
Findings of the Association for Computational Linguistics ACL 2024, pages 7907–7928
August 11-16, 2024 ©2024 Association for Computational Linguistics

NaturalCodeBench: Examining Coding Performance Mismatch on
HumanEval and Natural User Queries

Shudan Zhang12†∗, Hanlin Zhao1∗, Xiao Liu12∗, Qinkai Zheng12∗,
Zehan Qi12†, Xiaotao Gu1, Yuxiao Dong2, Jie Tang2

1Zhipu.AI 2Tsinghua University

Abstract

Large language models (LLMs) have mani-
fested strong ability to generate codes for pro-
ductive activities. However, current bench-
marks for code synthesis, such as HumanEval,
MBPP, and DS-1000, are predominantly ori-
ented towards introductory tasks on algorithm
and data science, insufficiently satisfying chal-
lenging requirements prevalent in real-world
coding. To fill this gap, we propose NATU-
RALCODEBENCH (NCB), a challenging code
benchmark designed to mirror the complexity
and variety of scenarios in real coding tasks.
NCB comprises 402 high-quality problems in
Python and Java, meticulously selected from
natural user queries from online coding ser-
vices, covering 6 different domains. Noting
the extraordinary difficulty in creating testing
cases for real-world queries, we also introduce
a semi-automated pipeline to enhance the ef-
ficiency of test case construction. Comparing
with manual solutions, it achieves an efficiency
increase of more than 4 times. Our systematic
experiments on 39 LLMs find that performance
gaps on NCB between models with close Hu-
manEval scores could still be significant, indi-
cating a lack of focus on practical code synthe-
sis scenarios or over-specified optimization on
HumanEval. On the other hand, even the best-
performing GPT-4 is still far from satisfying
on NCB. The evaluation toolkit and develop-
ment set are available at https://github.
com/THUDM/NaturalCodeBench.

1 Introduction

Large language models (LLMs) pre-trained on ex-
tensive open code repositories (Chen et al., 2021;
OpenAI et al., 2023; Li et al., 2023a; Chowdhery
et al., 2023) have demonstrated impressive perfor-
mance on code synthesis and even achieve per-
formance comparable to average human level in
coding competitions (Li et al., 2022). Unlike open

*SZ, HZ, XL, and QZ contributed equally.
†Work done when SZ and ZQ interned at Zhipu AI.

text generation, which often underscores human
preferences as noted by (Ouyang et al., 2022), code
synthesis prioritizes accuracy and the fulfillment of
user intent, essential for practical production and
application.

As a result, evaluating code synthesis presents
unique challenges in the era of LLMs. Traditional
evaluation metrics by token matching (Papineni
et al., 2002; Lin, 2004; Popović, 2015) show a weak
correlation with human judgement (Evtikhiev et al.,
2023) and overlook functional correctness of the
generated code (Eghbali and Pradel, 2023; Tran
et al., 2019). Recently, execution-based evaluation
has gained increasing popularity, where code gener-
ated by models is tested through unit tests to verify
its functional correctness. It leads to the develop-
ment of several benchmarks, including HumanEval
(Chen et al., 2021), MBPP (Austin et al., 2021),
MBXP (Athiwaratkun et al., 2023), CodeContests
(Li et al., 2022), and DS-1000 (Lai et al., 2023).

Notwithstanding their commendable reliability
and accuracy, these benchmarks fall short to suffi-
ciently capture the wide range of needs and com-
plexity found in real-world engineering applica-
tions. They are primarily limited to well-defined
coding problems in algorithm, program basics,
or data science. For example, as shown in Fig-
ure 1, a problem from HumanEval (Chen et al.,
2021) tests the implementation of a basic func-
tion has_close_elements and takes floating-
point arguments as inputs. However, in practical
applications, user engineering requirements can
be much more complex and varied. In Figure 1,
we showcase an example adapted from a real user
query, where the user asks to read and parse XML
files given certain tags. Difficult and costly though
it is, curating a benchmark composed of such prob-
lems is meaningful for evaluating the real user ex-
perience of LLM code synthesis.

Contributions. In light of the challenge, we intro-

7907

https://github.com/THUDM/NaturalCodeBench
https://github.com/THUDM/NaturalCodeBench

Case of HumanEval Case of NaturalCodeBench

def has_close_elements(numbers:
List[float], threshold: float) -> bool:
""" Check if in given list of numbers, are any
two numbers closer to each other than
given threshold.
"""

Hello, please write a Python function for me. The function should read a
markdown file, add numbering like x.y.z... to the titles of each level, and
then return the modified string. Please note not to write into the original file.
def add_section_numbering(markdown_file):
""" markdown_file is the path to the markdown file. Return modified
markdown file content string
"""

Figure 1: Comparing HumanEval and NATURALCODEBENCH. In the scatter plot, the x-axis represents the
NATURALCODEBENCH score, and the y-axis indicates the HumanEval performance of various LLMs.

duce NATURALCODEBENCH (NCB), a challeng-
ing application-driven dataset for code synthesis
evaluation. NCB is dedicated to creating a reliable
evaluation environment that is more aligned with
real-world applications. We leverage an CodeGeeX
(Zheng et al., 2023b) online services to collect real
and diverse application-related user queries. After
filtering and reprocessing, 402 high-quality Python
and Java problems are compiled, covering 6 do-
mains including software, front-end, system admin-
istration, and artificial intelligence, highlighting
practical scenarios. Beyond basic data structures
like lists and numbers, the test inputs for NCB
problems include versatile file types and other com-
plex structures, making it more challenging.

The challenging nature of NCB necessitates
significant human labor in its annotation process
To improve construction efficiency, we tailor a
semi-automated annotation pipeline to curate high-
quality, testable, and useful queries with corre-
sponding test cases. Specifically, we employ GPT-4
(OpenAI et al., 2023) to generate reference solu-
tions followed by manual correction. Subsequently,
GPT-4, guided by the problem descriptions and
reference solutions, generates multiple test cases,

which are also refined with manual correction, for
each problem. Consequently, the annotators are
only required to correct any errors, substantially
reducing the time and manpower required. Compar-
ative experiments reveal that our semi-automated
pipeline can quadruple the construction speed of
the evaluation framework, as evidenced by tests
involving programming experts with or without the
pipeline.

Based on NCB, we conduct extensive experi-
ments on a variety range of LLMs, encompass-
ing 39 APIs or open models. The results indi-
cate that although certain LLMs demonstrate com-
parable performance on established benchmarks
like HumanEval, they exhibit significant perfor-
mance disparities when evaluated using NCB. It
suggests that there may be inadequate focus on op-
timizing LLMs for practical coding applications,
or have conducted over-specified optimization on
HumanEval-style problems. More importantly,
even the best-performing GPT-4 only reaches about
a pass rate of 53%, demonstrating a large room for
LLMs to improve their coding skills to face real-
world coding challenges.

To facilitate community research, we pack up

7908

the whole NCB testing environment into a docker
image and make its development set publicly avail-
able. To sum up our contributions:
• We propose NATURALCODEBENCH, a bench-

mark that aligns with real-world applications,
comprising 402 problems in Python and Java
across 6 domains. We open source 140 prob-
lems (70 Python, 70 Java) as the development
set of NCB for research purposes, but keep the
262 problems of the test set closed to avoid
contamination.

• We introduce a semi-automated pipeline for
the construction of code synthesis benchmarks,
which significantly reduces time and manpower
costs without compromising the quality of test
cases. Comparative experiments reveal that
our semi-automated pipeline can quadruple the
construction speed of the evaluation framework

• We systematically benchmark the code genera-
tion capabilities of 39 LLMs using NCB. Be-
sides quantitative evaluation, we carry out a
deep insight into the present stage of develop-
ment in LLMs for code generation, and outline
potential pathways for future progress.

2 Benchmark Construction

The overview of NCB is shown in Figure 2. The
pipeline of constructing NCB consists of four steps:
1) collecting and filtering high-quality problems
from online services (Section 2.1) 2) construct-
ing a complete evaluation framework through a
semi-automated pipeline (Section 2.2) 3) designing
prompts to align different models (Section 2.3) 4)
translating all problems and instructions to produce
bilingual versions (Section 2.4).

2.1 Problem Selection

Collecting Real-World Problems. To establish a
meaningful and practical benchmark, we centered
on collecting real-world code problems frequently
encountered by users. To achieve this, the seed
problems of NCB are cleaned from the queries in
coding online services. A part of users have granted
permission for their data to be utilized exclusively
for research purposes. We have strictly adhered to
this directive by collecting only the relevant data
from these consenting users and have implemented
robust de-identification measures to eliminate any
possibility of information leakage. We collect a
varied collection of queries, spanning multiple pro-
gramming languages, problem types, and levels of

complexity. This diversity ensures that our bench-
mark accurately reflects a broad range of code is-
sues users encountering in practice. We specifically
concentrated on queries related to Python and Java,
chosen for their widespread use in different do-
mains.

Filtering Testable Problems. While it’s possible
to source inexhaustible queries from online ser-
vices, many of these queries posed by users are
either of low value or challenging to test the solu-
tion of these queries. For instance, some users may
only seek basic clarifications on a built-in function,
while others may not clearly articulate their objec-
tives. To sieve out unsuitable queries for our testing,
we’ve implemented a two-step filtering process. Ini-
tially, we employ GPT-3.5 to filter out low-quality
queries, which saves on labour. This is achieved
by adding specific criteria in the instruction, in-
structing GPT-3.5 to abandon those problems that
cannot meet all specified requirements. These cri-
teria are as follows: 1) Each query must involve at
least one task, where the user requests the model’s
assistance in solving one or more problems. 2)
Each query should be associated with several input-
output pairs, ensuring that a given input correspond
to a singular, definitive output. 3) The query must
not contain any elements of randomness or uncer-
tainty. The specifics of the instruction are detailed
in (Appendix A). Following this automated pre-
screening, we conduct a manual review to further
refine the selection, adhering to the outlined crite-
ria. This process yields a final set of 201 unique
Python and 201 unique Java problems. It is note-
worthy that over 80% of the initial queries failed to
meet our stringent requirements.

2.2 Semi-automated Pipeline

In this section, we will introduce our semi-
automated pipeline. To generate structurally com-
plex and accurate test cases by GPT-4, it is first
necessary to determine the arguments and return
values of functions, as well as the names of objects.
Therefore, a completely accurate reference solution
is required initially. We generate a solution using
GPT-4, then manually correct all errors. After this,
based on the problem description and the reference
solution, we instruct GPT-4 to generate multiple
test cases. These are then reviewed by program-
ming experts who correct errors and supplement
any deficiencies in the generated test cases.

Generating and Rewriting Reference Solution.

7909

2. Semi-Automated Pipeline

402 High-Quality Problems

Instruction: ...generate
6 high-coverage and 4
corner test cases …

def testcase1():
…

 assert groundTruth …

1. Data Collection

Human
Annotated

33,120 Problems
• Testable
• Useful
• Deterministic

Real-World
Queries

Auto Filtering

 Mannully
 Selecting

Reference Solution
def groundTruth(file_path,tag_name)
 root =
ET.parse(file_path).getroot()
 . . .
 for … in root.findall(tag_name):
 data_list.append(…)
 return data_list

Large
Language

Model
Problems in 6 Domains

Data Science

System Administration

Software Engineering

Artificial Intelligence

Front-End

Algorithm
Test Cases

Generate a
solution and
10 test cases

Annotators fixes all errors in
the solution and test cases

Figure 2: Overview of NATURALCODEBENCH. 1) Data Collection: collecting real-world queries from coding
online services and selecting high-quality problems from the queries by GPT-3.5 and human annotators. 2) Semi-
Automated Pipeline: improving efficiency of constructing evaluation framework by generating a solution and test
cases with LLMs and then having them corrected by human annotators.

GPT-4 is instructed to generate a solution for each
problem in NCB. It is important to note that while
GPT-4 is highly capable, it is not infallible. There-
fore, each solution generated by GPT-4 is meticu-
lously examined by expert programmers to ensure
correctness. In cases where the generated code
contains errors, the expert programmers rewrite the
code to rectify these issues. This process ensures
the quality of the reference solutions. Even though
we did not use the reference solution in NCB for
evaluation, we provided them to facilitate the gen-
eration of test cases and future research.

Build High-Coverage and Corner Evaluation.
We employ GPT-4 to generate evaluation codes for
each problem. We construct a prompt using 1) the
description of the problem for GPT-4 to inspect;
2) the reference solution to demonstrate the names
and formats in the code; 3) an instruction to en-
courage GPT-4 to come up with effective test cases.
Specifically, each prompt start with an instruction
that ask GPT-4 to produce ten test cases based on
the description of problem and the reference so-
lution. Then, we present both the description of
problem and its reference solution. We finalize the
prompt with an initial segment of the evaluation
code to assist GPT-4 in accurately generating the
desired code format. Our objective is to harness
GPT-4’s advanced comprehension and analytical
abilities to learn valid format in the code and es-
sential functionalities of the reference solution to
enable the generation of superior test cases that are
adept at uncovering latent errors in code.

A complete and effective test should seek to iden-

tify potential bugs at different locations in the code,
while also finding inputs that might trigger errors in
the code. High coverage ensures that each test case
examines more code and branches, thereby facilitat-
ing the discovery of concealed errors. Meanwhile,
it is often observed that corner values in a prob-
lem’s input are most prone to trigger code errors.
Consequently, our instruction will cause some of
the test cases generated by GPT-4 to have higher
coverage, while the other part will be some corner
values contained in the problem, so as to obtain
more effective test cases.

Subsequently, expert programmers review and
correct any test cases with formatting and answer
errors. To ensure that the final evaluation frame-
work is error-free.

2.3 Alignment Between Different Models

In contrast to the problem format in HumanEval,
the majority of problems in our benchmark are
composed in natural language by actual users. Con-
sequently, there is no predetermined naming con-
vention for functions or classes created by mod-
els. This divergence can lead to inconsistencies
between the names generated by LLMs and those
referenced in test cases. To address this issue of
name misalignment, we present a representative
test case that includes the designated function or
class name and its usage within the test. We then
instruct the LLMs to adhere to the naming con-
vention specified in the provided test case when
generating solutions. It is important to note that the
test cases utilized for solution generation are not
employed in subsequent testing phases. The details

7910

of the instruction is showed in Appendix A.

2.4 Building Bilingual Benchmark

The majority of the questions we collected from
online services are in Chinese, which is not fair for
the LLMs that are primarily designed for English.
Therefore, we translate all the problems, resulting
in both Chinese and English versions.

3 Dataset Statistics

We provide more detailed statistics in Table 2.
NCB comprises a total of 402 problems col-
lected from online services, with 201 problems in
Python and 201 in Java, spanning across 6 domains:
Database, Artificial Intelligence, Data Science, Al-
gorithm and Data Structure, Front-End, Software
Engineering, and System Administration. This di-
versity also leads to complex input data types in
NCB, which are classified into 9 categories: num-
ber (int/float/boolean), string, list (array), dict, ten-
sor (matrix), data frame (table), plain text file, im-
age, and special format file. The first four are the
most common and simplest data types. Since a
boolean can be represented by 1 and 0, we consider
it as a type of number. Matrix and list are two simi-
lar types of data, but they are categorized separately
due to differences in their usage scenarios. Due to
the current popularity of deep learning, tensor has
become a very common data format. Therefore,
we have designated a separate category for tensor
and have included matrix within this category. The
last three are all file types, differentiated by their
processing methods. The content of a plain text
file is text and can be directly read. Figures require
processing of each pixel value. A special format
file refers to files that require specific methods for
processing, such as PDF and DOCX.

Each problem within the dataset has been care-
fully curated with a set of test cases to assess the
correctness of solutions. On average, there are 9.3
test cases associated with each problem. These
cases are strategically designed, with about 60% fo-
cused on enhancing statement and branch coverage,
and the remaining 40% dedicated to evaluating the
robustness of solutions against corner values. The
average word count for each problem in the NCB
is 78.3.

Compared with Other Benchmark. Table 1 com-
pares NCB to other benchmarks. It is noteworthy
that our benchmark offers a substantial supplement
to current benchmarks in terms of both problem and

data types. Unlike HumanEval and MBPP, which
consist of 96.9% and 89.5% algorithmic and basic
programming problems respectively, our bench-
mark features a more balanced distribution across
each domain.

In addition, NCB includes more data types. Fur-
thermore, NCB focuses on assessing the model’s
ability to handle multiple file formats, a type of
data that is both very commonly used in daily life
and relatively challenging to process. We note that
the problems involving files have fewer test cases,
since GPT-4 still struggles to fully generate various
types of file . This is also more challenging for
human annotators to design compared to simpler
data types.

On the other hand, NCB is also limited by its
size due to the high costs of problems collection
and the construction of the evaluation framework.
We are continuously working on expanding our
benchmark.

4 Experiments

4.1 Setup

We conducted comprehensive evaluations of 39
popular state-of-the-art models. For proprietary
models, our focus was on OpenAI’s GPT-4-Turbo-
0125, GPT-4-Turbo-1106, GPT-4, GPT-3.5-Turbo,
Anthropic’s Claude-2, ZhipuAI’s CodeGeeX3. In
the case of open-source models, we performed eval-
uations using the vLLM (Kwon et al., 2023) and
FastChat (Zheng et al., 2023a) framework. Our
evaluation primarily utilizes pass@k (Chen et al.,
2021) as the metric to accurately assess the func-
tional correctness of code generated by these mod-
els. For k equal to 1, we employ greedy-search
decoding. For random sampling, we demonstrate
the best pass@k results of the best-performing mod-
els with each LLM family for each k ∈ {10, 50},
where the sampling temperature is set to 0.2 and
topp to 0.9.

Our semi-automated pipeline is capable of re-
ducing the time required for benchmark construc-
tion without compromising the quality of test cases.
This paper primarily focuses on evaluating the effi-
ciency of benchmark construction and the quality
of test cases. Specifically, we adopt code coverage
(Ivanković et al., 2019), a widely used metric for
assessing the effectiveness of testing, as the crite-
rion for evaluating the quality of test cases. We
invite five programming experts, each tasked with
constructing the same five problems. Initially, we

7911

Benchmark
Instruction Information Evaluation

#Problem Domain #Data Type #Word Source #Test Case Method

Humaneval (Chen et al., 2021) 164 Algorithm 5 23.0 Hand-Written 7.7 Test-Case
MBPP (Austin et al., 2021) 974 Program Basics 5 15.7 Hand-Written 3.0 Test-Case
DS-1000 (Lai et al., 2023) 1,000 Data Sci. 6 140.0 StackOverflow 1.6 Test-Case + SFC.
APPS (Hendrycks et al., 2021a) 10,000 Algorithm 5 293.2 Competitions 13.2 Test-Case
Humaneval+ (Liu et al., 2023a) 164 Algorithm 5 23.0 Hand-Written 764.1 Augmented Test Cases

NaturalCodeBench 402 Application 6 78.3 Online Services 9.3 Test-Case

Table 1: Comparison between NATURALCODEBENCH and other benchmarks for code generation.

#Problems Avg. #Test Cases

Dataset Test Dev Total Test Dev Total

Software 88 44 132 9.7 8.6 9.3
Data Sci. 68 32 100 9.6 8.6 9.3
Algorithm 73 22 95 9.5 8.8 9.3
Sys. Admin. 17 16 33 9.6 8.5 9.1
AI. System 13 15 28 9.6 9.1 9.3
Front-End 3 11 14 10.0 8.7 9.0

Total/Avg. 262 140 402 9.6 8.7 9.3

Table 2: Detailed statistics of NATURALCODEBENCH.

ask each expert to manually write a standard solu-
tion and 5 test cases. Subsequently, for the same
problems, they complete the writing of standard
solutions and test cases using the semi-automated
pipeline. As it is challenging to ensure identical
test case coverage, we require that the test cases
written under both methods should not have a code
coverage of less than 80%. Then, for the sake of
convenient comparison, we calculate the scores
for each construction method in a straightforward
manner, which is outlined as follows:

Score =
LineCov.+BranchCov.

T imeCost
∗ 10

4.2 Results of LLMs
Table 3 and Table 6 shows the pass@1 results on
the test set and dev set of NCB, respectively. Con-
sidering the high consistency of results, we pri-
marily analyze the results on the test set. As ex-
pected, OpenAI’s GPT-4 achieves the highest score
of 52.8%. The performance of GPT-4-Turbo is very
close to that of GPT-4, differing only by 1.3% , with
GPT-4-Turbo performing better in Java but show-
ing a larger difference in Python. Among the open-
source models, DeepSeek-Coder-33B-Instruct per-
forms the best, reaching a score of 43.0%. How-
ever, the 9.8% score gap with GPT-4 remains sig-
nificant. On the other hand, it surpasses the 40.7%
achieved by GPT-3.5, exceeding it by 2.3%. In

summary, the performance of state-of-the-art open-
source models is now between GPT-3.5 and GPT-4,
yet the majority of open-source models still do not
match the performance of GPT-3.5.

When compared to a perfect score of 100%, it
is observed that even the best-performing model,
GPT-4, still falls significantly short. This is in
contrast to its performance in HumanEval, where
it has approached 90%.

Comparing the performance of models in Chi-
nese and English versions, it is evident that the vast
majority of models perform better in English. This
holds true even for the top models, GPT-4 and GPT-
4-Turbo, which outperform their average scores in
Chinese by 1.1% and 3.9%, respectively.

Furthermore, Table 3 systematically presents the
performance of various open-source models at dif-
ferent scales. Models smaller than 10B scored
between 0.0% and 23.9%, models between 10B
and 30B scored between 3.9% and 35.1%, models
between 30B and 60B scored between 21.8% and
43.0%, and models larger than 60B scored between
27.9% and 33.2%. It is evident that the scale of the
model still has a significant impact on performance.
Larger models generally outperform smaller mod-
els, indicating that increasing scale can indeed en-
hance a model’s capabilities. However, this is not
to say that scale is everything; more refined data
and training strategies can also significantly impact
a model’s performance. Some smaller models, such
as DeepSeek-Coder-6.7B-Instruct, can outperform
those larger than 30B by approximately 2.8% and
those larger than 60B by approximately 1.9%.

Table 5 shows the pass@k results of best-
performing LLMs with each LLM family on NCB,
where k ∈ {10, 50}. We found that under random
sampling, the scores of some models increased sig-
nificantly. For instance, Codellama-70B-Instruct,
unlike its performance on pass@1, clearly outper-
formed GPT-3.5 on both Pass@10 and Pass@50.

7912

Model Size NCB (zh) NCB (en) NCB Total HumanEval
∆RankPython Java Total Python Java Total Score Rank Score Rank

API LLMs

GPT-4 (OpenAI et al., 2023) N/A 53.4 51.1 52.3 55.7 51.1 53.4 52.8 1 80.5 5 4

GPT-4-Turbo-0125 (OpenAI et al., 2023) N/A 51.4 58.6 55.0 48.6 51.4 50.0 52.5 2 87.2 1 -1

GPT-4-Turbo-1106 (OpenAI et al., 2023) N/A 47.3 51.9 49.6 51.9 55.0 53.5 51.5 3 81.7 3 0

GPT-3.5-Turbo (OpenAI, 2022) N/A 39.7 38.9 39.3 42.0 42.0 42.0 40.7 8 65.2 18 10

Claude-3-Opus (Anthropic, 2023b) N/A 45.0 50.4 47.7 48.9 48.9 48.9 48.3 4 84.9 2 -2

Claude-3-Sonnet (Anthropic, 2023b) N/A 44.6 35.5 40.1 40.5 35.1 37.8 38.9 9 73.0 11 2

Claude-3-Haiku (Anthropic, 2023b) N/A 41.3 35.9 38.6 36.9 30.5 33.7 36.2 11 75.9 9 -2

Claude-2.1 (Anthropic, 2023a) N/A 33.6 32.8 33.2 34.4 36.6 35.5 34.4 13 71.2 16 3

GLM-4 (Zeng et al., 2023; Du et al., 2022) N/A 43.5 45.3 44.4 41.5 45.3 43.4 43.9 5 72.6 12 7

Gemini-1.5-Pro (Blog, 2024) N/A 41.5 43.1 42.3 45.0 39.7 42.3 42.3 7 71.9 14 7

CodeGeeX3 (Zheng et al., 2023b) N/A 29.0 29.0 29.0 36.6 32.8 34.7 31.9 18 69.5 17 -1

Open LLMs

Deepseek-Coder-Instruct (Guo et al., 2024) 33B 44.3 38.9 41.6 44.3 44.3 44.3 43.0 6 79.3 6 0

6.7B 38.9 29.8 34.4 35.9 35.9 35.9 35.1 12 78.6 7 -5

1.3B 18.3 24.4 21.4 27.5 25.2 26.4 23.9 22 65.2 19 -3

Llama-3-Instruct (AI@Meta, 2024) 70B 39.1 34.4 36.7 35.4 39.7 37.5 37.1 10 81.7 4 -6

8B 35.9 21.5 28.7 19.7 21.7 20.7 24.7 21 62.2 21 0

Deepseek-Chat (DeepSeek-AI, 2024) 67B 35.9 28.2 32.1 35.1 33.6 34.4 33.2 14 78.3 8 -6

7B 3.8 12.2 8.0 8.4 19.1 13.8 10.9 30 48.2 26 -4

Codellama-Instruct (Roziere et al., 2023)
70B 35.1 32.1 33.6 32.8 30.5 31.7 32.6 15 72.0 13 -2

34B 23.7 17.6 20.7 28.2 17.6 22.9 21.8 24 51.8 25 1

13B 20.6 16.8 18.7 26.7 19.1 22.9 20.8 25 42.7 26 1

7B 16.8 17.6 17.2 21.4 17.6 19.5 18.4 26 34.8 31 5

Phind-Codellama (Phind, 2023) 34B 34.4 29.0 31.7 33.6 32.1 32.9 32.3 16 71.3 15 -1

Qwen-1.5 (Bai et al., 2023a) 110B 35.4 28.2 31.8 38.5 26.7 32.6 32.2 17 52.4 24 7

Qwen-Chat (Bai et al., 2023b) 72B 28.2 29.8 29.0 24.4 29.0 26.7 27.9 19 64.6 20 1

7B 11.5 13.0 12.3 16.0 11.5 13.8 13.0 28 37.2 30 2

WizardCoder (Luo et al., 2023) 34B 24.4 22.9 23.7 29.8 22.1 26.0 24.8 20 73.2 10 -10

15B 29.0 17.6 23.3 25.2 19.1 22.2 22.7 23 59.8 22 -1

StarCoder (Li et al., 2023a) 15.5B 13.0 13.0 13.0 16.8 9.9 13.4 13.2 27 40.8 29 2

Mistral-Instruct (Jiang et al., 2023a) 7B 7.6 9.9 8.8 11.5 19.1 15.3 12.0 29 28.7 34 5

CodeGen2 (Nijkamp et al., 2023a)
16B 0.8 11.5 6.2 2.3 13.0 7.7 6.9 31 19.5 36 5

7B 2.3 5.3 3.8 6.9 5.3 6.1 5.0 32 18.3 37 5

3.7B 0.0 0.0 0.0 0.0 3.1 1.6 0.8 38 15.9 38 0

1B 0.0 0.0 0.0 0.0 0.0 0.0 0.0 39 11.0 39 0

Phi (Li et al., 2023b) 2.7B 5.3 3.1 4.2 3.1 5.3 4.2 4.2 33 53.7 23 -10

1.3B 0.0 0.8 0.4 3.8 0.0 1.9 1.2 37 41.4 28 -9

CodeGen (Nijkamp et al., 2023b) 16B 0.8 5.3 3.1 0.3 9.2 4.8 3.9 34 32.9 32 -2

6B 0.0 0.0 0.0 2.3 3.8 3.1 1.5 35 29.3 33 -2

2B 0.0 0.0 0.0 2.3 3.8 3.1 1.5 36 24.4 35 -1

Table 3: Evaluating LLMs on the test set of NATURALCODEBENCH. All results are pass@1 on greedy decoding.
Dev set results are reported in Table 6. Compared to HumanEval (Chen et al., 2021), some LLMs present significant
variations 7913

We compared the Python scores on the test set
of NCB with the performances of models on Hu-
manEval, as shown in the Figure 1. Most models
are located in the upper triangular area of the graph,
with many models scoring high on HumanEval but
exhibiting relatively lower performance on NCB.

4.3 Performance mismatch on HumanEval
and NCB

We show the rank orders of all tested LLMs in Ta-
ble 3 with regard to HumanEval and NCB, as well
as the difference of rank orders. We also plot the
corresponding performances on two benchmarks
to scatter diagram in Figure 1. Based on the table
and figure, we have some interesting findings.

Performances of most LLMs on two benchmarks
grow linearly proportional, and the differences of
scores’ rank order are around 0. It demonstrates
that NCB can indeed reflect the coding abilities of
LLMs as HumanEval does in most cases.

However, we observe that some model series,
notably the Phi, Deepseek-Chat, and WizardCoder,
consistently exhibit a propensity to achieve supe-
rior rankings on the HumanEval dataset as opposed
to the NCB across various scales, as shown in the
Table 3. Additional model families, including
CodeGen and Llama-3-Instruct, similarly display
the trend, though to a reduced degree.

There might be a few potential hypotheses
for the observation. First, as problems in
NCB are more difficult and derived from natural
user prompts, compared to those in HumanEval,
LLMs with poorer generalization and instruction-
following capabilities tend to perform worse. We
find in preliminary experiments that problems in
NCB cannot be properly solved by pre-trained base
LLMs via mere in-context learning as HumanEval
does, which indicates that to solve NCB problems
requires stronger alignment and generalizability
than HumanEval needs.

Second, it is possible that training sets of
some LLMs are over-specifiedly optimized for
HumanEval-style problems. On one hand, pre-
training data of certain LLMs may be contami-
nated. As GPT-4 (OpenAI et al., 2023) reported,
25% of HumanEval has been contaminated in their
pre-training corpus. On the other hand, instruc-
tion fine-tuning dataset may also be polluted. For
example, Phi (Li et al., 2023b) reports a consid-
erable amount of synthetic prompts resonating to
some test samples in HumanEval. In (Yang et al.,
2023b), the authors report leakage unidentifiable

by n-gram overlap when using popular rephrasing
techniques to create training sets. The performance
discrepancy between HumanEval and NCB in our
experiments is also an evidence of the potential
contamination.

4.4 Results of Semi-automated Construction

In Table 4, we can observe that the coverage of
hand-written test cases is almost identical to that
of test cases constructed through a semi-automatic
pipeline, yet the time required for the former sig-
nificantly exceeds the time needed for constructing
test cases via the semi-automatic pipeline. Specif-
ically, test cases can be constructed via the semi-
automated pipeline in just 40 minutes, whereas
manual writing requires 175.9 minutes, a differ-
ence of more than 4x. Consequently, the scores
obtained for test cases constructed using the semi-
automated pipeline are far higher than those for
manually written test cases, with an average differ-
ence of 37.6. In summary, constructing test cases
through the semi-automatic framework can achieve
significantly higher efficiency without substantial
loss in quality compared to manual writing.

5 Related Work

LLMs for code. Significant advancements in
LLMs (Vaswani et al., 2017, Devlin et al., 2019,
Brown et al., 2020) are transforming everyday life,
particularly in the field of coding, driven by the vast
amount of openly available codebases and the push
to enhance productivity among developers. Code-
specific LLMs have proven their ability to perform
various tasks such as code generation (Chen et al.,
2021, Iyer et al., 2018, Li et al., 2022), program
repair (Jiang et al., 2023b, Wei et al., 2023, Xia
et al., 2023, Xia and Zhang, 2022), automated test-
ing (Deng et al., 2023a, Deng et al., 2023b, Liu
et al., 2023c, Xia et al., 2024, Yang et al., 2023a),
code translation (Roziere et al., 2020, Roziere et al.,
2022) and code summarization (Ahmed and De-
vanbu, 2023, Lu et al., 2021). Notably, prominent
LLMs including CODEX (Chen et al., 2021), Code-
Gen (Nijkamp et al., 2023b), INCODER (Fried
et al., 2023), and PolyCoder (Xu et al., 2022) have
been developed and rigorously tested, particularly
in code generation. This area, often referred to
as the ultimate goal in computer science research
since the early days of AI in the 1950s, involves
the model producing code snippets from natural
language explanations of the required functional-

7914

Hand-Written Semi-Automated

Time Cost Line Branch Score Time Cost Line Branch Score

Expert_1 179.5 97.6 95.9 10.8 36.0 97.0 96.9 53.9
Expert_2 195.0 97.6 95.0 9.9 41.0 88.1 91.7 43.9
Expert_3 145.0 84.5 84.0 11.6 26.0 82.0 85.0 64.2
Expert_4 180.0 90.9 100.0 10.6 41.0 84.4 91.7 42.9
Expert_5 180.0 98.1 83.3 10.1 56.0 100.0 100.0 35.7

Total/Avg. 175.9 93.7 91.6 10.5 40.0 90.3 93.1 48.1

Table 4: Test case construction comparison between by Semi-Automated Pipeline and Hand-Written

ity. The landscape of code LLMs is currently ex-
periencing a surge, with new models being intro-
duced regularly. This includes both proprietary
ones (Moradi Dakhel et al., 2023, OpenAI et al.,
2023) and open-source ones (Lin, 2004, Nijkamp
et al., 2023b, Touvron et al., 2023, Li et al., 2023a,
Anonymous, 2024, Rozière et al., 2024), marking
a trend of frequent releases in this domain.

Code Synthesis Benchmarks. As the capabili-
ties of models advance, researchers are develop-
ing more challenging and versatile benchmarks for
code generation. Initially, the earlier focus was
on domain-specific languages (Zelle and Mooney,
1996), while the subsequent effort launched a Text-
to-SQL benchmark to evaluate the capacity for gen-
erating comprehensive SQL programs (Yu et al.,
2018). An investigation (Yin et al., 2018) assesses
the ability to compose brief yet broadly applicable
Python snippets. More recent studies (Hendrycks
et al., 2021b, Li et al., 2022) have tested models’
proficiency in solving competitive programming
challenges using Python. A leading and exten-
sively researched benchmark in this domain is Hu-
manEval (Chen et al., 2021), which features 164
Python function signatures accompanied by doc-
strings and corresponding test cases for validating
correctness. Additionally, each problem in Hu-
manEval includes a reference solution. The MBPP
(Austin et al., 2021) dataset, another Python-centric
collection, was developed by having participants
contribute 974 programming challenges. Each chal-
lenge encompasses a problem description (i.e., doc-
string), a function signature, and three test cases.
There are also benchmarks for other programming
languages, such as HumanEval-X (Zheng et al.,
2023b) for C++, JavaScript, and Go, CodeContests
(Li et al., 2022) for C++ and Java, and MultiPL-E
(Cassano et al., 2022), which expands HumanEval
and MBPP to 18 languages.

More recent efforts have introduced benchmarks
that more closely mirror real-world coding scenar-
ios that require interactive coding. For example,
AgentBench (Liu et al., 2023b) introduces interac-
tive tasks regarding unix shell and MySQL. SWE-
Bench (Jimenez et al., 2023) compiles GitHub is-
sues, their associated codebases, and tests, to gauge
LLMs’ effectiveness in practical software engineer-
ing tasks.

6 Conclusion

We propose NATURALCODEBENCH for evaluating
the code generating ability of LLMs. Our bench-
mark comprises a total of 402 problems selected
from coding online services, and it supports au-
tomatic evaluation of code generated by LLMs.
We have also proposed a semi-automated pipeline
for efficiently constructing the entire benchmark,
achieving an efficiency gain of more than 4x com-
pared to manual construction. We hope that NCB
can provide a fair environment for the comparison
between models, and our pipeline can also pro-
vide inspiration to other complex tasks or domains
where evaluation costs are high.

ACKNOWLEDGEMENT

We would like to thank the anonymous reviewers
as well as Zhipu AI for covering all GPU and API
cost consumed in this study. This work is sup-
ported by The National Key Research and Develop-
ment Program of China 2021YFF1201300Natural
Science Foundation of China (NSFC) 62276148
and 62425601. It is also supported by Tsinghua
UniversityDepartment of Computer Science and
Technology-Siemens Ltd., China Joint Research
Center for Industrial Intelligence and Internet of
Things (JCIIOT).

7915

Limitations

Here, we discuss several limitations of this work.

To cover more domains. Although our problems
are derived from real-world application scenarios,
due to the difficulty of constructing accurate and
efficient evaluation environments, we are unable to
test some types of problems, such as those involv-
ing interface creation, web services, etc., which are
also common problem types in actual applications.
This results in some biases in our evaluation, which
may affect the accuracy of the evaluation of cer-
tain models. We will leave these issues for future
research.

To reduce the cost. The semi-automated pipeline
can significantly reduce the time and human re-
sources required to construct an evaluation frame-
work, but the cost of accessing OpenAI’s API re-
mains expensive, and it does not completely elimi-
nate the use of human resources.

References
Toufique Ahmed and Premkumar Devanbu. 2023.

Few-shot training llms for project-specific code-
summarization. In Proceedings of the 37th
IEEE/ACM International Conference on Automated
Software Engineering, ASE ’22, New York, NY,
USA. Association for Computing Machinery.

AI@Meta. 2024. Llama 3 model card.

Anonymous. 2024. Wizardcoder: Empowering code
large language models with evol-instruct. In The
Twelfth International Conference on Learning Repre-
sentations.

Anthropic. 2023a. Claude-2.

Anthropic. 2023b. Introducing the claude 3 fam-
ily. https://www.anthropic.com/news/
claude-3-family. Accessed: 2024-04-28.

Ben Athiwaratkun, Sanjay Krishna Gouda, Zijian Wang,
Xiaopeng Li, Yuchen Tian, Ming Tan, Wasi Uddin
Ahmad, Shiqi Wang, Qing Sun, Mingyue Shang, Su-
jan Kumar Gonugondla, Hantian Ding, Varun Ku-
mar, Nathan Fulton, Arash Farahani, Siddhartha Jain,
Robert Giaquinto, Haifeng Qian, Murali Krishna Ra-
manathan, Ramesh Nallapati, Baishakhi Ray, Par-
minder Bhatia, Sudipta Sengupta, Dan Roth, and
Bing Xiang. 2023. Multi-lingual evaluation of code
generation models. In The Eleventh International
Conference on Learning Representations.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, and
Charles Sutton. 2021. Program synthesis with large
language models.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin,
Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu,
Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren,
Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong
Tu, Peng Wang, Shijie Wang, Wei Wang, Sheng-
guang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang,
Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu,
Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingx-
uan Zhang, Yichang Zhang, Zhenru Zhang, Chang
Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang
Zhu. 2023a. Qwen technical report. arXiv preprint
arXiv:2309.16609.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, et al. 2023b. Qwen technical report. arXiv
preprint arXiv:2309.16609.

Google AI Blog. 2024. Google gemini: Next generation
model.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Federico Cassano, John Gouwar, Daniel Nguyen, Syd-
ney Nguyen, Luna Phipps-Costin, Donald Pinckney,
Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson,
Molly Q Feldman, Arjun Guha, Michael Greenberg,
and Abhinav Jangda. 2022. Multipl-e: A scalable
and extensible approach to benchmarking neural code
generation.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya

7916

https://doi.org/10.1145/3551349.3559555
https://doi.org/10.1145/3551349.3559555
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://openreview.net/forum?id=UnUwSIgK5W
https://openreview.net/forum?id=UnUwSIgK5W
https://www.anthropic.com/news/claude-2
https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family
https://openreview.net/forum?id=Bo7eeXm6An8
https://openreview.net/forum?id=Bo7eeXm6An8
http://arxiv.org/abs/2108.07732
http://arxiv.org/abs/2108.07732
https://blog.google/technology/ai/google-gemini-next-generation-model-february-2024
https://blog.google/technology/ai/google-gemini-next-generation-model-february-2024
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
http://arxiv.org/abs/2208.08227
http://arxiv.org/abs/2208.08227
http://arxiv.org/abs/2208.08227

Sutskever, and Wojciech Zaremba. 2021. Evaluating
large language models trained on code.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, et al. 2023. Palm: Scaling language
modeling with pathways. Journal of Machine Learn-
ing Research, 24(240):1–113.

DeepSeek-AI. 2024. Deepseek llm: Scaling open-
source language models with longtermism. arXiv
preprint arXiv:2401.02954.

Yinlin Deng, Chunqiu Steven Xia, Haoran Peng,
Chenyuan Yang, and Lingming Zhang. 2023a. Large
language models are zero-shot fuzzers: Fuzzing deep-
learning libraries via large language models. In Pro-
ceedings of the 32nd ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA
2023, page 423–435, New York, NY, USA. Associa-
tion for Computing Machinery.

Yinlin Deng, Chunqiu Steven Xia, Chenyuan Yang,
Shizhuo Dylan Zhang, Shujing Yang, and Lingming
Zhang. 2023b. Large language models are edge-case
fuzzers: Testing deep learning libraries via fuzzgpt.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding,
Jiezhong Qiu, Zhilin Yang, and Jie Tang. 2022. GLM:
General language model pretraining with autoregres-
sive blank infilling. In Proceedings of the 60th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 320–335,
Dublin, Ireland. Association for Computational Lin-
guistics.

Aryaz Eghbali and Michael Pradel. 2023. Crystalbleu:
Precisely and efficiently measuring the similarity of
code. In Proceedings of the 37th IEEE/ACM Interna-
tional Conference on Automated Software Engineer-
ing, ASE ’22, New York, NY, USA. Association for
Computing Machinery.

Mikhail Evtikhiev, Egor Bogomolov, Yaroslav Sokolov,
and Timofey Bryksin. 2023. Out of the bleu: How
should we assess quality of the code generation mod-
els? Journal of Systems and Software, 203:111741.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang,
Eric Wallace, Freda Shi, Ruiqi Zhong, Scott Yih,
Luke Zettlemoyer, and Mike Lewis. 2023. Incoder:
A generative model for code infilling and synthesis.
In The Eleventh International Conference on Learn-
ing Representations.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wen-
feng Liang. 2024. Deepseek-coder: When the large
language model meets programming – the rise of
code intelligence.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man-
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns,
Samir Puranik, Horace He, Dawn Song, and Jacob
Steinhardt. 2021a. Measuring coding challenge com-
petence with apps. NeurIPS.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man-
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns,
Samir Puranik, Horace He, Dawn Song, and Jacob
Steinhardt. 2021b. Measuring coding challenge com-
petence with apps.

Marko Ivanković, Goran Petrović, René Just, and Gor-
don Fraser. 2019. Code coverage at google. In
Proceedings of the 2019 27th ACM Joint Meeting
on European Software Engineering Conference and
Symposium on the Foundations of Software Engineer-
ing, ESEC/FSE 2019, page 955–963, New York, NY,
USA. Association for Computing Machinery.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and
Luke Zettlemoyer. 2018. Mapping language to code
in programmatic context. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1643–1652, Brussels, Bel-
gium. Association for Computational Linguistics.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023a. Mistral
7b. arXiv preprint arXiv:2310.06825.

Nan Jiang, Kevin Liu, Thibaud Lutellier, and Lin Tan.
2023b. Impact of code language models on auto-
mated program repair. In Proceedings of the 45th
International Conference on Software Engineering,
ICSE ’23, page 1430–1442. IEEE Press.

Carlos E Jimenez, John Yang, Alexander Wettig,
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. 2023. Swe-bench: Can language mod-
els resolve real-world github issues? arXiv preprint
arXiv:2310.06770.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-
cient memory management for large language model
serving with pagedattention. In Proceedings of the
ACM SIGOPS 29th Symposium on Operating Systems
Principles.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang,
Ruiqi Zhong, Luke Zettlemoyer, Wen-Tau Yih,
Daniel Fried, Sida Wang, and Tao Yu. 2023. DS-
1000: A natural and reliable benchmark for data sci-
ence code generation. In Proceedings of the 40th

7917

http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
https://github.com/deepseek-ai/DeepSeek-LLM
https://github.com/deepseek-ai/DeepSeek-LLM
https://doi.org/10.1145/3597926.3598067
https://doi.org/10.1145/3597926.3598067
https://doi.org/10.1145/3597926.3598067
http://arxiv.org/abs/2304.02014
http://arxiv.org/abs/2304.02014
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2022.acl-long.26
https://doi.org/10.18653/v1/2022.acl-long.26
https://doi.org/10.18653/v1/2022.acl-long.26
https://doi.org/10.1145/3551349.3556903
https://doi.org/10.1145/3551349.3556903
https://doi.org/10.1145/3551349.3556903
https://doi.org/10.1016/j.jss.2023.111741
https://doi.org/10.1016/j.jss.2023.111741
https://doi.org/10.1016/j.jss.2023.111741
https://openreview.net/forum?id=hQwb-lbM6EL
https://openreview.net/forum?id=hQwb-lbM6EL
http://arxiv.org/abs/2401.14196
http://arxiv.org/abs/2401.14196
http://arxiv.org/abs/2401.14196
http://arxiv.org/abs/2105.09938
http://arxiv.org/abs/2105.09938
https://doi.org/10.1145/3338906.3340459
https://doi.org/10.18653/v1/D18-1192
https://doi.org/10.18653/v1/D18-1192
https://doi.org/10.1109/ICSE48619.2023.00125
https://doi.org/10.1109/ICSE48619.2023.00125
https://proceedings.mlr.press/v202/lai23b.html
https://proceedings.mlr.press/v202/lai23b.html
https://proceedings.mlr.press/v202/lai23b.html

International Conference on Machine Learning, vol-
ume 202 of Proceedings of Machine Learning Re-
search, pages 18319–18345. PMLR.

Raymond Li, Loubna Ben allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia LI, Jenny Chim,
Qian Liu, Evgenii Zheltonozhskii, Terry Yue Zhuo,
Thomas Wang, Olivier Dehaene, Joel Lamy-Poirier,
Joao Monteiro, Nicolas Gontier, Ming-Ho Yee, Lo-
gesh Kumar Umapathi, Jian Zhu, Ben Lipkin, Muh-
tasham Oblokulov, Zhiruo Wang, Rudra Murthy, Ja-
son T Stillerman, Siva Sankalp Patel, Dmitry Ab-
ulkhanov, Marco Zocca, Manan Dey, Zhihan Zhang,
Urvashi Bhattacharyya, Wenhao Yu, Sasha Luccioni,
Paulo Villegas, Fedor Zhdanov, Tony Lee, Nadav
Timor, Jennifer Ding, Claire S Schlesinger, Hailey
Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra,
Alex Gu, Carolyn Jane Anderson, Brendan Dolan-
Gavitt, Danish Contractor, Siva Reddy, Daniel Fried,
Dzmitry Bahdanau, Yacine Jernite, Carlos Muñoz
Ferrandis, Sean Hughes, Thomas Wolf, Arjun Guha,
Leandro Von Werra, and Harm de Vries. 2023a. Star-
coder: may the source be with you! Transactions on
Machine Learning Research. Reproducibility Certifi-
cation.

Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del
Giorno, Suriya Gunasekar, and Yin Tat Lee. 2023b.
Textbooks are all you need ii: phi-1.5 technical re-
port.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman,
Julian Schrittwieser, Rémi Leblond, Tom Eccles,
James Keeling, Felix Gimeno, Agustin Dal Lago,
Thomas Hubert, Peter Choy, Cyprien de Mas-
son d’Autume, Igor Babuschkin, Xinyun Chen, Po-
Sen Huang, Johannes Welbl, Sven Gowal, Alexey
Cherepanov, James Molloy, Daniel J. Mankowitz,
Esme Sutherland Robson, Pushmeet Kohli, Nando
de Freitas, Koray Kavukcuoglu, and Oriol Vinyals.
2022. Competition-level code generation with alpha-
code. Science, 378(6624):1092–1097.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Ling-
ming Zhang. 2023a. Is your code generated by chat-
gpt really correct? rigorous evaluation of large lan-
guage models for code generation.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xu-
anyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, et al. 2023b. Agent-
bench: Evaluating llms as agents. arXiv preprint
arXiv:2308.03688.

Zhe Liu, Chunyang Chen, Junjie Wang, Xing Che,
Yuekai Huang, Jun Hu, and Qing Wang. 2023c. Fill
in the blank: Context-aware automated text input
generation for mobile gui testing. In Proceedings of
the 45th International Conference on Software Engi-
neering, ICSE ’23, page 1355–1367. IEEE Press.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey
Svyatkovskiy, Ambrosio Blanco, Colin Clement,
Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong
Zhou, Linjun Shou, Long Zhou, Michele Tufano,
Ming Gong, Ming Zhou, Nan Duan, Neel Sundare-
san, Shao Kun Deng, Shengyu Fu, and Shujie Liu.
2021. Codexglue: A machine learning benchmark
dataset for code understanding and generation.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,
Qingwei Lin, and Daxin Jiang. 2023. Wizardcoder:
Empowering code large language models with evol-
instruct. arXiv preprint arXiv:2306.08568.

Arghavan Moradi Dakhel, Vahid Majdinasab, Amin
Nikanjam, Foutse Khomh, Michel C. Desmarais, and
Zhen Ming (Jack) Jiang. 2023. Github copilot ai
pair programmer: Asset or liability? J. Syst. Softw.,
203(C).

Erik Nijkamp, Hiroaki Hayashi, Caiming Xiong, Sil-
vio Savarese, and Yingbo Zhou. 2023a. Codegen2:
Lessons for training llms on programming and natu-
ral languages. arXiv preprint arXiv:2305.02309.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan
Wang, Yingbo Zhou, Silvio Savarese, and Caiming
Xiong. 2023b. Codegen: An open large language
model for code with multi-turn program synthesis. In
The Eleventh International Conference on Learning
Representations.

OpenAI, :, Josh Achiam, Steven Adler, Sandhini Agar-
wal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Alt-
man, Shyamal Anadkat, Red Avila, Igor Babuschkin,
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim-
ing Bao, Mo Bavarian, Jeff Belgum, Irwan Bello,
Jake Berdine, Gabriel Bernadett-Shapiro, Christo-
pher Berner, Lenny Bogdonoff, Oleg Boiko, Made-
laine Boyd, Anna-Luisa Brakman, Greg Brockman,
Tim Brooks, Miles Brundage, Kevin Button, Trevor
Cai, Rosie Campbell, Andrew Cann, Brittany Carey,
Chelsea Carlson, Rory Carmichael, Brooke Chan,
Che Chang, Fotis Chantzis, Derek Chen, Sully Chen,
Ruby Chen, Jason Chen, Mark Chen, Ben Chess,
Chester Cho, Casey Chu, Hyung Won Chung, Dave
Cummings, Jeremiah Currier, Yunxing Dai, Cory
Decareaux, Thomas Degry, Noah Deutsch, Damien
Deville, Arka Dhar, David Dohan, Steve Dowl-
ing, Sheila Dunning, Adrien Ecoffet, Atty Eleti,
Tyna Eloundou, David Farhi, Liam Fedus, Niko
Felix, Simón Posada Fishman, Juston Forte, Is-
abella Fulford, Leo Gao, Elie Georges, Christian
Gibson, Vik Goel, Tarun Gogineni, Gabriel Goh,
Rapha Gontijo-Lopes, Jonathan Gordon, Morgan
Grafstein, Scott Gray, Ryan Greene, Joshua Gross,
Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse
Han, Jeff Harris, Yuchen He, Mike Heaton, Jo-
hannes Heidecke, Chris Hesse, Alan Hickey, Wade
Hickey, Peter Hoeschele, Brandon Houghton, Kenny
Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu
Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger
Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie

7918

https://openreview.net/forum?id=KoFOg41haE
https://openreview.net/forum?id=KoFOg41haE
http://arxiv.org/abs/2309.05463
http://arxiv.org/abs/2309.05463
https://doi.org/10.1126/science.abq1158
https://doi.org/10.1126/science.abq1158
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
http://arxiv.org/abs/2305.01210
http://arxiv.org/abs/2305.01210
http://arxiv.org/abs/2305.01210
https://doi.org/10.1109/ICSE48619.2023.00119
https://doi.org/10.1109/ICSE48619.2023.00119
https://doi.org/10.1109/ICSE48619.2023.00119
http://arxiv.org/abs/2102.04664
http://arxiv.org/abs/2102.04664
https://doi.org/10.1016/j.jss.2023.111734
https://doi.org/10.1016/j.jss.2023.111734
https://openreview.net/forum?id=iaYcJKpY2B_
https://openreview.net/forum?id=iaYcJKpY2B_

Jonn, Heewoo Jun, Tomer Kaftan, Łukasz Kaiser,
Ali Kamali, Ingmar Kanitscheider, Nitish Shirish
Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook
Kim, Christina Kim, Yongjik Kim, Hendrik Kirch-
ner, Jamie Kiros, Matt Knight, Daniel Kokotajlo,
Łukasz Kondraciuk, Andrew Kondrich, Aris Kon-
stantinidis, Kyle Kosic, Gretchen Krueger, Vishal
Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan
Leike, Jade Leung, Daniel Levy, Chak Ming Li,
Rachel Lim, Molly Lin, Stephanie Lin, Mateusz
Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue,
Anna Makanju, Kim Malfacini, Sam Manning, Todor
Markov, Yaniv Markovski, Bianca Martin, Katie
Mayer, Andrew Mayne, Bob McGrew, Scott Mayer
McKinney, Christine McLeavey, Paul McMillan,
Jake McNeil, David Medina, Aalok Mehta, Jacob
Menick, Luke Metz, Andrey Mishchenko, Pamela
Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
Mossing, Tong Mu, Mira Murati, Oleg Murk, David
Mély, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak,
Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh,
Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex
Paino, Joe Palermo, Ashley Pantuliano, Giambat-
tista Parascandolo, Joel Parish, Emy Parparita, Alex
Passos, Mikhail Pavlov, Andrew Peng, Adam Perel-
man, Filipe de Avila Belbute Peres, Michael Petrov,
Henrique Ponde de Oliveira Pinto, Michael, Poko-
rny, Michelle Pokrass, Vitchyr Pong, Tolly Pow-
ell, Alethea Power, Boris Power, Elizabeth Proehl,
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh,
Cameron Raymond, Francis Real, Kendra Rimbach,
Carl Ross, Bob Rotsted, Henri Roussez, Nick Ry-
der, Mario Saltarelli, Ted Sanders, Shibani Santurkar,
Girish Sastry, Heather Schmidt, David Schnurr, John
Schulman, Daniel Selsam, Kyla Sheppard, Toki
Sherbakov, Jessica Shieh, Sarah Shoker, Pranav
Shyam, Szymon Sidor, Eric Sigler, Maddie Simens,
Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin
Sokolowsky, Yang Song, Natalie Staudacher, Fe-
lipe Petroski Such, Natalie Summers, Ilya Sutskever,
Jie Tang, Nikolas Tezak, Madeleine Thompson, Phil
Tillet, Amin Tootoonchian, Elizabeth Tseng, Pre-
ston Tuggle, Nick Turley, Jerry Tworek, Juan Fe-
lipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya,
Chelsea Voss, Carroll Wainwright, Justin Jay Wang,
Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei,
CJ Weinmann, Akila Welihinda, Peter Welinder, Ji-
ayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner,
Clemens Winter, Samuel Wolrich, Hannah Wong,
Lauren Workman, Sherwin Wu, Jeff Wu, Michael
Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qim-
ing Yuan, Wojciech Zaremba, Rowan Zellers, Chong
Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
Zheng, Juntang Zhuang, William Zhuk, and Barret
Zoph. 2023. Gpt-4 technical report.

OpenAI. 2022. Introducing chatgpt.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul F Christiano, Jan Leike, and Ryan Lowe. 2022.

Training language models to follow instructions with
human feedback. In Advances in Neural Information
Processing Systems, volume 35, pages 27730–27744.
Curran Associates, Inc.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Phind. 2023. Phind-codellama-34b-v2.

Maja Popović. 2015. chrF: character n-gram F-score
for automatic MT evaluation. In Proceedings of the
Tenth Workshop on Statistical Machine Translation,
pages 392–395, Lisbon, Portugal. Association for
Computational Linguistics.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Baptiste Roziere, Marie-Anne Lachaux, Lowik Chanus-
sot, and Guillaume Lample. 2020. Unsupervised
translation of programming languages. In Proceed-
ings of the 34th International Conference on Neu-
ral Information Processing Systems, NIPS’20, Red
Hook, NY, USA. Curran Associates Inc.

Baptiste Roziere, Jie M. Zhang, Francois Charton, Mark
Harman, Gabriel Synnaeve, and Guillaume Lample.
2022. Leveraging automated unit tests for unsuper-
vised code translation.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy
Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna
Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron
Grattafiori, Wenhan Xiong, Alexandre Défossez,
Jade Copet, Faisal Azhar, Hugo Touvron, Louis Mar-
tin, Nicolas Usunier, Thomas Scialom, and Gabriel
Synnaeve. 2024. Code llama: Open foundation mod-
els for code.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models.

Ngoc Tran, Hieu Tran, Son Nguyen, Hoan Nguyen, and
Tien N. Nguyen. 2019. Does bleu score work for
code migration? In Proceedings of the 27th Interna-
tional Conference on Program Comprehension, ICPC
’19, page 165–176. IEEE Press.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all

7919

http://arxiv.org/abs/2303.08774
https://openai.com/blog/chatgpt
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://huggingface.co/Phind/Phind-CodeLlama-34B-v2
https://doi.org/10.18653/v1/W15-3049
https://doi.org/10.18653/v1/W15-3049
http://arxiv.org/abs/2110.06773
http://arxiv.org/abs/2110.06773
http://arxiv.org/abs/2308.12950
http://arxiv.org/abs/2308.12950
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
https://doi.org/10.1109/ICPC.2019.00034
https://doi.org/10.1109/ICPC.2019.00034

you need. In Proceedings of the 31st International
Conference on Neural Information Processing Sys-
tems, NIPS’17, page 6000–6010, Red Hook, NY,
USA. Curran Associates Inc.

Yuxiang Wei, Chunqiu Steven Xia, and Lingming
Zhang. 2023. Copiloting the copilots: Fusing large
language models with completion engines for auto-
mated program repair. In Proceedings of the 31st
ACM Joint European Software Engineering Confer-
ence and Symposium on the Foundations of Software
Engineering, ESEC/FSE 2023, page 172–184, New
York, NY, USA. Association for Computing Machin-
ery.

Chunqiu Steven Xia, Matteo Paltenghi, Jia Le
Tian, Michael Pradel, and Lingming Zhang. 2024.
Fuzz4all: Universal fuzzing with large language mod-
els.

Chunqiu Steven Xia, Yuxiang Wei, and Lingming
Zhang. 2023. Automated program repair in the era of
large pre-trained language models. In Proceedings
of the 45th International Conference on Software En-
gineering, ICSE ’23, page 1482–1494. IEEE Press.

Chunqiu Steven Xia and Lingming Zhang. 2022. Less
training, more repairing please: revisiting automated
program repair via zero-shot learning. In Proceed-
ings of the 30th ACM Joint European Software En-
gineering Conference and Symposium on the Foun-
dations of Software Engineering, ESEC/FSE 2022,
page 959–971, New York, NY, USA. Association for
Computing Machinery.

Frank F. Xu, Uri Alon, Graham Neubig, and Vincent Jo-
sua Hellendoorn. 2022. A systematic evaluation of
large language models of code. In Proceedings of the
6th ACM SIGPLAN International Symposium on Ma-
chine Programming, MAPS 2022, page 1–10, New
York, NY, USA. Association for Computing Machin-
ery.

Chenyuan Yang, Yinlin Deng, Runyu Lu, Jiayi Yao,
Jiawei Liu, Reyhaneh Jabbarvand, and Lingming
Zhang. 2023a. White-box compiler fuzzing empow-
ered by large language models.

Shuo Yang, Wei-Lin Chiang, Lianmin Zheng, Joseph E
Gonzalez, and Ion Stoica. 2023b. Rethink-
ing benchmark and contamination for language
models with rephrased samples. arXiv preprint
arXiv:2311.04850.

Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan
Vasilescu, and Graham Neubig. 2018. Learning to
mine aligned code and natural language pairs from
stack overflow. In Proceedings of the 15th Interna-
tional Conference on Mining Software Repositories,
MSR ’18, page 476–486, New York, NY, USA. As-
sociation for Computing Machinery.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir
Radev. 2018. Spider: A large-scale human-labeled

dataset for complex and cross-domain semantic pars-
ing and text-to-SQL task. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3911–3921, Brussels, Bel-
gium. Association for Computational Linguistics.

John M. Zelle and Raymond J. Mooney. 1996. Learn-
ing to parse database queries using inductive logic
programming. In Proceedings of the Thirteenth Na-
tional Conference on Artificial Intelligence - Volume
2, AAAI’96, page 1050–1055. AAAI Press.

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang,
Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu,
Wendi Zheng, Xiao Xia, Weng Lam Tam, Zixuan
Ma, Yufei Xue, Jidong Zhai, Wenguang Chen, Peng
Zhang, Yuxiao Dong, and Jie Tang. 2023. Glm-130b:
An open bilingual pre-trained model.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023a. Judging
llm-as-a-judge with mt-bench and chatbot arena.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan
Wang, Yufei Xue, Lei Shen, Zihan Wang, Andi Wang,
Yang Li, Teng Su, Zhilin Yang, and Jie Tang. 2023b.
Codegeex: A pre-trained model for code generation
with multilingual benchmarking on humaneval-x. In
Proceedings of the 29th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, KDD ’23,
page 5673–5684, New York, NY, USA. Association
for Computing Machinery.

7920

https://doi.org/10.1145/3611643.3616271
https://doi.org/10.1145/3611643.3616271
https://doi.org/10.1145/3611643.3616271
http://arxiv.org/abs/2308.04748
http://arxiv.org/abs/2308.04748
https://doi.org/10.1109/ICSE48619.2023.00129
https://doi.org/10.1109/ICSE48619.2023.00129
https://doi.org/10.1145/3540250.3549101
https://doi.org/10.1145/3540250.3549101
https://doi.org/10.1145/3540250.3549101
https://doi.org/10.1145/3520312.3534862
https://doi.org/10.1145/3520312.3534862
http://arxiv.org/abs/2310.15991
http://arxiv.org/abs/2310.15991
https://doi.org/10.1145/3196398.3196408
https://doi.org/10.1145/3196398.3196408
https://doi.org/10.1145/3196398.3196408
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
http://arxiv.org/abs/2210.02414
http://arxiv.org/abs/2210.02414
http://arxiv.org/abs/2306.05685
http://arxiv.org/abs/2306.05685
https://doi.org/10.1145/3580305.3599790
https://doi.org/10.1145/3580305.3599790

A Instructions in NATURALCODEBENCH

To enhance the efficiency of benchmark construc-
tion and reduce human labor costs, we utilized
the extensive knowledge storage and natrual lan-
guage understanding capabilities of LLMs during
the benchmark construction process. Below are the
details of the instructions used in the construction
process:
• Figure 3 shows the instruction we employed to

swiftly filter out queries unsuitable for testing.
• Figure 13 shows how we instruct the GPT-4 to

generate diverse and high-quality testcases.
• Figure 4 illustrates how we address the issue of

misalignment between class or function names
generated by the LLMs and the names in the
test cases.

I will give you a #Given Prompt# which ask the LLM to generate
code. Please verify whether the #Given Prompt# satisfies the
following requirements:
1. #Given Prompt# should contain a task, that is, the user asks the
model to help solve one or some problems.
2. It is easily to find the type of input and ouput in the #Given
Prompt#
3. There is no randomness or uncertainty in the #Given Prompt#
If the #Given Prompt# satisfies the above requirements, reply
"yes", otherwise reply "no". YOU CAN ONLY GENERATE "yes" or
"no", OTHER TOKENS ARE NOT ALLOWED.

#Given Prompt#:
{{given_prompt}}

#Response#:

Figure 3: The instruction used to quickly filter out low-
quality queries

Your task is to generate {{language}} code to solve the
following problem. The generated code must be
placed between the ```{{language}} and ```, and only
one code block is allowed:
{{prompt}}

You need to follow the function names or class names
in the test cases. The generated code should not
contain any test cases:
{{test_demo}}

Figure 4: The instruction used to align the names of
classes or functions generated by the LLMs with the
names in the test cases.

B Examples

B.1 Examples of Semi-Automated Pipeline

In this section, we present two examples, one each
for Python and Java, of semi-automated pipeline

with one test case to illustrate how we construct
test cases and rectify errors therein.

Figure 5 shows the Python example. Following
the provision of problem description and reference
solution, GPT-4 writes the majority of the test case,
including the execution procedure and test case
input. However, GPT-4 could not guarantee the
correctness of each test case, resulting in the gener-
ation of erroneous expected outputs. At this point,
our programming experts only needed to correct
the incorrect expected outputs.

Figure 6 shows the Java exmaple. In this prob-
lem, where the input type involves more complex
file formats, our semi-automatic pipeline is unable
to directly generate the input files corresponding
to each test case. Therefore, in this instance, our
programming experts need to not only supplement
the missing procedures in the test cases but also
create an input file for each test case. However,
GPT-4 has provided reference content for the input
files in the comments, so our programming experts
do not need to design the inputs themselves.

B.2 Example Problems

Here, we present an example problem and test cases
for each of the 6 domains.

Figure 7 shows a problem of Algorithm and Data
Structure, querying the pattern of a sequence trans-
formation and the total number of all transforma-
tions.

Figure 8 illustrates an example problem in soft-
ware engineering, requiring the addition of tags to
different titles in a markdown file according to their
levels.

Figure 9 presents an example problem in data
science, asking to select the row with the highest
temperature from the temperature CSV files of each
city and write these rows into a new CSV file.

Figure 10 depicts an example problem in front-
end development, requiring the replacement of
given special tags within a string with specific
HTML formats.

Figure 11 shows an example problem in artifi-
cial intelligence, requiring the calculation of the
distance between each point of two tensors, where
the dimension of each tensor is batchsize * n * 3,
with the third dimension representing the coordi-
nates of the points.

Figure 12 presents an example problem in sys-
tem administration, inquiring how to rename all the
files within a folder according to a given rule.

7921

Model
Dataset

NCB(zh) NCB(en)

Python Java Python Java

Pass@10 Pass@50 Pass@10 Pass@50 Pass@10 Pass@50 Pass@10 Pass@50

GPT-4 (OpenAI et al., 2023) Test 62.4 67.9 64.6 71.8 65.3 70.2 62.7 67.9
Dev 53.3 55.7 69.2 72.9 51.8 54.3 62.0 64.3

GPT-3.5-Turbo (OpenAI, 2022) Test 46.5 48.9 49.3 56.5 53.5 55.7 51.5 57.3
Dev 44.0 47.7 45.5 51.4 43.6 47.1 48.4 50.0

Deepseek-Coder-33B-Instruct (Guo et al., 2024) Test 55.7 61.8 48.0 51.1 56.6 64.9 52.8 59.5
Dev 48.1 51.4 46.8 51.4 46.5 48.6 46.7 50.0

Codellama-70B-Instruct (Roziere et al., 2023) Test 49.6 56.5 52.7 61.8 51.0 62.6 48.2 58.0
Dev 47.5 54.3 53.9 62.9 47.6 54.3 50.5 60.0

Phind-Codellama-34B (Phind, 2023) Test 42.3 46.6 39.4 45.8 40.6 43.5 47.6 56.5
Dev 45.4 50.0 41.7 45.7 44.0 45.7 49.4 51.4

Deepseek-67B-Chat (DeepSeek-AI, 2024) Test 44.3 48.9 40.8 47.8 47.3 51.9 40.9 45.8
Dev 42.3 47.1 44.5 47.1 37.9 41.4 43.6 50.0

Qwen-72B-Chat (Bai et al., 2023b) Test 34.9 37.4 36.5 39.7 32.7 35.9 36.5 38.2
Dev 43.4 47.1 31.4 38.6 41.0 44.3 31.5 35.7

StarCoder (Li et al., 2023a) Test 23.1 28.2 23.3 29.8 24.1 31.3 26.8 32.1
Dev 29 32.9 27.3 32.9 35.5 41.4 27.0 30.0

Mistral-7B-Instruct (Jiang et al., 2023a) Test 15.5 18.3 17.3 20.6 19.6 22.9 22.0 24.4
Dev 18.2 21.4 16.3 20.0 19.7 24.3 17.8 21.4

CodeGen2-16B (Nijkamp et al., 2023a) Test 8.6 16.8 18.0 22.9 13.0 19.1 21.0 26.0
Dev 11.6 21.4 12.8 15.7 16.0 24.3 18.5 24.3

CodeGen-16B (Nijkamp et al., 2023b) Test 4.6 9.2 13.3 18.3 9.9 15.3 17.5 21.4
Dev 10.7 17.1 15.6 18.6 16.1 22.9 17.4 21.4

Phi-2 (Li et al., 2023b) Test 14.5 21.4 5.5 7.6 11.9 19.8 10.7 14.5
Dev 15.3 27.1 5.1 7.1 10.9 18.6 6.4 7.1

Table 5: Pass@k results of best-performing LLMs with each LLM family on NaturalCodeBench.

C Extra Results

Table 6 shows the pass@1 results on the develop-
ment set of NCB. The results on the development
set are essentially consistent with those on the test
set, with some changes in the ranking among sev-
eral models. This is due to differences in the dis-
tribution of problems across domains between the
development set and the test set.

Table 5 shows the pass@k results of best-
performing LLMs with each LLM family on NCB,
where k ∈ {10, 50}. We do not evaluate the per-
formance on pass@k for ErnieBot4, CodeGeeX3,
Claude-3, Gemini-1.5-Pro and Llama-3-Instruct
due to limitations on the use of API and other re-
sources.

7922

Model Size NCB(zh) NCB(en) Total
Python Java Total Python Java Total

API LLMs

GPT-4 (OpenAI et al., 2023) N/A 50.0 64.3 57.2 47.1 57.1 52.1 54.6
GPT-4-Turbo-1106 (OpenAI et al., 2023) N/A 54.3 55.7 55.0 50.0 54.3 52.2 53.6
GPT-4-Turbo-0125 (OpenAI et al., 2023) N/A 51.5 55.7 53.6 48.6 51.4 50.0 51.8
GPT-3.5-Turbo (OpenAI, 2022) N/A 38.6 38.6 38.6 37.1 41.4 39.3 38.9

Claude-3-Opus (Anthropic, 2023b) N/A 46.4 44.3 45.3 50.0 47.1 48.6 47.0
Claude-3-Haiku (Anthropic, 2023b) N/A 40.3 32.9 36.6 43.8 32.9 38.4 37.5
Claude-3-Sonnet (Anthropic, 2023b) N/A 37.8 41.4 39.6 38.6 31.4 35.0 37.3
Claude-2.1 (Anthropic, 2023a) N/A 41.4 37.1 39.3 35.7 35.7 35.7 37.5

GLM-4 (Zeng et al., 2023; Du et al., 2022) N/A 42.9 47.1 45.0 44.3 42.9 43.6 44.3

Gemini-1.5-Pro (Blog, 2024) N/A 44.3 35.7 40.0 48.6 34.3 41.4 40.7

CodeGeeX3 (Zheng et al., 2023b) N/A 40.0 25.7 32.9 35.7 25.7 30.7 31.8

Open LLMs

Deepseek-Coder-Instruct (Guo et al., 2024)
33B 41.4 40.0 40.7 35.7 41.4 38.6 39.6
6.7B 34.3 40.0 37.2 34.4 40.0 37.2 37.2
1.3B 22.9 21.4 22.2 20.0 27.1 23.6 22.9

Llama-3-Instruct (AI@Meta, 2024) 70B 42.9 37.1 40.0 37.1 41.4 39.3 39.6
8B 22.9 20.0 21.4 12.9 20.0 16.4 18.9

Phind-Codellama (Phind, 2023) 34B 34.1 31.4 32.8 38.6 40.0 39.3 36.0

Qwen-1.5 (Bai et al., 2023a) 110B 35.7 30.0 32.9 37.1 35.7 36.4 34.6

Codellama-Instruct (Roziere et al., 2023)

70B 30.0 30.0 30.0 35.7 35.7 35.7 32.9
34B 14.3 25.7 20.0 25.7 25.7 25.7 22.9
13B 21.4 20.0 20.7 22.9 20.0 21.5 21.1
7B 25.7 14.3 20.0 18.6 17.1 17.9 18.9

Deepseek-Chat (DeepSeek-AI, 2024) 67B 28.6 35.7 32.2 28.6 32.9 30.8 31.5
7B 12.9 11.4 12.2 10.0 14.3 12.2 12.2

WizardCoder (Luo et al., 2023) 34B 31.4 31.4 31.4 30.0 31.4 30.7 31.1
15B 30.0 24.3 27.2 31.4 24.3 27.9 27.5

Qwen-Chat (Bai et al., 2023b) 72B 35.7 24.3 30.0 34.3 25.7 30.0 30.0
7B 10.0 12.9 11.5 20.0 15.7 17.9 14.7

StarCoder (Li et al., 2023a) 15.5B 17.1 15.7 16.4 21.4 15.7 18.6 17.5

Mistral-Instruct (Jiang et al., 2023a) 7B 11.4 12.9 12.2 15.7 11.4 13.6 12.9

CodeGen2 (Nijkamp et al., 2023a)

16B 5.7 7.1 6.4 8.6 7.1 7.9 7.1
7B 1.4 5.7 3.6 1.4 5.7 3.6 3.6

3.7B 0.0 5.7 2.9 2.9 2.9 2.9 2.9
1B 0.0 2.9 1.5 0.0 2.9 1.5 1.5

CodeGen (Nijkamp et al., 2023b)
16B 1.4 5.7 3.6 7.1 8.6 8.6 5.7
6B 2.9 2.9 2.9 4.3 7.1 5.7 4.3
2B 0.0 2.9 1.5 2.9 5.7 4.3 2.9

Phi (Li et al., 2023b) 2.7B 4.3 4.3 4.3 5.7 4.3 5.0 4.7
1.3B 1.4 2.9 2.2 5.7 4.3 5.0 3.6

Table 6: Evaluating LLMs on the dev set of NATURALCODEBENCH. All results are pass@1 on greedy decoding.

7923

Problem

I have a dataframe that includes the price and date of
a symbol, how can I identify the time periods where
the price has consistently fluctuated within an x
percent range?
For instance, the output of the following statements:
1) From December 10 to December 30
2) From March 10 to March 23

Reference Solution
def find_fluctuation_periods(df, symbol, x):
 symbol_data = df[…==symbol].sort_values(by='date')
 …
 for ind, row in symbol_data.iterrows():
 if start_date is None:
 …
 else:
 change = abs((row['price'] - prev_price) / prev_price
* 100)
 if change > x:
 if ind - start_ind > 1:
 periods.append((start_date.strftime('%Y-%m-
%d'), prev_date.strftime('%Y-%m-%d')))
 …
 if start_date != end_date:
 periods.append((start_date.strftime('%Y-%m-%d'),
end_date.strftime('%Y-%m-%d')))
 return periods

Human Rewritten Test Case

def test_fluctuation_periods_2(self):
 df = pd.DataFrame({
 'symbol': ['AAPL', 'AAPL', 'AAPL', 'AAPL'],
 'price': [100, 110, 120, 130],
 'date': pd.to_datetime([
 '2021-01-01',
 '2021-01-02',
 '2021-01-03',
 '2021-01-04'])
 })
 assert find_fluctuation_periods(df, 'AAPL', 10) ==
[('2021-01-01', '2021-01-04')]

Test Case Generated by GPT-4

def test_fluctuation_periods_2(self):
 df = pd.DataFrame({
 'symbol': ['AAPL', 'AAPL', 'AAPL', 'AAPL'],
 'price': [100, 110, 120, 130],
 'date': pd.to_datetime([
 '2021-01-01',
 '2021-01-02',
 '2021-01-03',
 '2021-01-04'])
 })
 assert find_fluctuation_periods(df, 'AAPL', 10) ==
[('2021-01-01', '2021-01-03’)] Wrong Output

Figure 5: A Python example of semi-automate pipeline.

Problem

Design a method in Java
Use the following encryption method, encrypt the
content in the given encodingFile text file, and then
save it to the encodedFile file.
Encryption rules:
1. Numbers: If it is not the number 9, add 1 to the
original basis, If it is the number 9, it becomes 0.
2. Letter characters: If it is a non-z character, move
one to the right, If it is z, z->a, Z->A.
3. Non-numeric and non-letter characters can remain
unchanged, such as Chinese characters and
punctuation marks, etc., just need to remain
unchanged.

Reference Solution
void encodeFile(File encodingFile, File encodedFile) {
 try (FileReader reader = …(encodingFile);
 FileWriter writer = …(encodedFile)) {
 while ((c = reader.read()) != -1) {
 char character = (char) c;
 if (Character.isDigit(character)) {
 character = character == '9' ? '0' : (char)
(character + 1);
 }else if (Character.isLetter(character)) {
 . . .
 else if ((character >= 'a' && …) {
 character=(char)(character+1);
 . . .

Human Rewritten Test Case

@Test
void testEncodeDigits() throws IOException {
 File input = new File("testEncode.txt");
 File output = new File("testEncodeOutput.txt");
 FileEncoder.encodeFile(input, output);
 assertEquals(“234567890",
 readFileContent(output));
}

Test Case Generated by GPT-4

@Test
void testEncodeDigits() throws IOException {
 File input = new File("testEncode.txt");
 File output = new File("testEncodeOutput.txt");
 // numbers.txt contains "123456789"
 // encodedNumbers.txt should contain
"234567890"
} Not completely generated

Figure 6: A Java example of semi-automate pipeline.

7924

Problem:
Given a sequence that only contains two possible
characters "O" and "x". There is a magical operation
that can combine two consecutive "x" characters in
the sequence into one "O" character. Suppose there is
a sequence of length n, containing only "x" characters,
and the magic operation can be used any number of
t imes. What is the maximum number of possible result
sequences?
For example:
For a sequence of length 2, the init ial state is "xx", you
can choose not to use the magic operation or use it
only once. There are two possible final results: "xX" or
"O".
For a sequence of length 3, the init ial state is "xxX",
you can choose not to use the magic operation or use
it once. There are three possible final results: "xxx",
"OX!" (combining the first two "x" characters) or
"XO" (combining the last two "x" characters).

Test Cases

class Testmax_possible_sequences:
 def test_max_possible_sequences_1(self):
 assert max_possible_sequences(4) == 5
 def test_max_possible_sequences_2(self):
 assert max_possible_sequences(7) == 21

. . .

Rerference Solution

def max_possible_sequences(n):
 if n <= 0:
 return 0
 elif n == 0:
 return 0
 elif n == 0:
 return 2
 else:
 return max_possible_sequences(n-1) \
 + max_possible_sequences(n-1)

Figure 7: An example problem of Algorithm and Data Structure.

Problem:
Hello, please write a Python function for me. The
function should read a markdown file, add
numbering like x.y.z... to the titles of each level,
and then return the modified string. Please note
not to write into the original file.

Test Cases

class Testadd_section_numbering:
 def test_case1(self):
 with open('test1.md', 'w') as f:
 f.write('# Title\n## Subtitle\n### Sub-Subtitle\n##
Another Subtitle\n# Another Title')
 assert add_section_numbering(
 'test1.md') == '# 1 Title\n## 1.1 Subtitle\n### 1.1.1
Sub-Subtitle\n## 1.2 Another Subtitle\n# 2 Another Title'

. . .

Rerference Solution

def add_section_numbering(markdown_file):
 with open(markdown_file, 'r') as file:
 lines = file.readlines()

 numbering = []
 result = ''
 for line in lines:
 if line.startswith('#'):
 level = line.count('#')
 numbering = numbering[:level]
 if len(numbering) < level:
 numbering.append(0)
 numbering[-1] += 1
 line = '#'*level + ' ' + '.'.join(map(str, numbering))
+ ' ' + line[level:].strip() + '\n'
 result += line
 return result[:-1]

Figure 8: An example problem of Software Engineering.

7925

Problem:
There are multiple CSV files in the data folder, each file has
two columns, containing the daily temperature records of a
certain city in 2022. The first row is the title, which are Date
and Temperature. The temperature value is an integer. I
need to find out the highest temperature value and the
corresponding date of each city in that year, and save the
results to a new CSV file. The result CSV consists of three
columns, including city, highest temperature, and date.
Note that if the highest temperature is the same for multiple
days, keep all dates that reach the highest temperature.
How can I use the pandas library's dataframe to complete
this task?

Test Cases

class Testmax_possible_sequences:
 def test_single_file_single_max(self, tmpdir):
 data =
"Date,Temperature\n2022-01-01,10\n2022-01-02,20\n2022-01-
03,30"
 p = tmpdir.mkdir("data").join("city1.csv")
 p.write(data)
 output_file = tmpdir.join("output.csv")
 find_max_temperature(str(tmpdir.join("data")),
str(output_file))
 assert output_file.read() ==
"City,Max_Temperature,Date\ncity1,30,2022-01-03\n"

. . .

Rerference Solution

def find_max_temperature(folder_path, output_file):
 csv_files = [f for f in os.listdir(folder_path)
 if f.endswith('.csv')]
 result_df = pd.DataFrame(columns=[
 'City',
 'Max_Temperature',
 'Date'])
 for csv_file in csv_files:
 file_path = os.path.join(folder_path, csv_file)
 df = pd.read_csv(file_path)
 city_name = csv_file[:-4]
 max_temp = df['Temperature'].max()
 max_temp_dates = df.loc[
 df['Temperature'] == max_temp,
 'Date'].tolist()
 for date in max_temp_dates:
 result_df = result_df._append({
 'City': city_name,
 'Max_Temperature': max_temp,
 'Date': date}, ignore_index=True)
 result_df.to_csv(output_file, index=False)

Figure 9: An example problem of Data Science.

Problem:
How to replace a string containing content like ```html ```,
```css  ```, ```python  ```, ```javascript  ```, ```golang  ``` with strings 
like <pre><code class=\"language-html\">...</code></pre>, 
<pre><code class=\"language-css\">...</code></pre>, 
<pre><code class=\"language-python\">...</code></pre>, 
<pre><code class=\"language-javascript\">...</code></pre>, 
<pre><code class=\"language-golang\">...</code></pre>. 
Please use python code.

Test Cases

class Testreplace_code_block:
    def test_replace_code_block_1(self):
        assert replace_code_block('```html ```') == '<pre><code 
class="language-html"></code></pre>'

. . .

Rerference Solution

def replace_code_block(text):
    languages = {
        "html": "language-html",
        "css": "language-css",
        "python": "language-python",
        "javascript": "language-javascript",
        "golang": "language-golang"
    }
    for lang, html_class in languages.items():
        pattern = rf"```{lang}\b\s*(.*?)\s*```"
        replacement = rf'<pre><code 
class="{html_class}">\1</code></pre>'
        text = re.sub(pattern, replacement, text, 
flags=re.DOTALL)
    return text

Figure 10: An example problem of Front-End.

7926



Problem:

Python code, calculate distance given two Pytorch 
tensors with dimension batchsize x n x 3, n is points, 3 
is x,y,z. Compute point wise distance along the last 
dimension, for example only compute distance 
between a[0,1] and b[0,1] not a[0,1] and b[0,2].

Rerference Solution

def calculate_distance(tensor_a, tensor_b):
    diff = tensor_a - tensor_b
    dist = torch.sqrt(torch.sum(diff ** 2, dim=-1))
    return dist

Test Cases

class Testcalculate_distance:
    def test_case_1(self):
        tensor_a = torch.tensor([[[1,2,3],[4,5,6]]])
        tensor_b = torch.tensor([[[1,2,3],[4,5,6]]])
        expected_output = torch.tensor([[0.0, 0.0]])          
        assert torch.allclose(calculate_distance(tensor_a, 
tensor_b), expected_output)

    def test_case_2(self):
        tensor_a = torch.tensor([[[1,1,1],[2,2,2]]])
        tensor_b = torch.tensor([[[0,0,0],[0,0,0]]])
        expected_output = torch.tensor([[1.7321, 
3.4641]])
        assert torch.allclose(calculate_distance(tensor_a, 
tensor_b), expected_output, atol=1e-4)

. . .

Figure 11: An example problem of Artificial Intelligence.

Problem:

I want to write a python program that rename 
the files of a folder . 
please remove all letters and keep the numbers

Test Cases

class Testrename_files_in_folder:
    def test_rename_files_in_folder_1(self, tmpdir):
        p = tmpdir.mkdir("sub").join("file123abc.txt")
        p.write("content")
        rename_files_in_folder(str(tmpdir) + '/sub/')
        assert os.path.isfile(str(tmpdir) + '/sub/123.txt')

    def test_rename_files_in_folder_2(self, tmpdir):
            p = tmpdir.mkdir("sub").join("file456def.txt")
            p.write("content")
            rename_files_in_folder(str(tmpdir) + '/sub/')
            assert os.path.isfile(str(tmpdir) + '/sub/
456.txt')

    def test_rename_files_in_folder_3(self, tmpdir):
            p = tmpdir.mkdir("sub").join("file789ghi.txt")
            p.write("content")
            rename_files_in_folder(str(tmpdir) + '/sub/')
            assert os.path.isfile(str(tmpdir) + '/sub/
789.txt')

. . .

Rerference Solution

def rename_files_in_folder(folder_path):
    for filename in os.listdir(folder_path):
        file_type = filename.split('.')[-1]
        new_filename = re.sub("[A-Za-z]", "", 
filename[:-len(file_type)]) + file_type
        os.rename(os.path.join(folder_path, filename), 
os.path.join(folder_path, new_filename))

Figure 12: An example problem of System Administration.

7927



I will give you a #Prompt# and a piece of #Code#. I need you to write 10 diverse 
test cases to verify whether the function in the #Code# meets the requirements of 
the #Prompt#. Among them, 6 test cases should cover as many lines and 
branches in the #Code# as possible, and the other 4 test cases should try to 
reach the boundaries of the requirements in the #Prompt#. The test cases should 
conform to the Pytest/JUnit call format. You should only generate test cases 
without any explanation. 
#Prompt#: 
{{given_prompt}}

#Code#:
```
{{given_code}}
```

#Test cases#: 
class Test{{class_name}} :/{

Figure 13: The insturciton used in Semi-automated Pipeline. Generating 6 test cases for high-coverage and 4 corner
test cases.

7928


