and we
find that realistic downstream applications also ben-
efit from these methods: for example, automatic
extraction of relations could replace manual extrac-
tion of {friend, enemy} relations in Icelandic sagas
(Mac Carron and Kenna, 2013), and could replace
manual extraction of financial acquisition relations
from news text in Gugler et al. (2003); Clougherty

et al. (2014), helping to decrease labor in social
science and humanities studies.

However, significantly noisy dataset labels and
evaluation on datasets using different performance
metrics than intended may impact estimation of RE
method performance for a realistic setting. While
some literature acknowledges the issues, various
recent evaluations and efforts to construct datasets
ignore them. We explore characteristics and appli-
cation of 38 datasets for evaluating RE methods.
While our review is preliminary, we find some per-
sistent patterns:

• Finding (F1): Datasets with larger numbers of
relation types often have ground truth labels as-
signed using distant supervision, which aligns
entities in text to relation tuples in a knowl-
edge base. Further, such datasets—whether their
ground truth labels are assigned through distant
supervision or through full manual annotation—
are vulnerable to significant labelling errors (Tan
et al., 2022; Stoica et al., 2021; Huang et al.,
2022; Alt et al., 2020; Wang et al., 2022b).

• Finding (F2): Many recent studies (at least 40
in ACL/EMNLP/Findings, since 2021; details
in §4, §A.1) exclusively evaluate RE on datasets
with larger numbers (24+) of relation types.

• Finding (F3): We find that datasets with fewer
relation types, although less widely used, are
more likely to be annotated by experts and have
domain-specific text (Herrero-Zazo et al., 2013;
Luan et al., 2018).

Although many evaluations are exclusively on
datasets with larger numbers of relation types (F2),
we encourage more of the research community to
broaden evaluation to datasets with fewer relation
types, given F3. Evaluating on various datasets
which are more likely to have expert-annotated la-
bels and domain-specific text may have a higher
chance to provide a more accurate estimation of
RE performance for a realistic setting, given F1.
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2 Potential of relation extraction methods
for realistic applications

Instead of automatically extracting relations, stud-
ies in various applications manually extract rela-
tions from text for downstream analysis. Mac
Carron and Kenna (2013) compare social network
structure in Icelandic saga text and modern-day so-
cial networks by manually extracting friend and
enemy relationships between saga characters. Gu-
gler et al. (2003) and Clougherty et al. (2014) use
manually extracted financial acquisition relations
from various news texts, even though automatic
extraction has been investigated for these relations
(Freitag, 1998).

Why automatically extract relations? In addi-
tion to decreasing labor, relation extraction meth-
ods in the NLP literature seem increasingly promis-
ing for realistic applications, departing from the
traditional fully supervised, sentence-level setting
on general news and Wikipedia text. Recent work
explores low resource methods which require few
or no labelled instances for use (Han et al., 2018b;
Sabo et al., 2021; Zhang and Lu, 2022), and new
datasets and models target specific domains, e.g. fi-
nancial, legal, and biomedical (Gurulingappa et al.,
2012; Herrero-Zazo et al., 2013; Peng et al., 2019;
Hendrycks et al., 2021; Sharma et al., 2022). Fur-
ther, more recent methods extract relation instances
across many sentences at the document-level in-
stead of from single sentences (Yao et al., 2019;
Jain et al., 2020; Xiao et al., 2020; Li et al., 2023).

3 Disconnect between datasets and
realistic application

Given promise of RE for realistic applications (§2),
we ask: Does performance on the datasets that RE
methods evaluate on give an accurate indication
of how such methods will perform in a variety of
realistic use cases?

We explore, for datasets: (1) potential sources of
error when assigning relation instance labels, (2)
literature about labelling errors and evaluation
on widely used datasets, (3) persistence of ignor-
ing literature that addresses the issues.

3.1 Sources of labelling error

To clarify sources of labelling issues, we first define
the RE task as having inputs R of relation types,
text T from which to extract and classify relations,
and some labelled examples of relation instances in

text for training. The output are relations 〈e1, r, e2〉
where r ∈ R is a relation type (e.g. part of ), and
e1, e2 are head and tail entities respectively in a
sentence or document of T (e.g. Neolithic, Stone
Age) as in the example:

Discovery of late Stone Age jugs suggest that intentionally
fermented beverages existed at least as early as the Neolithic
period (c. 10000 BC). (Han et al., 2018b)

⟨e1 = Neolithic, r = part-of, e2 = Stone Age⟩

We selected 38 datasets to analyze (§4), finding
that label error may occur from distant supervision
and manual annotation as follows:

Missing labels from distant supervision. Dis-
tant supervision assigns labels to relation instances
in text by aligning entity pairs e1, e2 in text to re-
lation triples ⟨e1, r, e2⟩ in a knowledge base (KB),
e.g. Wikipedia text to Wikidata entries (Mintz et al.,
2009; Bunescu and Mooney, 2007). While dis-
tant supervision is a common practice because it
allows automatic assignment of labels on large
amounts of data, it is prone to significant errors
(§3.2). Many efforts aim to address false positive la-
bels by manually verifying them (Han et al., 2018b;
Huguet Cabot et al., 2023) or designing models to
be more selective about assigning labels (Riedel
et al., 2010; Bing et al., 2015; Xiao et al., 2020; Jia
et al., 2019; Zeng et al., 2018; Feng et al., 2018; Sur-
deanu et al., 2012; Qin et al., 2018a,b). However,
few efforts (Chen et al., 2021; Hao et al., 2021; Tan
et al., 2022; Xu et al., 2013; Roller et al., 2015; Xie
et al., 2021) aim to address missing labels, which
occurs when related entities in text are not part of
a KB relation triple, and therefore are not assigned
a label. Missing labels may be common; for the
DocRED dataset with distant supervision-assigned
labels, Huang et al. (2022) and Tan et al. (2022)
find up to 2/3 of true labels are missing.

Ambiguous annotation guidelines. For full
manual annotation, label quality depends on
whether annotation guidelines specify relation type
definitions clearly and unambiguously with respect
to other relation types, and on annotator quality.
For example, Stoica et al. (2021) and Alt et al.
(2020) observe ambiguous documentation in the
TACRED dataset for the pair of relation types “Per-
son:Other_Family” and “No_Relation”, which they
find to be responsible for many label errors.
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3.2 Discussion on widely-used datasets: Label
and evaluation errors

We provide examples of discussion on labelling
errors described in §3.1 that may affect estima-
tion of RE performance for realistic applications.
We review use of four popular datasets over years
2019-2024, chosen based on citation count from
Semantic Scholar: NYT-FB (Riedel et al., 2010)
(778 cit.) and TACRED (Zhang et al., 2017) (657
cit.) for sentence-level RE, where entities in rela-
tion triples belong to the same sentence, DocRED
(Yao et al., 2019) (312 cit.) for document-level RE,
where entities could be anywhere in a document,
and FewRel 1.0 (Han et al., 2018b; Gao et al., 2019)
(460 cit.) for few-shot RE, where the number of
training examples is limited.

Discussion on errors in DocRED (312 cita-
tions since 2019). DocRED has distant supervi-
sion assigned labels and annotations for 96 relation
types on 5053 Wikipedia documents. To reduce
false positive labels assigned through distant super-
vision (§3.1), annotators review entities and rela-
tion types, filtering out incorrect labels. However,
the missing label issue related to distant supervision
approaches persists: Huang et al. (2022) identify
that almost two-thirds of ground truth relations are
not labelled from their re-annotation of 96 docu-
ments. Tan et al. (2022) independently find that
approximately 64.6% of ground truth relations are
missing. They further replace DocRED with Re-
DocRED which has 4053 documents, by training
RE models on the original distant supervised data
and manually validating relation instances.

Discussion on errors in NYT-FB (778 cita-
tions since 2019). NYT-FB has distant supervi-
sion assigned labels for 24 relations, aligning New
York Times article text (Sandhaus, 2008) over years
2005-2007 with Freebase relations (Bollacker et al.,
2008). While precision of labels is 91%, their re-
call struggles, and many efforts aim to address this
in diverse ways. Wang et al. (2022b) find issues on
labels of 40 out of 100 randomly selected sentences.
Hoffmann et al. (2011) add more labelled relations
by joining tables in Freebase. Zeng et al. (2015)
alternatively manually annotate the test set. Han
et al. (2018a) add more ground truth labels by link-
ing the text with another knowledge graph, FB60K.
Zhu et al. (2020) manually annotate a larger test
set as NYT-H.

Mismatch between intended versus actual use
of FewRel 1/2 (460 citations since 2019). FewRel

1/2 has distant supervision assigned and manually
verified labels for 80 relation types, and uses accu-
racy as a performance metric. Each relation type
has 700 instances, with a one-to-one mapping of
each instance to a sentence. Since a sentence may
have more ground truth relation instances that are
not labelled, precision and recall metrics are not
able to accurately assess performance. However,
among others, Zhao et al. (2023a); Lv et al. (2023);
Zhao et al. (2023b); Wang et al. (2022a); Najafi
and Fyshe (2023); Chen and Li (2021) use FewRel
for computing precision and recall.

Discussion on errors in TACRED (667 ci-
tations since 2019). Fully manually annotated
datasets are also vulnerable to labelling issues, such
as TACRED, where Alt et al. (2020) found at least
50% of samples need to be relabelled and Stoica
et al. (2021) found 23.9% of labels were incorrect.
A revised version, Re-TACRED, has annotators
from Amazon Mechanical Turk and improved anno-
tation guidelines that remove ambiguity of relation
definitions. On analysis using several RE methods,
Stoica et al. (2021) found an average improvement
of 14 F1 score on Re-TACRED, suggesting that
label quality heavily impacts performance.

3.3 Propagation of errors despite discussion

Despite these multiple papers that reveal labelling
and evaluation issues in relation extraction, we find
that many recent works ignore and continue to prop-
agate the issues. We investigate two categories of
widespread evaluation issues in current work: (1)
persistent use of original versions of datasets or of
unintended evaluation metrics, and (2) continued
introduction of datasets that face the same issues
as previous ones (e.g., missing labels from distant
supervision). In this section, the papers that we cite
are from ACL/EMNLP/Findings venues.

Persistent use of original versions of datasets.
However, recent evaluations still use original ver-
sions of these datasets or use unintended perfor-
mance metrics. Many evaluations use TACRED
(467 cit., since 2021) as opposed to Re-TACRED
(72 cit., since 2021), without noting labelling is-
sues (Wan et al., 2023; Zhao et al., 2023c; Chen
et al., 2023b; Wang et al., 2022b; Sainz et al., 2021).
Some methods still use FewRel, designed to mea-
sure performance using accuracy, to evaluate pre-
cision and recall, which are not appropriate perfor-
mance metrics for the dataset Zhao et al. (2023a);
Lv et al. (2023); Zhao et al. (2023b); Wang et al.
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(2022a); Najafi and Fyshe (2023); Chen and Li
(2021). Despite revised versions of NYT-FB, sev-
eral evaluations still use original NYT-FB (Wu
and Shi, 2021; Hao et al., 2021; Hu et al., 2020).
For document-level relation extraction methods,
some evaluations use original DocRED (Li et al.,
2023) but luckily, many evaluations are using Re-
DocRED.

New datasets are as vulnerable to missing la-
bels. While more literature points out issues of var-
ious datasets, new datasets such as CodRED (Yao
et al., 2021), T-rex (Elsahar et al., 2018), and RED-
FM (Huguet Cabot et al., 2023) still do not consider
the recall issue of distant supervision-assigned la-
bels discussed in (§3.1) that has caused many la-
belling issues for other datasets, e.g. DocRED (Yao
et al., 2019), NYT-FB (Riedel et al., 2010).

4 Which datasets are more susceptible to
noise?

To help determine if any characteristics lead a
dataset to be more susceptible to noise discussed
in §3, we find:

• Datasets with larger numbers of relation types,
which tend to have labels assigned using dis-
tant supervision, are vulnerable to significant
labelling and evaluation errors.

• Many evaluations exclusively use datasets with
larger numbers (24+) of relation types for evalu-
ation (Zhang et al., 2023a; Wang et al., 2023a; Lu
et al., 2023a), and 37 more papers in 2021-2023
ACL/EMNLP/Findings venues (§A.1).

• Datasets with labels for fewer relation types are
more likely to be annotated by experts and have
domain-specific text (Herrero-Zazo et al., 2013;
Luan et al., 2018).

We compile a list of English datasets that have been
used for RE evaluation from two sources. First,
we search for papers at several NLP and machine
learning venues1 over years 2019-2023 that have
the keyword “relation extraction” in their title, read
a random sample of 100 such papers, and record
all datasets used by each paper in evaluations. Sec-
ond, we add all datasets mentioned in (Zhao et al.,
2023e)’s relation extraction survey. This results in
38 datasets.

For each dataset, we read its original paper
and/or documentation to record metadata including

1Proceedings of ACL, Proceedings of EMNLP, AAAI Con-
ference Proceedings, or Findings of the ACL.

how labels were assigned, the type of annotator
(if any), the domain, the dataset’s size, and num-
ber of citations on Semantic Scholar (with some
attempt to restrict to uses of the dataset).2 See §A.2
for more details, including metadata for all 38 (Ta-
ble 2). Table 1 shows a portion of this information
for the 21 most-cited datasets.

Dataset Labels? Dom? # rel
ADE (Gurulingappa et al., 2012) Man-Exp Bio 1

BC5CDR (Lin et al., 2016) Man-Exp Bio 1
CONLL04 (Roth and Yih, 2004) Man Gen 5
DDI (Herrero-Zazo et al., 2013) Man-Exp Bio 5

SciERC (Luan et al., 2018) Man-Exp Sci 6
i2b2 2010 (Uzuner et al., 2011) Man-Exp Bio 8

SemEval Task 8 (Hendrickx et al., 2010) Man Gen 9
ChemProt (Peng et al., 2019) Man-Exp Chem 14
REFinD (Kaur et al., 2023) Man-Exp Fin 22

ACE04 (Doddington et al., 2004) Man-Exp Gen 24
**NYT-FB (Riedel et al., 2010) DS Gen 24

RED-FM (Huguet Cabot et al., 2023) DS Gen 32
DialogRE (Yu et al., 2020) Man Dia 37

**TACRED (Zhang et al., 2017) Man Gen 42
**FewRel 1.0 (Han et al., 2018b) DS Gen 80

**DocRED (Yao et al., 2019) DS Gen 96
WikiZSL (Chen and Li, 2021) DS Gen 113

WebNLG (Gardent et al., 2017) Oth Gen 171
CodRED (Yao et al., 2021) DS Gen 276

SRED-FM (Huguet Cabot et al., 2023) DS Gen 400
T-rex (Elsahar et al., 2018) DS Gen 615

Table 1: Metadata on popular RE datasets by citation
count (§A.2), where columns contain numbers of rela-
tion types for each dataset, method of assigning labels
(Manually annotated), by experts (Man-Exp), Distant
Supervision (sometimes with subsequent manual fil-
tering), Other), and domain of text and relation types
(Biomedical, General-purpose (i.e. Wiki/news), Science,
Chemistry, Dialogue, Financial). ** indicates the widely
used datasets discussed in §3.2.

Trends: On larger numbers of relation types.
Tables 1 and 2 show that the more relation types
a dataset has labels for, the more likely that la-
bels are assigned through distant supervision. Such
datasets are susceptible to various labelling issues—
§3.1 discusses sources of potential issues and
§3.2 provides examples of significance of the
issues. Further, we find at least 40 papers in
ACL/EMNLP/Findings since 2021 (§A.1) that ex-
clusively evaluate on such (24+ rel. types) datasets.

Trends: On fewer relation types. Datasets with
fewer relation types are more likely to avoid distant
supervision labelling issues and be manually anno-
tated by experts (Herrero-Zazo et al., 2013; Luan
et al., 2018; Hendrycks et al., 2021; Gurulingappa
et al., 2012; Peng et al., 2019). Originally, such
datasets contain general-purpose text, e.g. ACE
(Doddington et al., 2004), SemEval Task 8 (Hen-
drickx et al., 2010), and Conll04 (Roth and Yih,

2www.semanticscholar.org, accessed February
2024.

7896

www.semanticscholar.org


2004). Increasingly, new datasets cover other do-
mains such as DDI (biomedical, 5 rel types), where
text is from the DrugBank database and Medline ab-
stracts and relations involve drug-drug interactions
(Herrero-Zazo et al., 2013), and SciERC (scientific,
6 rel types), where text is 500 scientific abstracts
(Luan et al., 2018).

5 Recommendations

Despite data quality challenges that may affect es-
timation of RE method performance on realistic
applications (§3), we find potential for using RE
methods in real-world applications such as those de-
scribed in §2. Based on findings in §4, we provide
two types of recommendations: (1) on selecting
datasets to use for evaluation, and (2) on construct-
ing future datasets to use for evaluation.

On selecting datasets for evaluation. We en-
courage the research community to broaden evalu-
ation to include datasets with smaller numbers of
relation types, which are more likely to be anno-
tated by experts, and ideally to use multiple such
datasets. This helps test the flexibility of a method
across diverse relation types and domains. To fur-
ther strengthen confidence in dataset quality, re-
searchers can also manually check correctness of
a sample of labels on familiar relation types (if
any), and check the literature for potential revised
versions of a dataset.

While we advocate for smaller and higher qual-
ity data, we note a counterargument that larger
datasets—even with label noise—are crucial for
training many relation extraction methods. How-
ever, the point of relation extraction research is to
support applications, and we believe training data
will be sparse and very expensive to obtain in most
realistic settings, since annotations require signifi-
cant domain expertise—heavy supervision is not a
feasible modeling approach. Therefore evaluation
ought to be the primary role of relation extraction
annotation, where more accurate labels are ideal,
even if there are fewer of them.

On future construction of datasets. While eval-
uation on noisy datasets may help to provide a
rough indication of RE method performance, noisy
labels render datasets unhelpful for accurately es-
timating performance in a real world application.
Therefore, considering strategies to increase recall
of labels assigned through distant supervision us-
ing approaches such as Xie et al. (2021) could help
to label larger datasets more accurately and more

efficiently—we find recent datasets (Huguet Cabot
et al., 2023) aim to increase precision, but do not
check or address recall of labels. Further, defining
relation types unambiguously is helpful for avoid-
ing manual labelling issues such as in Zhang et al.
(2017).

6 Conclusion

Relation extraction is a popular task with hundreds
of relevant papers published in recent years. Meth-
ods continue to improve and are becoming more
promising for real world applications. First, we ex-
amined factors that potentially undermine relation
extraction evaluation. Next, we provided recom-
mendations to overcome these challenges, involv-
ing broadening evaluation to include smaller and
higher quality datasets, and considering strategies
to increase the recall of labels in new datasets, to
improve estimation of relation extraction perfor-
mance for realistic settings.

7 Limitations

This paper reviews 38 English datasets for evaluat-
ing RE methods, but will have missed datasets if
they did not appear in the random sample of 100
papers from the four NLP/AI venues, or the survey
paper (§4,§A.2). In particular, this data collection
procedure may be more likely to miss datasets that
are less frequently used.

In our final 38 datasets reported in the metadata
tables, we restrict entries to original versions of
datasets, and as mentioned in §3, do not list or
analyze revised variants such as Re-TACRED for
TACRED, Re-DocRED for DocRED, and NYT-
H for NYT-FB; these three are instead described
within §3.2). We found that revised versions of
datasets tend to be not widely cited, and leave fur-
ther analysis for future work.

The paper points out several patterns—that
datasets with annotations for smaller numbers of
relation types are more likely to be annotated by
experts and be domain-specific, and that datasets
that have annotations for larger numbers of relation
types are more likely to have labels assigned from
distant supervision. These statements are often, but
not always, true.
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A Appendix

A.1 List of 40 papers that exclusively evaluate
on datasets with 24+ relation types

The following papers exclusively evaluate RE meth-
ods on datasets with 24+ relation types; these pa-
pers are drawn from Proceedings of ACL, Proceed-
ings of EMNLP, or Findings of the ACL, between
2021 and 2023: Wang et al. (2023a); Lu et al.
(2023a); Wang et al. (2022b); Zhang et al. (2023a);
Zhang and Lu (2022); Wang et al. (2022a); Lin
et al. (2021); Sainz et al. (2021); Han et al. (2021);
Wu and Shi (2021); Brody et al. (2021); Zhao et al.

7904

https://doi.org/10.18653/v1/2023.emnlp-main.381
https://doi.org/10.18653/v1/2022.emnlp-main.471
https://doi.org/10.18653/v1/2022.emnlp-main.471
https://doi.org/10.18653/v1/2023.acl-long.607
https://doi.org/10.18653/v1/2023.acl-long.607
https://doi.org/10.18653/v1/2023.acl-long.607
https://doi.org/10.18653/v1/D17-1004
https://doi.org/10.18653/v1/D17-1004
https://doi.org/10.18653/v1/2021.findings-acl.8
https://doi.org/10.18653/v1/2021.findings-acl.8
https://doi.org/10.18653/v1/2021.emnlp-main.765
https://doi.org/10.18653/v1/2021.emnlp-main.765
https://doi.org/10.18653/v1/2023.acl-long.369
https://doi.org/10.18653/v1/2023.acl-long.369
https://doi.org/10.18653/v1/2023.acl-long.369
https://doi.org/10.18653/v1/2023.acl-long.273
https://doi.org/10.18653/v1/2023.acl-long.273
https://doi.org/10.18653/v1/2023.acl-long.273
https://doi.org/10.18653/v1/2023.acl-long.525
https://doi.org/10.18653/v1/2023.acl-long.525
https://doi.org/10.18653/v1/2022.findings-acl.268
https://doi.org/10.18653/v1/2022.findings-acl.268
https://doi.org/10.18653/v1/2023.acl-long.65
https://doi.org/10.18653/v1/2023.acl-long.65
http://arxiv.org/abs/2306.02051
http://arxiv.org/abs/2306.02051
http://arxiv.org/abs/2306.02051
https://doi.org/10.1109/ICME51207.2021.9428274
https://doi.org/10.1109/ICME51207.2021.9428274
https://doi.org/10.1109/ICME51207.2021.9428274
https://doi.org/10.18653/v1/2021.acl-long.486
https://doi.org/10.18653/v1/2021.acl-long.486
https://doi.org/10.18653/v1/2021.acl-long.486
https://api.semanticscholar.org/CorpusID:226221858
https://api.semanticscholar.org/CorpusID:226221858
https://api.semanticscholar.org/CorpusID:226221858


(2021); Zeng et al. (2020); Hu et al. (2020); Rosen-
man et al. (2020); Zhao et al. (2023d,b,a); Chen
et al. (2023a); Zhao et al. (2023c); Zhang et al.
(2023b); Sun et al. (2023); Picco et al. (2023); Lv
et al. (2023); Xia et al. (2023); Lu et al. (2023b);
Wang et al. (2023b); Liu et al. (2022a); Rathore
et al. (2022); Liu et al. (2022b); Zhao et al. (2022);
Cui et al. (2021); Liu et al. (2021); Ma et al. (2021);
Zheng et al. (2021b); Yang et al. (2021); Zhang
et al. (2021); Nadgeri et al. (2021); Verlinden et al.
(2021); Yellin and Abend (2021).

The papers involve various types of RE methods,
including sentence-level, which could be evaluated
using many datasets, document-level, for which
there are fewer datasets to evaluate on yet still some
datasets with small and some with large numbers
of relation types, and low-resource, which could
be evaluated using many datasets. This is not a
comprehensive list of papers within 2021–2023 that
exclusively evaluate on 24+ relation type datasets.

A.2 Preliminary analysis details on 38
datasets

Table 2 column description. Each row of Table 2
corresponds to a dataset, listing its name, year of in-
troduction, method of construction, domain of text
and relation types, number of relations that it has
labels for, size (with units of number of sentences,
abstracts, or documents), and citation count from
Semantic Scholar since 2019 of all papers that are
not a “background" citation according to Seman-
tic Scholar and have the word “relation" in their
title. To verify that these filtering rules extract pa-
pers that use the dataset to evaluate an RE method,
we manually checked 20 such papers that matched
these filtering requirements and found that all of
them use the dataset to evaluate an RE method.

Datasets in Table 1. To select a subset of
datasets for Table 1, we chose all datasets that have
12+ citation counts, where the citation counts pass
the filtering rules above. We also added datasets
that were published in 2023 to Table 1 since they
do not have time to accumulate citations yet.

On selected datasets for tables 1 and 2. Ta-
bles 1 and 2 show original versions of datasets; as
mentioned in §3, some datasets have multiple re-
vised versions such as TACRED with Re-TACRED,
DocRED with Re-DocRED, and NYT-FB with
NYT-H. Although revised versions of datasets are
not in the tables, we discussed well known ones in
§3.2. Many revised versions are not well-cited.

On trends in Table 2. The trends in Table 1
of §4 are also in Table 2: datasets with labels for
larger numbers of relation types tend to have labels
assigned using distant supervision, and tend to have
general purpose text.

We observe a stronger correlation between the
number of relation types and the method of assign-
ing labels than between the size of a dataset and
the method of assigning labels, but we observe a
correlation for both comparisons.

On exceptions in Table 2. Two datasets have
labels assigned in other ways than full manual anno-
tation and distant supervision, noted with an ‘Oth’
entry in Table 2: WebNLG (Gardent et al., 2017),
where human annotators manually convert one or
several sets of triples from a KB into sentences,
and where other annotators verify if each resulting
sentence is faithful to the triple/s and seems natural;
and FOBIE (Kruiper et al., 2020), which uses the
Journal of Experimental Biology and Biomed Cen-
tral Journal as text, and where annotators manually
correct all initial annotations that pass an automated
search for relations through trigger word keyword-
matching. Additionally, DWIE (Zaporojets et al.,
2020), noted with a ‘Both’ entry, uses distant su-
pervision to assign some labels and performs full
manual annotation to assign others.

Some of the datasets in Table 2 do not provide
labels for the exact relation extraction task defined
in the paper (with output ⟨e1, r, e2⟩), but for a
similar task — WIKITIME (Yan et al., 2019) in-
cludes a “time" component in its output relation tu-
ple ⟨e1, r, e2, t⟩. The WikiReading (Hewlett et al.,
2016) task is to predict entities and properties of
text given the text and a relation type such as orig-
inal language of work or country. The CUAD
(Hendrycks et al., 2021) task is not binary, but n-
ary, outputting tuples of the form ⟨r, e1, e2, e3...⟩
where more than two entities could be part of a
tuple.
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Dataset Labels? Domain? # rel Size # filt. cit.
ADE (Gurulingappa et al., 2012) Man-Exp Bio 1 21k 22

BC5CDR (Li et al., 2016) Man-Exp Bio 1 1500 articles 51
Spouse (Hancock et al., 2018) Man Gen 1 27.7k 6
Disease (Hancock et al., 2018) Man Gen 1 11.5k 6

GENIA (Kim et al., 2003) Man-Exp Bio 2 2000 abstracts 4
FOBIE (Kruiper et al., 2020) Oth Bio 3 1.5k 0

EU ADR (van Mulligen et al., 2012) Man-Exp Bio 3 100 abstracts 4
MUC 7 (Chinchor and Marsh, 1998) Man Gen 3 - 0

CONLL04 (Roth and Yih, 2004) Man Gen 5 1.4k 24
DDI (Herrero-Zazo et al., 2013) Man-Exp Bio 5 31k 21

SciERC (Luan et al., 2018) Man-Exp Sci 6 4716 relations 61
i2b2 2010 (Uzuner et al., 2011) Man-Exp Bio 8 877 reports 12

SemEval Task 8 (Hendrickx et al., 2010) Man Gen 9 10.7k 136
Materials Science Procedural Text (Mysore et al., 2019) Man-Exp Mat 14 2.1k 0

ChemProt (Peng et al., 2019) Man-Exp Chem 14 36.4k 22
ChemDisGene (Zhang et al., 2022) Man-Exp Chem 18 523 abstracts 5

SciREX (Jain et al., 2020) DS Sci 21 438 documents 4
REFinD (Kaur et al., 2023) Man Fin 22 6.8k 4

MNRE (Zheng et al., 2021a) Man Gen 23 15.4k 10
ACE04 (Doddington et al., 2004) Man-Exp Gen 24 30.9k 26
**NYT-FB (Riedel et al., 2010) DS Gen 24 66.2k 237
CUAD (Hendrycks et al., 2021) Man-Exp Leg 25 13.1k 1
FinRED (Sharma et al., 2022) DS Fin 29 6.8k -

RED-FM (Huguet Cabot et al., 2023) DS Gen 32 43.7K 3
SMiLER (Seganti et al., 2021) DS Gen 36 1.1M 3

DialogRE (Yu et al., 2020) Man Dia 37 7.9k 26
DiS-ReX (Bhartiya et al., 2022) DS Gen 37 1.8M 3
**TACRED (Zhang et al., 2017) Man Gen 42 119.4k 203

WIKITIME (Yan et al., 2019) DS Gen 57 137.6k -
DWIE (Zaporojets et al., 2020) Both Gen 65 - 11

**FewRel 1.0 (Han et al., 2018b) DS Gen 80 70k 132
**DocRED (Yao et al., 2019) DS Gen 96 5k documents 137
WikiZSL (Chen and Li, 2021) DS Gen 113 94.4k 20

WebNLG (Gardent et al., 2017) Oth Gen 171 5.7k 26
CodRED (Yao et al., 2021) DS Gen 276 - 5

SRED-FM (Huguet Cabot et al., 2023) DS Gen 400 46.6M 3
T-rex (Elsahar et al., 2018) DS Gen 615 6.2M 8

WikiReading (Hewlett et al., 2016) DS Gen 884 18.6M 4

Table 2: Metadata on 38 RE datasets, where columns contain numbers of relation types for each dataset, method of
assigning labels (Manually annotated), by experts (Man-Exp), Distant Supervision (sometimes with subsequent
manual filtering), Other), and domain of text and relation types (Biomedical, General-purpose (i.e. Wiki/news),
Science, Chemistry, Dialogue, Financial, Legal, Materials science), numbers of sentences in the dataset (sometimes
unavailable, -), and numbers of citations that the dataset has according to Semantic Scholar (sometimes unavailable,
-) after applying the filters that “relation" must be in the title, that the citation cannot be in the background section,
and that time range is since 2019. ** indicates the widely used datasets discussed in §3.2.
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