@inproceedings{kumar-etal-2024-ranking,
title = "Ranking Entities along Conceptual Space Dimensions with {LLM}s: An Analysis of Fine-Tuning Strategies",
author = "Kumar, Nitesh and
Chatterjee, Usashi and
Schockaert, Steven",
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Findings of the Association for Computational Linguistics ACL 2024",
month = aug,
year = "2024",
address = "Bangkok, Thailand and virtual meeting",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-acl.474",
doi = "10.18653/v1/2024.findings-acl.474",
pages = "7974--7989",
abstract = "Conceptual spaces represent entities in terms of their primitive semantic features. Such representations are highly valuable but they are notoriously difficult to learn, especially when it comes to modelling perceptual and subjective features. Distilling conceptual spaces from Large Language Models (LLMs) has recently emerged as a promising strategy, but existing work has been limited to probing pre-trained LLMs using relatively simple zero-shot strategies. We focus in particular on the task of ranking entities according to a given conceptual space dimension. Unfortunately, we cannot directly fine-tune LLMs on this task, because ground truth rankings for conceptual space dimensions are rare. We therefore use more readily available features as training data and analyse whether the ranking capabilities of the resulting models transfer to perceptual and subjective features. We find that this is indeed the case, to some extent, but having at least some perceptual and subjective features in the training data seems essential for achieving the best results.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kumar-etal-2024-ranking">
<titleInfo>
<title>Ranking Entities along Conceptual Space Dimensions with LLMs: An Analysis of Fine-Tuning Strategies</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nitesh</namePart>
<namePart type="family">Kumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Usashi</namePart>
<namePart type="family">Chatterjee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Schockaert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics ACL 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand and virtual meeting</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Conceptual spaces represent entities in terms of their primitive semantic features. Such representations are highly valuable but they are notoriously difficult to learn, especially when it comes to modelling perceptual and subjective features. Distilling conceptual spaces from Large Language Models (LLMs) has recently emerged as a promising strategy, but existing work has been limited to probing pre-trained LLMs using relatively simple zero-shot strategies. We focus in particular on the task of ranking entities according to a given conceptual space dimension. Unfortunately, we cannot directly fine-tune LLMs on this task, because ground truth rankings for conceptual space dimensions are rare. We therefore use more readily available features as training data and analyse whether the ranking capabilities of the resulting models transfer to perceptual and subjective features. We find that this is indeed the case, to some extent, but having at least some perceptual and subjective features in the training data seems essential for achieving the best results.</abstract>
<identifier type="citekey">kumar-etal-2024-ranking</identifier>
<identifier type="doi">10.18653/v1/2024.findings-acl.474</identifier>
<location>
<url>https://aclanthology.org/2024.findings-acl.474</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>7974</start>
<end>7989</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Ranking Entities along Conceptual Space Dimensions with LLMs: An Analysis of Fine-Tuning Strategies
%A Kumar, Nitesh
%A Chatterjee, Usashi
%A Schockaert, Steven
%Y Ku, Lun-Wei
%Y Martins, Andre
%Y Srikumar, Vivek
%S Findings of the Association for Computational Linguistics ACL 2024
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand and virtual meeting
%F kumar-etal-2024-ranking
%X Conceptual spaces represent entities in terms of their primitive semantic features. Such representations are highly valuable but they are notoriously difficult to learn, especially when it comes to modelling perceptual and subjective features. Distilling conceptual spaces from Large Language Models (LLMs) has recently emerged as a promising strategy, but existing work has been limited to probing pre-trained LLMs using relatively simple zero-shot strategies. We focus in particular on the task of ranking entities according to a given conceptual space dimension. Unfortunately, we cannot directly fine-tune LLMs on this task, because ground truth rankings for conceptual space dimensions are rare. We therefore use more readily available features as training data and analyse whether the ranking capabilities of the resulting models transfer to perceptual and subjective features. We find that this is indeed the case, to some extent, but having at least some perceptual and subjective features in the training data seems essential for achieving the best results.
%R 10.18653/v1/2024.findings-acl.474
%U https://aclanthology.org/2024.findings-acl.474
%U https://doi.org/10.18653/v1/2024.findings-acl.474
%P 7974-7989
Markdown (Informal)
[Ranking Entities along Conceptual Space Dimensions with LLMs: An Analysis of Fine-Tuning Strategies](https://aclanthology.org/2024.findings-acl.474) (Kumar et al., Findings 2024)
ACL