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Abstract

Conversational question answering (ConvQA)
over knowledge graphs (KGs) involves answer-
ing multi-turn natural language questions about
information contained in a KG. State-of-the-art
methods of ConvQA often struggle with inex-
plicit question-answer pairs. These inputs are
easy for human beings to understand given a
conversation history, but hard for a machine to
interpret, which can degrade ConvQA perfor-
mance. To address this issue, we propose a rein-
forcement learning (RL) based model, CORN-
NET, which utilizes question reformulations
generated by large language models (LLMs)
to improve ConvQA performance. CORNNET
adopts a teacher-student architecture where a
teacher model learns question representations
using human writing reformulations, and a stu-
dent model to mimic the teacher model’s output
via reformulations generated by LLMs. The
learned question representation is then used by
a RL model to locate the correct answer in a
KG. Extensive experimental results show that
CORNNET outperforms state-of-the-art Con-
vQA models.

1 Introduction

Knowledge graphs (KGs) are collections of nouns
represented as nodes (representing real-world enti-
ties, events, and objects) and edges (denoting rela-
tionships between nodes). Knowledge graph ques-
tion answering (KGQA) has long been a focus of
study, with the goal of answering queries using in-
formation from a KG. However, traditional KGQA
approaches often only consider single-shot ques-
tions (Liu et al., 2022), rather than the iterative
nature of real-world conversation. Conversational
question answering (ConvQA) addresses this gap
by allowing users to interact with a QA system
conversationally. ConvQA systems have had much
success, as seen by Google’s Lambda (Thoppilan
et al., 2022), Amazon’s Alexa and OpenAI’s Chat-
GPT.

Conversational question answering (ConvQA)
involves a multi-turn process consisting of users
iteratively asking natural language questions, a sys-
tem deciphering both the conversation context and
underlying queries, and the system returning nat-
ural language answers. Some models will create
rich, human-like responses (Acharya and Adhikari,
2021; Zhou et al., 2020; Brown et al.), these meth-
ods are known as ‘dialogue’ conversation models.
While for ConvQA over KGs, a corresponding en-
tity in the KG is sufficient to answer the input ques-
tion, we call it ‘non-dialogue’ conversation models.
In this paper, we focus on the non-dialogue Con-
vQA task as shown in Example 1.

Example 1:
q1: Who is the author that wrote the book Moby-Dick?

Reformulation1: Author of the book?
Reformulation2: Who wrote Moby Dick?

a1: Herman Melville
q2: When was he born?

Reformulation1: His birthdate is?
Reformulation2: When was Herman Melville born?

a2: 1 August 1819
q3: And where is he from originally?

Reformulation1: His place of birth?
Reformulation2: Where did he grow up?

a3: Manhattan
q4:How about his wife?

Reformulation1: Where is Herman Melville’s wife
from?
Reformulation2: Herman Melville’s wife’s place
of birth?

a4: Boston
q5: Did they make a movie based on the book?
a5: yes

In general, a conversation is typically initiated
with a well-formed question (i.e., q1) followed by
inexplicit follow-up questions (e.g., q2 - q5). The
initial question (q1) often includes a central topic
entity of interest ("Moby-Dick"), while the topic
entities of follow-up questions (q2 - q5) are not

839



explicitly given. Additionally, the topic entity of
the conversation may shift over time (e.g., inquiring
about the birth time of Herman Melville in q2).

To operate ConvQA over KG, different methods
have previously been proposed. For instance, Mag-
dalena et al. in (Kaiser et al., 2021) use named en-
tity recognition (NER) methods to detect potential
KG topic entities in the conversation and employ
multi-agent reinforcement learning starting from
these entities to find answers; the performance of
this method is largely dependent on the quality of
the detected entities. Philipp et al. in (Christ-
mann et al., 2019) propose finding a conversation-
related subgraph and using heuristic-based methods
to identify the answer within the subgraph. The
subgraph is expanded as new questions are asked.
Endri et al. in (Kacupaj et al., 2022) use contrastive
learning to separate correct answers from incorrect
answers.

Despite the above progress, inexplicit input
data hinders a ConvQA system’s ability to find
correct answers (Kaiser et al., 2021; Vakulenko
et al.; Buck and Bulian, 2017). Two common lin-
guistic phenomena which undermine the seman-
tic completeness of a query in the conversation
are: anaphora and ellipsis (Vakulenko et al.).
Anaphora refers to the phenomenon of an expres-
sion that depends on an expression in the previous
context. In Example 1, the word “he" in q2 refers to
a1. Meanwhile, ellipsis refers to the phenomenon
of the omission of expressions in the previous con-
text. For example, the complete form q4 should
be "Where is Herman Melville’s wife from?". To
address this issue, several methods aim to learn
a reformulation of the input query, rewriting the
original question in a more meaningful way. Then,
one can search for the answer using this new re-
formulation with existing techniques (Buck and
Bulian, 2017; Vakulenko et al.; Nogueira and Cho,
2017). Although many of the existing question
rewriting models have shown potential to enhance
ConvQA performance, as demonstrated by prior
research (Ishii et al., 2022), their generated refor-
mulations fall short compared to human-generated
reformulations (Vakulenko et al.).

In this paper, we present CORNNET, a new re-
inforcement learning (RL) model for non-dialogue
conversational question answering (ConvQA) with
large language model (LLM) generated reformu-
lations. First, we fine-tune existing LLMs, GPT2
(Radford et al., 2018) and Bart (Lewis et al., 2019),

to generate high quality reformulations, using hu-
man writing reformulations as the ground truth.
Second, to further increase the convQA perfor-
mance, we propose a teacher-student architecture
to achieve near human-level performance.1 Specif-
ically, CORNNET (1) directly trains a teacher
model with human writing reformulations in the
training data, and (2) indirectly trains a student
model with LLM-generated reformations to mimic
the teacher model’s output so that it can approach
human-level performance. Note that the human
writing reformulations only exist in the training
and validation data. Lastly, to locate an answer,
a RL model walks over the KG, sampling actions
from a policy network to guide the direction of the
walk and identify candidate answers. Our experi-
ments demonstrate the effectiveness of CORNNET

and its superiority over the state-of-the-art conver-
sational question answering baselines.

The main contributions of this paper are: (1)
Analysis. We demonstrate that although LLMs
are good question reformulators, their performance
lags behind human-level performance. (2) Method.
We propose a RL based model CORNNET which
utilizes the question reformulations to improve the
QA performance. The proposed teacher-student
model can help us achieve near human-level per-
formance with LLM-generated reformulations. (3)
Evaluation. The experimental results on several
real-world datasets demonstrate that the proposed
CORNNET consistently achieves state-of-the-art
performance.

2 Related work

2.1 Conversational Question Answering

Various approaches have been used to develop Con-
vQA systems. For instance, in (Buck and Bulian,
2017), the authors employed RL to train an agent
that reformulates input questions to aid the sys-
tem’s understanding. In (Guo et al., 2018), an
encoder-decoder model is used to transform natu-
ral language questions into logical queries for find-
ing answers. In (Kacupaj et al.), a Transformer
model is used to generate logical forms and graph
attention is introduced to identify entities in the
query context. Other systems, such as Google’s
Lambda (Thoppilan et al., 2022), Amazon Alexa
(Acharya and Adhikari, 2021), Apple’s Siri, and

1Human-level performance refers to the ability to find
answers based on real human writing reformulations during
testing.
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OpenAI’s ChatGPT, are also pursuing this task.

2.2 Knowledge Graph Reasoning and
Question Answering

Knowledge graph reasoning aims to infer or dis-
covery new knowledge according to existing infor-
mation in the knowledge graph. It has been used in
many applications, such as knowledge graph com-
pletion (Wang et al., 2022), entity alignment (Yan
et al., 2021a,b), temporal reasoning (Wang et al.,
2024, 2023) and so on. While knowledge graph
question answering, a special reasoning task, has
been researched for some time, many of the exist-
ing methods primarily focus on answering single-
turn questions (Liu et al., 2023; Bordes and N,
2013) or complex logical questions (Wang et al.,
2021; Liu et al., 2021, 2024). For example, Zhang
et al. (Zhang et al., 2022) use a KG as the envi-
ronment and propose a RL-based agent model to
navigate the KG in order to find answers to input
questions. Similarly, in (Das et al., 2017; Lin and
Socher; Xiong et al., 2017; Kingma and Ba, 2017),
authors use RL models to find paths in the KG for
answering input queries. Other studies, such as
(Misu et al., 2012; Zhou et al., 2020; Acharya and
Adhikari, 2021; Radford et al., 2018; Brown et al.),
integrate RL with other methods to create more
human-like systems.

2.3 Question Rewriting

Question rewriting aims to reformulate an input
question into a more salient representation. This
can improve the accuracy of search engine results
or make a question more understandable for a natu-
ral language processing (NLP) system. In (Vaku-
lenko et al.), an unidirectional Transformer decoder
is proposed to automatically rewrite a user’s input
question to improve the performance of a conver-
sational question answering system. In (Elgohary
et al., 2019), authors propose a Seq2Seq model to
rewrite the current question according to the conver-
sational history, and also introduce a new dataset
named CANARD. In (Fader et al., 2014), query
rewriting rules are mined from a background KG
and a query rewriting operator is used to generate
a new question. Unlike the previous techniques,
CORNNET trains teacher-student model with both
human written reformulations and LLM-generated
reformulations. This approach helps to avoid the
negative impact from the generated low quality re-
formulations.

3 Problem Definition

A KG can be denoted as G = (V,R,L) where
V = {v1, v2, ..., vn} is the set of nodes/entities,
R = {r1, r2, ..., rm} is the set of relations and L
is the list of triples. Each triple in the KG can be
denoted as (h, r, t) where h ∈ V is the head (i.e.,
subject) of the triple, t ∈ V is the tail (i.e., object)
of the triple and r ∈ R is the edge (i.e., relation,
predicate) of the triple which connects the head h
to the tail t. The embedding of a node or relation
type is represented by bold lowercase letters, e.g.,
ei, ri. Each triple/edge (h, r, t) in the KG has a
unique edge embedding which is denoted as ur.

Conversational question answering over a KG
aims to iteratively answer multiple related ques-
tions from the users. Unlike dialog question an-
swering which wants the chatbot to imitate the
response of a human, ConvQA over KG only re-
quires the model to return entities in the knowledge
graph. We formally define the key terminologies
used in this paper as follows.
Conversation. A conversation C with T
turns is made up of a sequence of questions
q1, q2, ..., qT and their corresponding answers Ans
= { a1, a2, ..., aT }, such that C = 〈(q1, a1), (q2, a2),
..., (qT , aT )〉. Example 1 in Introduction contains
T = 5 turns. We assume that q1 is well-formed, and
all other qt are inexplicit.
Question. Each question qt is a sequence of words
qt = (wt

1, ..., w
t
Ωt
), where Ωt is the number of

words in qt. We assume each question can be
mapped to a relation rqt in the KG and make no
assumptions on the grammatical correctness of qt.
Topic Entity. We assume that each qt has a top-
ic/central entity vqt which the user wants to ask
about. We assume that the topic entity of q1 is
given in the training data, while the topic entities
for other questions q2, ..., qT are not given. For
example, for the five questions in Example 1, their
topic entities are Moby Dick, Herman Melville,
Herman Melville, Moby Dick and Moby Dick,
respectively. The topic entity of q1 is presumed the
main topic entity which is denoted as vq1 .
Answer. Each answer at to question qt is a (possi-
bly multiple, single, or null-valued) set of entities
in the KG. We assume that all the answer entities
exist in the KG, except true or false questions.
Reformulation. A reformulation is a sentence
which expresses the same information as the in-
put question, but in a different way. We assume in
the training data, each question has multiple refor-
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Question Encoder

𝑞𝑖: [CLS] where is the author born <s>
𝑅𝑒𝑓𝑞𝑖

1:[CLS] where is the author’s birthplace <s>

𝑅𝑒𝑓𝑞𝑖
2:[CLS] where is the author from <s>

ℎ𝑅𝑒𝑓𝑞𝑖
2

ℎ𝑅𝑒𝑓𝑞𝑖
1

ℎ𝑞𝑖

Reformulation Merging

𝑀𝑞𝑖

𝑀𝑞2

𝑀𝑞1

LSTM

LSTM

LSTM

… …
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(𝑣𝑞1𝑎1… 𝑎𝑖−1)

Figure 1: Training Process of CORNNET. The light gray part denotes the architecture of the student model. The
light green part shows the framework of RL-based question answering model. Both are trained end-to-end.

mulations.
Turn. Each question in C, including its reformula-
tions and corresponding answers, constitutes a turn
ti. Each turn ti contains a question qi, the answer
ai and reformulations of qi.

Based on the above, we formally define the prob-
lem of ConvQA over KG as:

Definition 1. Given: (1) A knowledge graph G,
(2) the training set of conversations where each
question contains multiple human written reformu-
lations, (3) the test set of conversations where no
question reformulation is provided; Output: (1)
The trained model, (2) the answer for each ques-
tion in each conversation of the test set.

4 Proposed Method

Due to anaphora and ellipsis, current ConvQA
methods often rewrite input queries to generate
more understandable reformulations. In this pa-
per, we follow this general idea by fine-tuning two
existing LLMs, GPT2 and Bart, to generate re-
formulations. Although GPT2 and Bart are good
reformulation generators, their performance still
lags behind human-level performance. To further
improve the performance, we propose a teacher-
student architecture. The teacher model learns the
question representation by using human written
reformulations, while the student model takes re-
formulations generated by LLMs as input, and tries
to mimic the output of the teacher model, so that
it can achieve the same performance as the teacher
model despite using the LLM-generated reformula-
tions.

In each iteration, our model uses the conversa-
tion history and the current query to identify the
current topic entity, and a RL agent travels the KG
starting from the topic entity to find the answer.
This process is repeated for a number of turns until

the conversation is completed. Figure 1 illustrates
the framework of the proposed CORNNET. We
will describe the details of each component in the
following subsections.

4.1 Student Model: LLMs Reformulation
Encoder

A - Context Encoder. Given a question qi =
(wi

1, w
i
2, ..., w

i
Ωt
), we first add two indicator tokens

([CLS] and <s>) to the beginning and end of the
question context to signify its boundary. Then,
we pass the processed question context through a
pre-trained BERT (Devlin et al., 2019) to extract
contextual embeddings for each token:

[hCLS ,w1, ..,wΩt ,hs] =

BERT([CLS], w1, .., wΩt , < s >)
(1)

where hCLS is the embedding of the [CLS] token
and hs is the embedding of the <s> token. The
context question embedding is obtained from the
transformation of hCLS and hs, where FFN is a
feed forward neural network.

hqi = FFN(hCLS ||hs) (2)

B - Context Fusion. During the training, each
input question has multiple corresponding refor-
mulations generated. For each reformulation, we
use the Context Encoder to obtain its context em-
bedding. To merge the reformulation information,
we stack the embeddings of the N reformulations
and the original question context embedding to cre-
ate a sequence with N+1 embeddings. We treat
this sequence as the embedding of a language sen-
tence and pass it through a Transformer Encoder
(Vaswani et al., 2017) to merge them together.

Mqi
= TRANSFORMER([hqi |hRef1qi

|...|hRefnqi
])[0]
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where Mqi
is the query embedding after merging

the reformulations and getting the first output.
C - Integrating Conversational History. Another
problem in ConvQA is that the user’s inputs are
often ambiguous, hampering a system’s ability to
give accurate answers. This is illustrated in Ex-
ample 1 q3 “And where is he from originally?".
It is impossible to identify the antecedent to the
pronoun ‘he’ without any conversational history.
Consequently, conversational history is vital to the
success of CORNNET. We use an LSTM to encode
all the conversational history which is given below.

lqi
= LSTM(Mqi

) (3)

the output of the LSTM lqi
will be treated as the

query embedding and be used by other components.
Note that the reformulations used here are gener-
ated by LLMs.

4.2 Teacher Model: Human Written
Reformulation Encoder

Reformulations have been used by various methods
to improve the performance of QA systems by cre-
ating more understandable queries. For instance,
in (Buck and Bulian, 2017), Christian et al. use
a Seq2Seq-based reinforcement learning agent to
transform input questions into machine-readable
reformulations. In (Vakulenko et al.), Svitlana et al.
propose a Transformer Decoder-based model for
question rewriting. According to the study in (Ishii
et al., 2022), most question reformulation methods
only improve the performance about 2-3%. De-
spite that LLMs have exploded in popularity for all
sorts of natural language tasks, the ConvQA per-
formance based on LLM-generated reformulations
is still upper bounded by human reformulations
(Vakulenko et al.; Ishii et al., 2022).

To further improve the student model’s perfor-
mance, we propose a teacher-student approach
where a teacher network is trained on human writ-
ten reformulations. The teacher network has the
same network structure as the student model, but
uses human written reformulations as the input. An
example is given in Figure 2. During the training
process, our goal is to make the output question em-
bedding of the student model as close as possible
to the output of the teacher model in the embed-
ding space. The distance between the student’s and
teacher’s output is measured using the L2 distance:

L =
∑

qi∈C
[d(Υqi , lqi)], (4)

As close 
as possible

Teacher Model

Student Model

Question Answering

Human written reformulations

LLMs generated reformulations

Figure 2: Reformulation imitator.

where Υqi is the output of the teacher network for
input question qi, and lqi

is the output of the student
network for the same input with reformulations. By
minimizing this distance, we can ensure that the stu-
dent network produces the output that is similar to
that of the teacher model, even when it only has ac-
cess to the synthetic reformulations. Note that the
teacher model is pretrained and fixed when we train
the student model. During the testing phase, given
a question, we first use LLMs to generate multiple
reformulations for it, then the student model is used
to encode the input question with LLM-generated
reformulations. The performance of directly using
the teacher model on the test data is slightly inferior
to our model due to the different data distribution
of human written reformulations compared to the
reformulations generated with LLMs.

4.3 Inferring the Topic Entity

During a conversation, the topic entity may change
over time. To accurately answer questions, we
determine the current topic entity based on the con-
versation history and the current question. We use a
multi-layer perception (MLP) to determine whether
the topic entity remains unchanged. If the classifier
predicts that the topic entity of the current question
is not the answer to the previous question, we set
the topic entity to the main topic entity vq1 .

The classifier consists of a feed forward neu-
ral network (FFN) with ReLU activation functions
and a classification layer. The classification layer
uses softmax on a 2D output to calculate the cross-
entropy loss. Here we use the index format of
PyTorch to show that the probability of vqi = ai−1

is equal to the second element of the 2D output.

Pr(vqi = ai−1) = MLP_classifier(FNN(lqi))[1]

A - Pretrain Topic Entity Selector. The goal of
the Topic Entity Selector is to identify the correct
topic entity within the conversation, which is an
input to the RL model. In order to stabilize the
training process for the RL model, we pre-train
the parameters of the classifier using binary cross-
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entropy loss

L1 =− [y log(Pr(vqi = ai−1))+

(1− y) log(1− Pr(vqi = ai−1)))]

4.4 Question Answering
After obtaining the topic entity, the next step
is to find the correct entity to answer the user.
We formulate this problem as a Markov deci-
sion process (MDP) which is defined by a 5-tuple
(S,A,R, P, γ), where S is the state space, A is the
action space, P is the state transition function and
R denotes the reward function.
States. Intuitively, we want a state to encode the
question, the current position of the agent in the
KG, and the search history information. At the
ith step, the state si ∈ S is defined as a triple
st = (ni, lq,gi), ni is the current entity where the
agent is at; lq is the question embedding gener-
ated by the student network; and gi refers to the
search history information. (ni,gi) can be viewed
as state-dependent information while (lq) is the
global context shared by all states.
Actions. The set of possible actions As from
a state st = (nt, lq,gt) consists of all outgoing
edges of the vertex nt in the KG. Formally, As

= {(ri,uri , ee′)|(nt, ri, e
′) ∈ G}. This means an

agent at each state has the option to select which
outgoing edge it wishes to take having knowledge
of the label of the edge ri and destination vertex e′.
Note that different from most of the existing meth-
ods (Lin and Socher; Kaiser et al., 2021) which
only use As = (ri, ee′), we also use the unique
edge embedding uri . To allow the agent to have
the option of ending a search, a self-loop edge is
added to every entity. In addition, we also include
the inverse relationship of a triple in the graph.
Transition. The transition function is defined as
δ : S ×A −→ S, which represents the probability
distribution of the next states δ(st+1|st, at). In the
current state st, the agent aims to choose proper
actions at and then reach the next state st+1 =
(nt+1, lq,gt+1). Both nt and gt are updated, while
the query and answer remains the same.
Rewards. The model will receive the reward of
Rb(st) = 1 if the current location is the correct
answer and 0 otherwise. We set γ = 1 during the
experiments.

4.5 Policy Network
The search policy is parameterized using state infor-
mation and global context, including the search his-

tory. Specifically, every entity and relation in G is
assigned a dense vector embedding e ∈ Rd and r ∈
Rd respectively. The action at = (rri ,uri , ee′) ∈
At is represented as the concatenation of the rela-
tion embedding, the unique edge embedding and
the end node embedding.

The search history (n1 = vqi , r1, n2, ..., nt) ∈
H consists of the sequence of observations and
actions taken up to step t, and can be encoded using
an LSTM (Hochreiter and Schmidhuber, 1997):

g0 = LSTM(0, [evqi ||lqi ])
gt = LSTM(gt−1,at−1), t > 0

where lqi is the question embedding to form a start
action with evqi . The action space is encoded by
stacking the embeddings of all actions in At: At ∈
R|At|×3d. And the policy network π is defined as:

πθ(at|st) = Ψ(At ×W2ReLU(W1[nt||lqi ||gt]))

where Ψ is the softmax operator.

4.6 Knowledge-Based Soft Reward

Due to the weak supervision in ConvQA, the agent
will receive a positive reward until it arrives at the
target entity. Such delayed and sparse rewards sig-
nificantly slow the convergence. To address the
issue of weak supervision and sparsity of rewards
in ConvQA, we assign a soft reward to entities other
than the target answer to measure the similarity be-
tween them. This helps speed up convergence and
mitigate incompleteness in the KG. Specifically,
the soft reward is used to measure the similarity be-
tween the current entity nt identified by our model
and the ground truth answer at. We use ComplEx
(Trouillon et al., 2016) to learn the initial entity
embedding and relation embedding for all nodes
and edges in the knowledge graph. The probability
that nt is the correct answer is calculated by

Pr(nt|lqi , vqi ,G) = Re(< lqi , ent , evqi >) (5)

We propose the following soft reward calculation
strategy

R(st) = Rb(st) + (1−Rb(st))Pr(nt|lqi , vqi ,G)

Namely, if the destination nt is a correct answer
according to G, the agent receives reward 1. Other-
wise the agent receives a fact score weighted by a
pretrained distribution: Pr(nt|lqi , vqi ,G).
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4.7 Training

Given a set of conversations, we want to return
the best possible answers a∗, maximizing a reward
a∗ = argmaxa

∑
C

∑
T R(ai|qi). The reward is

computed with respect to the question qi while the
answer is provided in the train dataset. The goal is
to maximize the expected reward of the answer re-
turned under the policy Ea1,...,aT∼πθ

[R(st)]. Since
it is difficult to compute the expectation, we use
Monte Carlo sampling to obtain an unbiased esti-
mate:

Ea1,...,aT∼πθ
[R(st)] ≈

1

N

N∑

i=1

T∑

j=1

R(st)πθ(at|st)

In the experiment, we approximate the expected
reward by running multiple rollouts for each train-
ing example. The number of rollouts is fixed,
We set this number to 20. We use REINFORCE
(Williams, 1992) to compute gradients for training.

▽θ Ea1,...,aT∼πθ
[R(st)] =

T∑

i=1

▽θπθ(at|st)R(st)

≈ 1

N

N∑

i=1

T∑

j=1

R(st)▽θ log(πθ(at|st))

Additionally, to encourage diversity in the paths
sampled by the policy during training, we add an
entropy regularization term to our cost function, as
proposed in (Kaiser et al., 2021).

Hπθ
(., s) = −

∑

a∈As

πθ(a|s)logπθ(a|s)

Hπ,θ is added to the cost function to ensure bet-
ter exploration and prevent the agent from getting
stuck in local optima. This final objective is:

Ea1,...,aT∼πθ
[R(st)] + λHπθ

(., s)

After training, in the testing phase, given a query,
we rank all the entities in the KG based on their
probabilities of being the correct answer. We let the
policy network keep top-k most likely paths accord-
ing to beam search, and we rank them according to
their possibilities. For all the other entities which
are not in the top-k candidates, we use ComplEx
(Trouillon et al., 2016) to rank them according to
Eq. (5).

5 Experiments

We use two datasets in the experiments: Con-
vQuestions (Christmann et al., 2019) and ConvRef
(Kaiser et al., 2021). ConvQuestions contains a to-
tal of 6,720 conversations, each with 5 turns. Con-
vRef contains a total of 6,720 conversations, each
with 5 turns. The code and datasets will be made
publically available upon the acceptance of the pa-
per. The details of these datasets can be found in
Appendix.

Both ConvQuestions and ConvRef use Wiki-
data2 as their background KG. However, the full
Wikidata KG is extremely large, containing ap-
proximately 2 billion triples. Therefore, in the
experiment, we sample a subset of triples from
Wikidata. We first take the overlapped entities be-
tween the Wikidata and the QA datasets, and then
we further obtain all the one-hop neighbours of
these overlapped entities. The one-hop neighbors
are retrieved from both the original data dump and
also the entities’ corresponding online Wikidata
websites.

We compare the performance of our method,
CORNNET, with four baselines: Convex (Christ-
mann et al., 2019), Conqer (Kaiser et al., 2021),
OAT and Focal Entity (Lan and Jiang, 2021). The
details of all baselines can be found in Appendix.

Two LLMs are used to generate reformulations
for the input query, which are GPT2 (Radford et al.,
2018) and Bart (Lewis et al., 2019). For each in-
put question, we generate multiple reformulations
and use attention mechanism to aggregate them
inside the model. We adopt the following ranking
metrics which are also employed by the previous
baselines: (1) Precision at the top rank (P@1); (2)
Mean Reciprocal Rank (MRR); (3) Hit ratio at k
(H@k/Hit@k). The details of all the datasets and
experiment environment can be found in Appendix.

5.1 Main Results

In this subsection, we test CORNNET on conver-
sational question answering tasks and compare it
with other baseline methods.
A - Overall performance on ConvQA datasets.
Table 2 compares the results of CORNNET with
baselines on the ConvQuestions and ConvRef
datasets. As we can see, CORNNET outperforms
the baselines in both H@5 and MRR metrics On
ConvQA. For H@5, CORNNET performs 4.5% bet-

2https://www.wikidata.org/wiki/Wikidata:
Database_download
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Table 1: Performance on different domain datasets.
Domain Movies TV Series Music Soccer
Metric H@3 H@5 H@8 H@3 H@5 H@8 H@3 H@5 H@8 H@3 H@5 H@8
Dataset ConvQA
Conv 0.345 0.345 0.345 0.303 0.308 0.309 0.213 0.217 0.221 0.2019 0.2019 0.2019

Conquer 0.336 0.343 0.354 0.375 0.396 0.421 0.279 0.282 0.289 0.325 0.343 0.350
CORNNET 0.385 0.456 0.514 0.437 0.482 0.587 0.290 0.356 0.392 0.288 0.418 0.550

Dataset ConvRef
Conv 0.345 0.345 0.345 0.303 0.308 0.308 0.213 0.217 0.221 0.202 0.202 0.202

Conquer 0.389 0.404 0.429 0.435 0.442 0.485 0.371 0.398 0.413 0.371 0.384 0.393
CORNNET 0.393 0.461 0.521 0.436 0.533 0.564 0.377 0.447 0.484 0.353 0.385 0.425

Table 2: Performance on ConvQA and ConvRef.
Dataset ConvQA ConvRef
Model Hit@5 MRR Hit@5 MRR

CONVEX 0.219 0.200 0.257 0.241
CONQUER 0.372 0.327 0.427 0.382

OAT - 0.260 - -
Focal Entity - 0.248 - -
CORNNET 0.417 0.337 0.477 0.353

ter than CONQUER and 20% better than CON-
VEX. In terms of MRR, CONVEX has the lowest
performance, which is 13.7% worse than CORN-
NET. CONQUER has the second highest perfor-
mance, but it is also 1% lower than CORNNET. For
OAT, because its source code is not available, we
directly adopt its results from (Marion et al., 2021).
We can find that its MRR is 7.3% lower than that of
CORNNET. For Focal Entity, it has the third high-
est MRR. On the ConvRef dataset, CORNNET also
has similar performance. It achieves the highest
Hit@5, which is 5% better than that of CONQUER.
CORNNET also has the second highest MRR com-
pared with other baselines. Due to the unavailabil-
ity of the OAT source code and the failure to run
Focal Entity on the ConvRef dataset, we are un-
able to include their results in our analysis on the
ConvRef dataset.
B - Performance on different domains. We fur-
ther investigate the ranking performance of CORN-
NET across different domains for both datasets. Ta-
ble 1 illustrates detailed ranking results for H@3,
H@5 and H@8. As the results show, CORNNET

outperforms baselines on most domains on the
ConvQuestions dataset. On average, it achieves
a 13.7% improvement in H@8 and 6.6% improve-
ment in H@5 compared to the second highest base-
line CONQUER. Similar results are also observed
on the ConvRef dataset.

5.2 Ablation Studies and Efficiency Results

A - The effectiveness of the reformulations. In
this subsection, we demonstrate the effectiveness
of using different reformulations in the model. Two

large language models are used to generate refor-
mulations: GPT2 and Bart. When not using refor-
mulations, the output of the Question Encoder is
treated as the input of the LSTM directly. Table 3
shows the experiment results. As we can see, using
reformulations can indeed increase the ConvQA
performance most of the time. The performance of
using GPT2 reformulations is very similar to that
of using Bart reformulations. Using human writing
reformulations has the best performance.

Table 3: The effectiveness of the reformulations.
Model P@1 Hit@3 Hit@5 Hit@8

No Reformulation 0.231 0.373 0.445 0.474
GPT2 Reformulation 0.212 0.367 0.451 0.504
Bart Reformulation 0.221 0.376 0.441 0.494

Human Reformulation 0.257 0.395 0.463 0.518

B - The effectiveness of the teacher-student
model. We further test the effectiveness of the
proposed teacher-student model, shown in Table
4. If we only use the reformulations generated by
LLMs, the performance is about 3% lower than that
of teacher-student model. If we train the model on
human written reformulations while tests on gener-
ated reformulations, the performance is about 1.3%
lower than CORNNET(the last row of Table 4).

Table 4: The effectiveness of the teacher-student model.
Model P@1 Hit@3 Hit@5 Hit@8

GPT2 Reformulation 0.212 0.367 0.451 0.504
CORNNET (GPT2) 0.265 0.404 0.477 0.526
Bart Reformulation 0.221 0.376 0.441 0.494
CORNNET (Bart) 0.244 0.413 0.491 0.523

Train test data shift 0.237 0.389 0.472 0.507

6 Conclusion

In this paper, a model (CORNNET) that creatively
combines the question reformulation and reinforce-
ment learning is proposed on a knowledge graph
(KG) to attain accurate multi-turn conversational
question answering. CORNNET utilizes a teacher-
student model and reinforcement learning agent
to find answers from a KG. Experimental results
demonstrate that CORNNET surpasses existing
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methods on various benchmark datasets on con-
versational question answering.

7 Ethical Considerations

We have thoroughly evaluated potential risks asso-
ciated with our work and do not anticipate any sig-
nificant issues. Our conversational question answer-
ing framework is intentionally designed to priori-
tize usability and ease of implementation, thereby
reducing barriers for adoption and minimizing op-
erational complexities. Furthermore, it’s essential
to highlight that our research builds upon an open-
source dataset. This ensures transparency, fosters
collaboration, and helps address ethical considera-
tions by providing accessibility to the underlying
data.

8 Limitation

Our dataset exhibits several limitations that war-
rant consideration. Firstly, our training data is con-
strained by its limited scope, primarily focusing on
specific domains rather than providing comprehen-
sive coverage across diverse topics. This restriction
may affect the model’s generalizability and per-
formance in addressing queries outside of these
predefined domains. Moreover, while our knowl-
edge graph serves as a valuable resource for con-
textual information, it is essential to acknowledge
its incompleteness. Despite its vast size, certain
areas within the knowledge graph may lack suf-
ficient data or connections, potentially leading to
gaps in the model’s understanding and inference
capabilities.
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A Appendix

A.1 Dataset

We use two datasets in the experiments: Con-
vQuestions (Christmann et al., 2019) and ConvRef
(Kaiser et al., 2021). ConvQuestions contains a
total of 6,720 conversations, each with 5 turns, but
no human writing reformulations are provided in
this dataset. ConvRef contains a total of 6,720 con-
versations, each with 5 turns, and each question
has several human writing reformulations. The
statistics of these datasets are shown in Table 5.

Table 5: Summary of datasets.

Dataset Train Valid Test
ConvQA 6,720 2,240 2,240
ConRef 6,720 2,240 2,240

A.2 Experiment Setting

All experiments are conducted on a machine with
an Intel(R) Xeon(R) Gold 6240R CPU, 1510 GB
memory, and an NVIDIA-SMI Tesla V100-SXM2
GPU. Network embedding has been studied for a
long time (Yan et al., 2023, 2024), in this paper,
we use ComplEx to learn the KG embeddings, we
use a hidden dimension of 200 and train for 100
epochs with a batch size of 256. For CORNNET,
we set the hidden dimension to 200, the batch size
to 12, the learning rate to 0.00002, and train for
20 epochs, storing checkpoints along the way. The
Adam optimizer (Kingma and Ba, 2017) is used
with fixed weight decay of 1.0. For the pre-trained
BERT model, we set the maximum sentence size
to 64 tokens, padding if necessary. The token di-
mension is 128.

A.3 Baselines

We compare the performance of our method,
CORNNET, with four baselines:

• Convex (Christmann et al., 2019): This
method detects answers to conversational ut-
terances over KGs in a two-stage process
based on graph expansion. It first detects so-
called frontier nodes that define the context at
a given turn and then finds high-scoring can-
didate answers in the vicinity of the frontier
nodes.

• Conqer (Kaiser et al., 2021): This is the
current state-of-the-art baseline. It uses RL

with reformulations to find answers in the KG.
It employs multiple agents to find multiple
answers for each question and ranks these an-
swers in the end.

• OAT (Marion et al., 2021): This Transformer-
based model takes a JSON-like structure as
input to generate a Logical Form (LF) gram-
mar that can model a wide range of queries
on the graph. It finds answers by applying the
LF.

• Focal Entity (Lan and Jiang, 2021): This is
a novel graph-based model that captures tran-
sitions of focal entities and applies a graph
neural network to derive a probability distri-
bution of focal entities for each question. The
probability distribution is then combined with
a standard KBQA module to rank answers.

Note that Convex and Conqer utilize named entity
recognition (NER) to identify topic entities in a
question. Since we assume that the topic entity of
q1 is given, in order to ensure a fair comparison, we
revise the NER method in Convex and Conqer so
that it returns the main topic entity of q1 directly.

A.4 The effectiveness of the unique relation
embedding

We also test the effectiveness of using a unique
edge embedding in the action space with reinforce-
ment learning. 4 reformulations are used in the
experiments, and the results are shown in Table 6.
In this table, " CORNNET -" denotes CORNNET

without using a unique edge embedding. As we
can see, using a unique edge embedding improves
the question answering performance by an average
of 2.2%.

Table 6: The effectiveness of the unique edge embed-
ding.

Model P@1 Hit@3 Hit@5 Hit@8 MRR
CORNNET - 0.227 0.396 0.469 0.507 0.330
CORNNET 0.265 0.404 0.477 0.526 0.353

A.5 The effectiveness of the topic entity
selector.

The topic entity selector is pre-trained using the
training data After pre-training, the results of the
accuracy for the classifier is 83.2%. We find that
the classifier has a relatively high accuracy.
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A.6 Efficiency.

Figure 3 shows the training time and test time
of different methods on ConvRef dataset. As we
can see, CORNNET has the shortest training and
test time. While Conv has the longest training
and test time. Despite the short training time of
CORNNET, it still achieves better or comparable
ConvQA performance compared to baselines.

Figure 3: CORNNET Training and Test Time.

A.7 More details of CornNet

Figure 4 gives an example of reinforcement learn-
ing based KGQA method. In this example, we
want to predict the relationship between "Steven
Spielberg" and "Tom Hanks". Despite the KG is
incomplete, the RL agent can correctly find the
answer.

21

Figure 4: Reinforcement learning example.

Figure 5 provides a illustrative example of a
reinforcement learning action space. In reinforce-
ment learning, the action space refers to the set of
all possible actions that an agent can take in a given
environment. This figure demonstrates how the
action space might look in a specific reinforcement
learning scenario, highlighting the various options
available to the agent at each step. Understanding
the action space is crucial for designing effective
reinforcement learning algorithms, as it directly
impacts the agent’s ability to learn and make deci-
sions.

On the other hand, Figure 6 presents the frame-
work of the teacher-student model, a popular ap-
proach in machine learning for knowledge distilla-
tion and transfer learning. In this framework, the
teacher model serves as a knowledge source, pro-
viding high-quality predictions or representations

ℎ 𝑟1 𝑎1 𝑟2 𝑎2

𝑎3
1

𝑎3
2

𝑎3
𝑛

…

𝑠𝑡  = ℎ𝑖𝑠𝑡𝑜𝑟𝑦, 𝑎𝑡 , 𝑄   Action space

Agent 
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Figure 5: Reinforcement action space.

that the student model aims to learn from. The key
distinction between the teacher and student models
lies in their inputs: the student model receives re-
formulations generated by a large language model
(LLM) as input, while the teacher model relies on
human-written reformulations. This setup allows
the student model to learn from both the teacher’s
expertise and the diversity of reformulations pro-
vided by the LLM, potentially leading to improved
performance and generalization.

The combination of reinforcement learning and
the teacher-student framework offers exciting possi-
bilities for advancing machine learning algorithms.
By leveraging the strengths of both approaches, we
can design more robust and efficient systems.

Teacher
Agent

Teacher

Student
Agent

Student

Human reformulations

Training data Training data
LLMs generated 
reformulations

Test data

Cause data distribution shift
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Figure 6: Teacher student model example.
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