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Abstract

Large language models (LLMs) are proficient
at generating fluent text with minimal task-
specific supervision. However, their ability
to generate rationales for knowledge-intensive
tasks (KITs) remains under-explored. Gen-
erating rationales for KIT solutions, such as
commonsense multiple-choice QA, requires ex-
ternal knowledge to support predictions and
refute alternate options. In this work, we con-
sider the task of generating retrieval-augmented
rationalization of KIT model predictions via
external knowledge guidance within a few-
shot setting. Surprisingly, crowd-workers pre-
ferred LLM-generated rationales over existing
crowd-sourced rationales, generated in a simi-
lar knowledge-guided setting, on aspects such
as factuality, sufficiency, and convincingness.
However, fine-grained evaluation of such ratio-
nales highlights the need for further improve-
ments in conciseness, novelty, and domain
invariance. Additionally, through an expert-
sourced study evaluating the reliability of the
rationales, we demonstrate that humans’ trust
in LLM-generated rationales erodes when com-
municated faithfully, i.e., without taking model
prediction accuracy into account. We find that
even instrumenting simple guardrails can be
effective for reliable rationalization.

1 Introduction

In recent years, generating rationales (i.e., free-
text explanations) of natural language understand-
ing tasks has been increasingly explored in the
field of explainable NLP. Such rationales — while
less functionally grounded, i.e., they may not en-
tirely reflect the model’s behavior — provide an
effective interface to interpretably communicate
model decisions to end-users (Hendricks et al.,
2016; Camburu et al., 2018; Madsen et al., 2022;
Gurrapu et al., 2023). Generating these ratio-
nales via direct supervision (Ehsan et al., 2018;

∗Work done during internship at Megagon Labs.

Figure 1: a) A commonsense question with multiple
choices and knowledge extracted from ConceptNet and
b) proposed LLM-generated rationale corroborating the
selected answer and refuting the other choices.

Narang et al., 2020) or fine-tuning (Aggarwal et al.,
2021; Rei et al., 2022) requires the collection of
high-quality human-authored rationales. Collect-
ing such rationales via crowd-sourcing is expen-
sive, difficult to standardize, and lacks generaliz-
ability to different domains (Wiegreffe and Maraso-
vić, 2021; Tan, 2021). Recent work (Wiegreffe
et al., 2022) showcases that large language model
(LLM) generated rationales, obtained via few-shot
in-context learning (Radford et al., 2019; Brown
et al., 2020; Huang et al., 2023), alleviate these
challenges while showcasing surprising effective-
ness over crowdsourced rationales on dimensions
such as human preference. However, character-
izing the suitability of LLMs as rationalizers of
knowledge-intensive task (KIT) decisions such as
commonsense question answering (CSQA (Talmor
et al., 2019)) and open book question answering
(OBQA (Mihaylov et al., 2018)) requires further
investigation due to the difference in scope and
setting from prior work (Wiegreffe et al., 2022).

Firstly, KITs such as CSQA and OBQA are
framed as multiple-choice questions, requiring
models to select one answer from several choices
(see Figure 1a). Therefore, a corresponding well-
formed rationale is required to be (a) comprehen-
sive, i.e., state facts that are not present in the ques-
tion but are essential for rationalization, and (b)
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refutation complete, i.e., rationalize why the rest
of the choices are incorrect or not best suited as
the answer (Aggarwal et al., 2021). We show an
example of such a rationale in Figure 1b. However,
LLM-generated rationales in prior work (Wiegreffe
et al., 2022) have only been evaluated on their cor-
roboration capabilities. Secondly, LLM-generated
rationales in prior work are abstractive (Gurrapu
et al., 2023), lacking grounding on external knowl-
edge sources crucial for accomplishing the task —
KIT models designed for CSQA and OBQA (Feng
et al., 2020; Yasunaga et al., 2021, 2022) refer to
external sources such as ConceptNet (Speer et al.,
2017) (see Figure 1a). Finally, KIT models may
predict incorrectly — faithfully rationalizing such
mistakes may erode the end-user’s trust in the gen-
erated rationales. Existing approaches in explain-
able NLP omit the incorrect prediction confounder
and evaluate only rationales of correct predictions.
However, with LLM-generated rationales being in-
creasingly adopted in real-world scenarios, such
as rationalizing why a candidate is suitable for an
advertised job1, it is important to scrutinize the
practical implications of such deployments and in-
form guidelines for safe and responsible adoption.

Given the setting of generating corroborating
and refutation complete rationales of KIT model
decisions, we explore the suitability of retrieval-
augmented rationale generation using LLMs. We
enrich the prompt to LLMs with relevant knowl-
edge retrieved from external sources to condition
the rationale generation on facts. More specifically,
we generate knowledge-guided rationales contain-
ing corroboration and refutation components —
similar to Figure 1b — via few-shot prompting
of LLMs. We conducted three human subject stud-
ies to evaluate the effectiveness of such rationales
in communicating KIT model decisions. The ob-
servations from these studies enable coarse- and
fine-grained characterization of the strengths and
weaknesses of LLM-generated knowledge-guided
rationalization of KIT model decisions.

More specifically, we conduct two studies via
crowdsourcing to evaluate the preferability and ac-
ceptability of such rationales to crowd-workers. In
another study involving experts — motivated by ex-
isting literature on trust in explainable AI (Hoffman
et al., 2018; Stites et al., 2021) — we explore the
implications of faithfully rationalizing KIT model

1https://www.businessinsider.com/sc/
indeed-is-embracing-ai-to-power-the-future-of-work

decisions irrespective of their correctness. The
crowd-sourced studies demonstrate that, more of-
ten than not, crowdworkers prefer LLM-generated
rationales to crowdsourced rationales in existing
datasets, citing their factuality, sufficiency, and con-
vincing refutation. Follow-up fine-grained analysis
reveals that LLM-generated rationales still have sig-
nificant room for improvement along dimensions
such as insightfulness (i.e., providing new infor-
mation), redundancy (i.e., avoiding repetitive text),
and generalizability (i.e., domain invariance.) The
expert-sourced study confirms that faithful rational-
ization of incorrect model predictions degrades hu-
mans’ trust in the generated rationales. We further
explore the utility of instrumenting mechanisms
to intervene the incorrect predictions via a review-
then-rationalize pipeline instead of faithfully ratio-
nalizing and find that even simple strategies may
help intervene up to 71% of the incorrect predic-
tions. The code and data related to the human-
subject studies are publicly available2. The key
contributions of our work include:

• design of three human-subject studies to eval-
uate free-text rationales on previously unex-
plored aspects (such as trust and reliability)
while adapting existing studies for the RAG-
based LLM rationalization setting.

• coarse- and fine-grained characterization of
LLM-generated rationales and distilling the
insights on effectively deploying these ratio-
nales in practice.

• informing guidelines for responsible adoption
of LLMs as rationalizers while demonstrating
the impact of simple intervention strategies.

2 Knowledge-enhanced Rationalization

KIT models such as MHGRN (Feng et al., 2020),
QAGNN (Yasunaga et al., 2021), and Dragon (Ya-
sunaga et al., 2022) combine language model and
knowledge graph representations to solve complex
tasks such as commonsense QA (Talmor et al.,
2019). We aim to generate rationales that corrobo-
rate the KIT model’s prediction with additional rel-
evant facts while refuting the other choices (see Fig-
ure 1.) Our approach is similar to existing retrieval-
augmented generation strategies with LLMs (Peng
et al., 2023; Lazaridou et al., 2022; Zhao et al.,
2023; Mei et al., 2023). To guide the generation
of these rationale components, i.e., corroboration

2https://github.com/megagonlabs/
LLM-rationalizer
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Figure 2: Given an Input (i.e., QA and model predic-
tion), an LLM is prompted to generate a rationale with
few-shot examples sampled from an expert-written pool.

and refutation, we retrieve facts concerning the
knowledge-intensive task — e.g., questions and
choices in CSQA and OBQA — from a knowledge
graph such as ConceptNet (Speer et al., 2017). We
then prompt an LLM to rationalize the prediction
via conditioning on the provided knowledge. Fig-
ure 2 outlines the rationalization process given an
input, i.e., question, choices, and model prediction.

Figure 3: An example in the few-shot prompt: the QA
and External Knowledge components are retrieved, and
the topic and the rationale are expert-authored.

Given an external knowledge-graph such as Con-
ceptNet (Speer et al., 2017), we employ the knowl-
edge extraction strategy used in QAGNN (Ya-
sunaga et al., 2021) first to retrieve the facts rel-
evant to a question and then select top-k (k = 5)
facts based on their RoBERTa (Liu et al., 2019)
score given the question and a choice. Such selec-
tion enables us to fit the knowledge facts within the
token limits of an LLM prompt. We employ greedy
decoding-based few-shot prompting to query an
LLM for rationalization. Each example in the
prompt contains a QA task, the corresponding KIT
model prediction, facts retrieved from Concept-
Net, and expert-written rationale corroborating the

prediction and refuting other choices. We opted
for expert-authored rationales due to their reported
effectiveness over crowdsourced rationales (Wiegr-
effe et al., 2022). The paper’s authors collabora-
tively crafted high-quality rationales to compile
the expert-written pool. Figure 3 outlines the few-
shot prompt structure. Give a new multiple-choice
question; we combine the question, the model pre-
diction, and the corresponding extracted facts with
the few-shot examples sampled from the expert-
pool to formulate the final prompt (see Figure 2.)
We provide a detailed description of the prompt
design in Appendix A (Table 4.)

3 Evaluation of Rationales

Due to a lack of suitable automated methods for
evaluating the rationale quality (Clinciu et al., 2021;
Kayser et al., 2021) and credibility, we conducted
three studies to address the following questions:
RQ1. How effective are the LLM-generated ra-
tionales in communicating KIT model decisions
compared to crowdsourced rationales? (§ 4)
RQ2. To what degree do the fine-grained rationale
characteristics influence its effectiveness and how
generalizable are these observations? (§ 5)
RQ3. How does faithful rationalization of model
predictions impact humans’ trust in the LLM-
generated rationales? (§ 6)
Datasets and Prompts. We select QAGNN (Ya-
sunaga et al., 2021) as the KIT model due to its
well-documented code repository and availability
of pre-trained model weights. We consider two
datasets of multiple-choice QA tasks related to
commonsense knowledge, CSQA (Talmor et al.,
2019), and elementary-level science, OBQA (Mi-
haylov et al., 2018). Following the existing KIT
models, we use ConceptNet (Speer et al., 2017) as
our external knowledge source. For both datasets,
we report results on a fixed, randomly-sampled 250-
instance test set. We sample these instances from
the test set prepared for these datasets (Feng et al.,
2020). We employed GPT-3.5 text-davinci-003

(temperature = 0) as the LLM rationalizer. We
randomly selected 40 instances from each of the
CSQA and OBQA datasets — different from the
250 test instances — to be included in the expert-
written example pool. See Appendix A for details.
Faithful Rationalization Studies. We conducted
two crowdsourced studies aimed at addressing RQ1
and RQ2. For both studies, we only consider ra-
tionalization of correct KIT model predictions, i.e.,
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faithful rationalization. The approach is similar
to prior work (Aggarwal et al., 2021; Wiegreffe
et al., 2022; Marasovic et al., 2022; Kayser et al.,
2021) that also removed the confounder, i.e., ratio-
nalization of incorrect model prediction, by only
considering rationales for correctly predicted in-
stances. We used Amazon Mechanical Turk for
crowdsourcing evaluation. For HITs in both stud-
ies, we asked targeted questions to obtain coarse-
and fine-grained feedback on the rationales of a
KIT model decision. We detail these evaluation
metrics in the respective sections discussing the
studies. Due to the subjectivity of some of the
instances of the CSQA dataset, following Wiegr-
effe (Wiegreffe et al., 2022), we instruct workers
for both the studies to consider the KIT model pre-
diction to be correct even if they disagree with
it. We undertook several quality control measures
from vetting and recruitment of crowdworkers to
accounting for order effect of tasks and individual
annotator bias. Besides detailing these measures,
we include the study interface design and additional
statistical information in Appendices B and E.

Credible Rationalization Study. To address RQ3,
inspired by existing work on trust in explainable
AI (Hoffman et al., 2018; Stites et al., 2021; Smith-
Renner et al., 2020), we conducted a confirmatory
study in the context of explainable NLP (i.e., LLM-
generated rationalization) to explore the credibility
of rationales on aspects such as agreement, confi-
dence, reliability, and user satisfaction, among oth-
ers. In this study, we consider rationales generated
on both correct and incorrect KIT model predic-
tions. The study was conducted via a Slack cam-
paign within Company X, an industrial research lab,
with NLP, data management, and machine learning
as the primary research areas.

4 LLMs vs Humans as Rationalizers

We first compare LLM-generated rationales of
the CSQA (Talmor et al., 2019) tasks with cor-
responding crowdsourced rationales from ECQA
dataset (Aggarwal et al., 2021). The ECQA ratio-
nales are similar in construct to our setting contain-
ing corroboration and refutation of CSQA tasks.
We exclude CoS-E (Rajani et al., 2019), another
crowdsourced free-text rationales dataset, as those
rationales are not refutation complete. Moreover,
ECQA rationales are reported to be overall better
than CoS-E in rationalizing KIT decisions (Aggar-
wal et al., 2021; Sun et al., 2022). We explain the

dataset selection criteria in further detail in Ap-
pendix A. Following are the key takeaways:

• knowledge-guided rationales are preferable
(67.2%) to crowdworkers compared to crowd-
written rationales, while showcasing a sub-
stantial increase in preference (45.7%) than
prior work (Wiegreffe et al., 2022).

• fine-grained aspects of a rationale such as sup-
portiveness, sufficiency, and convincingness
weakly predict such preferences.

4.1 Study Setting
In each of the 250 HITs (three different crowd-
workers per HIT), a crowd-worker was presented
with a question with choices, the corresponding pre-
diction of the KIT model, and two rationales: LLM-
generated (from our pipeline) and crowdworker-
written. We then ask them to make a preferen-
tial selection among the two rationales (see inter-
face details in Appendix E.1.) We find low-to-
moderate annotator agreement – Krippendorff’s
α = 0.13 (Krippendorff, 2011) — for this study,
indicating the subjective nature of the task. Related
work (Wiegreffe et al., 2022) reported similar agree-
ment statistics (α ∈ [0.05, 0.20]) on comparison
between LLM-generated and ECQA rationales.
Fine-grained comparison. Besides head-to-head
comparison, we ask several 7-point Likert scale
questions — adapted from prior work (Aggarwal
et al., 2021; Wiegreffe et al., 2022) — targeted
at comparing fine-grained aspects of both ratio-
nales. These aspects include: sufficiency in justi-
fying the model’s choice; conciseness (i.e., degree
of redundancy); understandability; factuality (i.e.,
factual correctness); supportiveness (i.e., the de-
gree to which the model prediction is supported);
refutation convincingness (i.e., the degree to which
the unselected choices are convincingly refuted);
insightfulness (i.e., how much new information is
captured.) New information can be new facts or
reasoning not stated in the question and answer
choices and potentially grounded on the knowl-
edge evidence. We report the agreement statistics
on individual aspects in Appendix B.2.

4.2 Higher Preference of LLM Generations
Surprisingly, LLM-generated rationales were
more frequently preferred (67.2% times) over
crowdworker-written rationales (37.8% times.)
The result showcases an improvement over previ-
ous work on generating corroboration only (no refu-
tation) rationales (Wiegreffe et al., 2022) — 45.7%
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Figure 4: Distribution of fine-grained metrics between
crowdworker (ECQA) and LLM-generated rationales —
LLM-generated rationales were preferred over ECQA
on the majority of the metrics except conciseness.

preference to LLM generations. The crowdworker-
written ECQA rationales potentially outperformed
those corroboration rationales on dimensions such
as refutation convincingness, sufficiency, and sup-
portiveness. Moreover, our pipeline enabled
knowledge-guided rationale generation, whereas
prior LLM-generated rationales (Wiegreffe et al.,
2022) lacked such grounding and were abstractive.
However, the LLMs in both studies differed, with
our study employing a newer version (GPT-3.5)
than the GPT-3 model used in their work. While
some of the performance gain can be attributed
to such model upgrades, we demonstrate via fine-
grained analysis how aspects of our rationale con-
struct are correlated with crowd-worker preference.

4.3 Fine-grained Comparison

As shown in Figure 4, overall, crowd workers ex-
hibited more preference for LLM-generated ratio-
nales over crowdworker-written ones on aspects
such as insightfulness (i.e., new information), refu-
tation convincingness, and sufficiency. In fact,
up to 80.4% of the LLM-generated rationales pre-
sented to the crowdworkers contained at least one
statement grounded on external knowledge, thereby
contributing to insightfulness. We measure the de-
gree of knowledge-grounding by employing a com-
bination of semantic similarity measures and natu-
ral language inference methods. Following existing
work (Wu et al., 2023), we use BERTScore (Zhang
et al., 2019) to identify text snippets within a ratio-
nale that align with the retrieved knowledge (i.e.,
facts or triples extracted from ConceptNet.) We
then employ NLI models (Reimers and Gurevych,
2019) to measure the entailment relation between
the retrieved fact and the corresponding text snippet.

We discuss the approach in detail in Appendix D.1.

Moreover, the refutation argument anchored on
the topic of the question enabled a more convincing
refutation. Therefore, the resulting LLM-generated
rationales were sufficient to justify the model’s
choice for the QA task. The preference for LLM-
generated and crowdworker-written rationales was
comparable for other aspects such as factuality,
supportiveness, and understandability. However,
crowd-workers rated LLM-generated rationales as
more redundant, which is unsurprising, given the
tendency of the LLMs to generate verbose text.

Metrics LLM-generated Crowdworker-written
Preferred Preferred

Factuality 0.29 0.04
Insightfulness 0.21 0.12
Conciseness 0.08 0.02

Convincingness 0.29 0.17
Sufficiency 0.28 0.14

Supportiveness 0.27 0.03
Understandability 0.27 0.01

Table 1: Spearman correlation between crowdworker
preference of rationales — weak correlations are ob-
served with p < 0.01 (strong statistical significance.)

Correlation to rationale preference. To under-
stand what factors are important for the prefer-
ence judgment, we compute Spearman correla-
tion (Spearman, 1987) between the binary pref-
erence of both rationale types — i.e., LLM-
generated and crowdworker-written — and the fine-
grained aspects (see Table 1.) The conciseness as-
pect lacked any correlation with either rationale
type. Surprisingly, crowd-workers’ preference for
crowdworker-written rationales lacked any correla-
tion with several other aspects, such as factuality,
supportiveness, and understandability, while show-
casing a very weak correlation with the rest. How-
ever, these fine-grained aspects exhibited a compar-
atively stronger positive correlation with the LLM-
generated rationales. Further analysis showcases
that even when crowd-workers preferred ECQA
rationales in a head-to-head comparison, LLM-
generated and crowdworker-written rationales ex-
hibited almost similar ratings in the majority of the
fine-grained aspects (see Appendix D.2.) Overall,
the results indicate that human preference for LLM-
generated rationale can be captured by factoring
in different fine-grained aspects, which can inform
the design of automated mechanisms for estimating
the suitability of a rationale for end-users.
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5 Acceptability of LLM Rationalization

While pairwise evaluations of preferences provided
perspective on the relative quality of the rationales,
we conducted another study to independently mea-
sure the acceptability of the LLM-generated ratio-
nales and collect absolute crowd-worker judgments
across several aspects related to rationale quality.
We evaluated rationales for both CSQA and OBQA
dataset tasks to understand how generalizable these
observations are. The key takeaways from the study
are as follows:

• the overall acceptability of the rationales re-
mained high similar to the comparative study.

• however, task and domain variation impacted
the quality of the generated rationales.

5.1 Study Setting

In each of the 250 HITs per dataset (three differ-
ent judges per HIT), a crowd-worker was presented
with a question with choices, the corresponding pre-
diction of the KIT model, and an LLM-generated
rationale. Besides asking 7-point Likert scale ques-
tions on fine-grained aspects of a rationale — simi-
lar to the first study in Section 4 — we include two
additional surface-level aspects: readability, i.e.,
the clarity of the provided justifications and gram-
maticality, adherence to grammatical rules. Finally,
we ask for an overall judgment on quality, i.e., the
overall acceptability of a rationale (see interface
details in Appendix E.1.) We again find low-to-
moderate agreement – Krippendorff’s α = 0.12
for CSQA and 0.15 for OBQA dataset. Related
work (Wiegreffe et al., 2022) reported slightly bet-
ter agreement statistics (α = 0.28) on the CSQA
dataset (see Appendix B.2 for details.)

5.2 Favorability Towards LLM generations

On the overall acceptability metric, the LLM-
generated rationales received a notably positive
rating from the participants for both CSQA (µ =
5.83, σ = 1.27) and OBQA (µ = 5.89, σ = 1.50).
These independent observations reaffirm earlier
takeaways (§ 4) and underscore that the LLM-
generated rationales of KIT models were viewed
favorably by crowd-workers.
Fine-grained observations. As shown in Figure 5,
for the newly introduced surface-level metric, read-
ability, and grammaticality, the LLM-generated
rationales received higher ratings in keeping with
the previous work. In fact, for both datasets, for
all of the richer aspects except insightfulness and
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Figure 5: Crowdworkers’ ratings showed similar dis-
tribution for all metrics except insightfulness and con-
ciseness. These metrics were rated lower for the more
subjective CSQA dataset compared to the objective and
scientific OBQA dataset.

conciseness, the ratings received were similar, i.e.,
more positively rated. While the insightfulness met-
ric was rated positively for OBQA, the rating was
neutral to slightly negative for CSQA. Surprisingly,
conciseness (i.e., less redundancy) was rated posi-
tively for OBQA, whereas CSQA rationales were
deemed more redundant, similar to the previous
study. A plausible explanation for this discrep-
ancy is the inherent subjectivity in CSQA (Wiegr-
effe et al., 2022), which can result in varying ex-
pectations regarding the information provided in
the rationales. In contrast, the OBQA dataset is
grounded in objective scientific facts, eliminating
such subjectivity and leading to more consistent
expectations among crowd-workers.

Metrics Correlation CSQA Correlation OBQA
Factuality 0.65 0.73

Insightfulness 0.38 0.67
Conciseness 0.09 0.6

Convincingness 0.70 0.80
Sufficiency 0.76 0.80

Supportiveness 0.54 0.76
Understandability 0.63 0.71

Readability 0.5 0.74
Grammar 0.33 0.62

Table 2: Spearman correlation between acceptability
and the fine-grained aspects of a rationale — moderate
to fairly strong correlation was observed with strong
statistical significance ( p < 0.01).

Correlation to overall acceptability. To under-
stand what factors are important for the overall
acceptability judgement, we compute Spearman
correlation (Spearman, 1987) between acceptabil-
ity and the fine-grained aspects (see Table 2.) For
both the datasets, all aspects except conciseness
show similar patterns — moderate to fairly strong
positive correlation with acceptability. However,
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the rationales for the CSQA dataset (more subjec-
tive) exhibited a weaker correlation than the OBQA
dataset rationales (more objective) in several as-
pects, such as conciseness, insightfulness, read-
ability, and grammaticality. Overall, the results
indicate that human preference for the rationale
is more nuanced and can only be holistically cap-
tured by considering different fine-grained aspects.
However, the quality of the generated rationale
may vary depending on the task and domain and,
consequently, impact human-preference judgment.
Therefore, there is room for improvement in making
generated rationales invariant to task and domain.

6 Towards Credible Rationalization

In the earlier studies, similar to existing work (Ag-
garwal et al., 2021; Wiegreffe et al., 2022; Maraso-
vic et al., 2022; Kayser et al., 2021), we evaluate
LLM-generated rationales for cases where model
prediction matches the ground truth. We now inves-
tigate the implications of rationalization without
accounting for model errors, i.e., faithful rational-
ization, and potential intervention strategies. Fol-
lowing are the key highlights of the study:

• rationalizing incorrect predictions drastically
reduces human’s trust in the LLM rationalizer.

• even lightweight guardrails can help intervene
more than half of the incorrect predictions.

6.1 Trustworthiness of Generated Rationales

The reported accuracy of KIT models widely vary
— 64%-89.4% for CSQA3 and 60.4%-89.6% for
OBQA 4. The reported human accuracy for the
CSQA and OBQA datasets are 88.9% and 91.7%,
respectively. Even as humans rationalize, the cred-
ibility of the rationalizer may diminish if they
attempt to justify any incorrect decisions. Ex-
isting work on trust in explainable AI (XAI) lit-
erature (Hoff and Bashir, 2015; Schaefer et al.,
2016; Stites et al., 2021; Smith-Renner et al., 2020)
demonstrates that end-users’ trust in a system de-
grades when encountering errors they can easily
recognize due to familiarity and prior experience
in a domain. Since the knowledge source for the
CSQA and OBQA datasets is ConceptNet (Speer
et al., 2017), a commonsense knowledge graph, hu-
mans are expected to have higher confidence about
their knowledge in the domain. However, existing
explainable NLP literature lack studies that investi-

3https://www.tau-nlp.sites.tau.ac.il/
4https://leaderboard.allenai.org/open_book_qa/

gate the relationship between model accuracy and
humans’ degree of trust in the context of free-text
rationales. Therefore, we replicate the study de-
sign of exploring trust in explanations for classifica-
tion models (Stites et al., 2021) to confirm whether
the observations hold for knowledge-intensive QA
tasks in the commonsense domain.

Study design. We conducted a between-subject
study involving 22 participants (15 male and 7 fe-
male) exploring two conditions: 66% (11 partici-
pants) and 90% (11 participants) model accuracy.
The accuracy conditions reflect the two extremities
of existing knowledge-intensive task models (Ya-
sunaga et al., 2021; Feng et al., 2020; Yasunaga
et al., 2022). The study consisted of three phases:
an introduction to the study, a quiz phase, and a
follow-up survey. In the quiz phase, the partici-
pants answered 15 QA tasks. The 15 tasks were
randomly selected from the CSQA (8 QAs) and
OBQA (7 QAs) datasets. Depending on the study
conditions, for X% of those N questions, where
X ∈ {66, 90}, the KIT model made accurate pre-
dictions, and the rest of the predictions were in-
accurate. The KIT model prediction and LLM-
generated rationale of a QA task were revealed af-
ter a participant submitted their response to avoid
bias. Then, the participants were asked whether
they agreed with the model prediction and had to
rate their impression of the rationale on a scale of
1 to 7 (1 = actively misleading and 7 = helpful.)
After the quiz phase, the participants completed a
survey adapted from the Trust Scale recommended
for XAI (Hoffman et al., 2018). The survey con-
tained questions that asked participants to rate sev-
eral aspects related to the quiz phase tasks, such as
the agreement with rationales and the participants’
trust and reliance on the LLM-generated rationale.
All of these required participants to work slowly
enough to be able to read all the items, thereby
making the studies long-running and rather un-
suitable for crowd platforms according to existing
work (Douglas et al., 2023). Therefore, we opted
for internal recruitment as an additional quality con-
trol mechanism, inviting participants internally via
a Slack campaign at Company X. None of the par-
ticipants are authors of the paper (see Appendix C.)

6.2 Confirmatory Study Results

The agreement statistics of the participants reflect
both the study conditions — 67.27% and 86.07%
for lower and higher accuracy models, respectively.
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(b) XAI Trust Scale feedback

Figure 6: (a) Irrespective of agreement or disagreement
with the KIT model prediction, participants indicated a
more negative impression about the rationalization of
the lower confidence model prediction. (b) Participant
feedback on trust scale indicates lower confidence for
lower accuracy model rationalization.

Figure 6a summarizes the participants’ impression
of a rationale immediately after viewing the model
prediction. When the participants disagreed with
the model prediction, they exhibited a stronger neg-
ative impression about the rationales for the 66%
accuracy condition compared to the 90% accuracy
condition. Even when participants agreed with the
model prediction, their impression of the rationales
remained more negative. Our intuition is that the
higher disagreement with the model coupled with
observing the faithful rationalization of the incor-
rect prediction negatively impacted participants’
perception of the reliability of the rationales. We
confirm these observations by analyzing the results
of the follow-up survey (see Figure 6b.) Unsurpris-
ingly, participants for the 66% accuracy condition
rated their confidence in the generated rationales
and the reliability of the rationalizer significantly
lower compared to the 90% accuracy condition.
The trends in Figure 6 are observed with strong sta-
tistical significance, except for participant feedback
on satisfaction with rationale (see Appendix C.2.)

6.3 A Review-then-Rationalize Framework

Motivated by the observations from the prelim-
inary study, we create a two-stage review-then-
rationalize (see Figure 7) pipeline to evaluate the
impact of intervening incorrect model predictions
before rationalization. The pipeline instruments a
reviewer module that employs another model (GPT-
3.5 text-davinci-003 (temperature = 0)) to evaluate
the correctness of the knowledge-intensive task
model and refrain from rationalizing potentially
incorrect decisions.

We opted for LLMs as reviewers due to their re-
ported proficiency in natural language understand-

Figure 7: Self-consistency-based Reviewer—intervene
for any disagreement with the KIT model prediction.

ing. Depending on the task and data domain, the
suitability of the reviewer model may vary. Given
the complexity of knowledge-intensive tasks, we
employ a self-consistency-based decoding strat-
egy (Wang et al., 2022) as opposed to greedy de-
coding to ensure robustness. More specifically,
we independently pose the same QA task N (=5)
times to the reviewer and select the final response
via majority voting. The reviewer then compares
the model’s prediction with its prediction and acti-
vates the rationalizer only when both models agree.
A cookie-cutter rationale or no rationale may be
communicated to the end-user in a disagreement.

Dataset Prediction Errors Errors Intervened
(Test Set) Greedy Decoding Self-consistency

CSQA 321 166 (51.71%) 187 (58.26%)
OBQA 155 102 (65.81%) 110 (70.97%)

Table 3: The review-then-rationalize pipeline helps in-
tervene incorrect predictions of a knowledge-intensive
task model. The self-consistency-based reviewer outper-
forms the greedy decoding-based reviewer.

As shown in Table 3, for knowledge-intensive
tasks such as CSQA and OBQA, the proposed
pipeline helps intervene up to 58% and 71% of
the incorrect predictions. Unsurprisingly, the self-
consistency-based reviewer outperforms the greedy
decoding-based reviewer. Overall, the results draw
attention to the importance of responsibly commu-
nicating LLM-generated rationales to humans and
consequently, instrumenting guardrails as an effec-
tive intervention strategy.

7 Related Work

Free-text Rationale Generation. Existing works
highlight the effectiveness of free-text rationales
in justifying a model’s decision to humans in vi-
sion (Hendricks et al., 2016; Park et al., 2018) and
text domains (Camburu et al., 2018; Ehsan et al.,
2018; Narang et al., 2020). Due to cost and general-
izability implications of supervised rationale gener-
ation, we employ few-shot prompting to elicit ratio-
nales from LLMs following existing work (Wiegr-
effe et al., 2022; Marasović et al., 2021). Both
these approaches generate abstractive, corrobora-
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tive, and faithful rationales. In contrast, we explore
the generation of knowledge-guided, corroborative,
refutation-complete, and credible rationales.

Rationale Evaluation. Existing work employs au-
tomatic and human-subject study-based approaches
to evaluating rationales. The automated evaluation
mechanisms focus on specific aspects of a ratio-
nale such as conciseness (Aggarwal et al., 2021),
supportiveness (Wiegreffe et al., 2021), robust-
ness (Ross et al., 2022), and insightfulness (Chen
et al., 2023). Human-subject studies (Aggarwal
et al., 2021; Wiegreffe et al., 2022; Joshi et al.,
2023) measure subjective characteristics, such as
convincingness and objective properties, such as
conciseness, of a rationale. Since the effective-
ness of free-text rationales lies in natural language-
based seamless communication to end-users, in this
work, we prioritized characterizing LLM-generated
rationales of model decisions communicated to end-
users. Therefore, we opted for human-subject stud-
ies that aim to scrutinize the utility of such ratio-
nales for knowledge-intensive tasks, characterize
their strengths and limitations, and inform guide-
lines for safe and responsible adoption.

Guided text generation. Developing approaches
to avoid hallucinations and factual inaccuracies in
LLM-generated text is a new area of research. Re-
trieval augmented generation (RAG) infuses exter-
nal knowledge (Peng et al., 2023; Lazaridou et al.,
2022), such as knowledge-bases and web docu-
ments while prompting LLMs to help generate re-
sponses that are grounded on relevant information
. We employ a similar strategy during rationaliza-
tion by conditioning the LLM generation on the
retrieved evidence for a given task.

Credible text generation. Studies in explainable
AI literature (Smith-Renner et al., 2020; Hoff and
Bashir, 2015; Schaefer et al., 2016; Stites et al.,
2021) demonstrate that for low-quality models, pro-
viding faithful explanations further degraded user
trust. Unlike existing work on free-text explana-
tion (Wiegreffe et al., 2022; Marasović et al., 2021),
we explore how end-users trust may be impacted
by faithful rationalization of varying degrees of
incorrect model predictions. ReXC (Majumder
et al., 2021) augments rationales — generated in a
self-rationalization framework — with background
knowledge to improve a model’s task performance,
such as natural language inference and visual com-
monsense reasoning. To rectify incorrect LLM
responses, identified via a self-consistency-based

intervention approach, the Verify-then-Edit frame-
work (Zhao et al., 2023) leverages external knowl-
edge to repair reasoning chains of the correspond-
ing chain-of-thought prompts. FARM (Mei et al.,
2023) utilizes trustworthy external sources within
a predict-then-generate framework that aims to in-
tervene in harmful content generation using LLMs.
To credibly rationalize KIT model predictions, we
explore a review-then-rationalize framework where
a self-consistency-based reviewing approach iden-
tifies potential prediction inaccuracies and ensures
credible rationale generation.

8 Conclusion

We evaluate LLMs’ capacity to generate effective
rationales for knowledge-intensive tasks in a few-
shot knowledge-guided setting. We additionally
investigate the implications of employing LLMs as
rationalizers of an imperfect model and highlight
the negative impact on users’ trust. Observations
from our studies highlight room for improvement
in aspects such as task and domain invariant ra-
tionalization and robust intervention strategies for
real-world usage.

9 Limitations

Scrutinizing LLM-generated rationales. While
external knowledge-guided generation offers
promise (Peng et al., 2023; Mallen et al., 2023),
LLM-generated rationales may still suffer from
hallucinations. Our experiments highlight that the
LLM-generated rationale is not entirely grounded
on retrieved knowledge. Even though crowd-
workers positively rated the factuality and in-
sightfulness of the generated rationales, additional
scrutiny is required before deploying such ratio-
nalizers in mission-critical tasks. To this end,
the review-then-rationalize framework may be ex-
panded to further scrutinize the rationales by adopt-
ing recent work on an LLM’s factual knowledge
measurement (Pezeshkpour, 2023; Dong et al.,
2023) and hallucination identification (Manakul
et al., 2023; Elaraby et al., 2023; Mündler et al.,
2023) and reduction (Zhao et al., 2023; Mei et al.,
2023), and explainable evaluation (Xu et al., 2023).
Fairwashing vs. credible rationalization. The
accuracy of our self-consistency-based reviewer
can be further improved to intervene in a higher
proportion of incorrect KIT model predictions.
However, critiques of XAI tools have raised con-
cerns about fairwashing, i.e., misleading users into
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trusting biased or incorrect models (Alikhademi
et al., 2021). For example, simply averting po-
tential faithful yet incorrect rationalization, identi-
fied by the reviewer, may increase end-users’ trust
due to an illusion of a highly performant ratio-
nalizer (Aïvodji et al., 2019). Such fairwashing
may have catastrophic consequences if employed
in real-world applications such as in the medical do-
main, hiring platforms, and credit agencies. Recent
work (Alikhademi et al., 2021) proposes a frame-
work for evaluating XAI tools with respect to their
capabilities for detecting and addressing issues of
bias and fairness as well as their capacity to com-
municate these results to their users clearly. There-
fore, future implementations of the credible ratio-
nale should adopt similar strategies to safeguard
against such issue. Future work may explore dif-
ferent communication strategies during prediction
errors, such as communicating the disagreement to
the experts-in-the-loop, providing rationales with
a disclaimer, and employing stronger reviewers to
repair the prediction on the fly and then rationalize,
among others.

Scaling responsibly. An often overlooked aspect
of the recent popularity of LLMs has been Green
AI (Schwartz et al., 2020). When the ML de-
ployment pipeline is considered as a whole, infer-
ence consumes most compute resources, account-
ing for anything between 70% to 90% (Weng et al.,
2022; Wu et al., 2022). Knowledge distillation
approaches can be adopted to avoid costly pre-
training (Wang et al., 2023). Furthermore, material-
ization of rationales to avoid repeating rationalizing
the same task can be possible approaches to handle
such issues.

Crowdsourcing study constraints. As we con-
ducted the crowdsourced study on Amazon Me-
chanical Turk, our findings may not generalize
to other platforms and feedback provided in in-
person lab-based studies. Moreover, we observed
low agreement among the annotators — similar
to prior work (Wiegreffe et al., 2022) — due to
the subjectivity of the QA tasks. Future work may
explore conducting large-scale studies with better
quality control mechanisms (such as hiring private
firms with dedicated teams similar to (Aggarwal
et al., 2021) and conducting in-house studies with
experts. Such a setting also allows for collecting
additional insights into the participants’ thought
processes. However, conducting such large-scale
studies in an in-person setup introduces time and

logistics constraints. To this end, recent LLM-
based reference-free approaches (Liu et al., 2023)
to scale-up evaluation offers promise. However,
whether such evaluation strategies apply to subjec-
tive metrics of rationale quality studied in our work
is unclear. Therefore, future studies may explore
how reference-free judgments align with human
judgments similar to (Pezeshkpour, 2023). While
the LLM-based evaluation approach offers promise,
in practice, such evaluations may be constrained by
budget limitations. To this end, existing automated
metrics — proposed by the explainable NLP com-
munity — can be another alternative to measure
aspects of a rationale, such as conciseness (Aggar-
wal et al., 2021), supportiveness (Wiegreffe et al.,
2021), and insightfulness (Chen et al., 2023).
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A Prompts and Rationales

In this section, we provide additional details regard-
ing the prompts corresponding to the faithful and
credible rationalization workflows.

A.1 Faithful Rationalization

Table 4 elaborates on the prompt design shown
in (Figure 2 and Figure 3). Each example in the
few shot prompt includes the question and answer
choices, the KIT model selected answer, the knowl-
edge facts extracted from ConceptNet for each
choice, and the expert-written question topic and
rationale that act as input to GPT-3.5 text davinci

003. While we show only two few-shot examples,
in practice, we use five examples per prompt. As ex-
plained in Section 2, due to the token limit imposed
by the GPT-3.5 API, we can include from 5-8 ex-
amples depending on the length of the knowledge
facts. Given the prompt, i.e., examples followed
by an unseen question and answer choices, KIT
model selected answer, and extracted knowledge,
the LLM greedily generates the question topic and
the rationale for the model prediction.

To design the initial prompt, we take inspiration
from existing work (Wiegreffe et al., 2022; Peng
et al., 2023; Lazaridou et al., 2022; Zhao et al.,
2023) to experiment with the prompt layout. We
experimented with approximately 6 different lay-
outs in the OpenAI playground 5 using 10 train-
ing examples on the CSQA and OBQA datasets.
In deciding the number of few-shot examples, we
considered the maximum context window size of
GPT-3.5 text-davinci-003, which is 4097 tokens.
We observed that depending on the datasets and the
length of the factual statements retrieved from Con-
ceptNet, five to eight few-shot examples fit into the

5https://platform.openai.com/playground

token constraints. After finalizing the prompt lay-
out, we developed a pool of 40 expert-written (i.e.,
authors of these papers) examples. We randomly
selected 5 expert-written examples for each test
instance to ensure uniformity across datasets and
instances. Similar to prior work (Wiegreffe et al.,
2022), we focused on developing a general few-
shot prompting strategy for generating knowledge-
enhanced and refutation complete rationale that
could be successful when no additional (large) val-
idation set for parameter tuning is available. We
prompt the LLM to generate a topic of the question
and a rationale similar to the provided few-shot
examples. Therefore, our approach explicitly con-
ditions the rationale generation on the question
topic and the knowledge facts. FARM (Mei et al.,
2023) employs a similar topic-focused generation
for question answering. Given a question, the LLM
is initially prompted to generate a question con-
text — augmented with information retrieved from
trustworthy sources — to generate a safe response.
Such strategies have been shown to be very effec-
tive (Radford et al., 2019; Brown et al., 2020; Shin
et al., 2020; Schick and Schütze, 2020), even in
complex generation tasks (Reif et al., 2021).

Relevance to ECQA rationales. The pipeline for
ECQA (Aggarwal et al., 2021) rationale genera-
tion and the knowledge-guided LLM rationaliza-
tion have several similarities. As shown in Ta-
ble 4, the rationalization pipeline provides Con-
ceptNet assertions corresponding to the selected
answer and rejected choices as the context within
the prompt. ECQA crowdsourcing pipeline also
prompted crowdworkers to use the positive facts
about the selected answer and negative facts about
the other choices as guides to craft the eventual
free-flow explanation. Therefore, in both cases,
the rationalizer pipeline, be it crowdworker or
LLMs, were knowledge-guided. However, in case
of LLMs the source of knowledge guidance is exter-
nal, i.e., ConceptNet (Speer et al., 2017), whereas
for ECQA, the crowdworkers themselves crafted
the supporting facts before rationalizing.

A.2 Credible Rationalization

Table 5 showcases the prompt design for the
Reviewer model within the credible rationalizer
pipeline (Figure 7. Each of the five examples in the
few shot prompt includes the question and answer
choices that act as input to GPT-3.5 text davinci

003. In practice, we use five examples per prompt.

8130

https://doi.org/10.18653/v1/2021.naacl-main.45


Question: At the end of your meal what will a waiter do?
Choices: A. serve food B. eat C. set table D. serve meal E. present bill
Selected answer: E. present bill

Knowledge for present bill: [waiter can typically do present bill, bill is generally created by waiter, restaurant generally causes bill, . . .]
Knowledge for set table: [waiter can typically do set table, . . .]
Knowledge for serve food: [waiter can typically do serve food, . . .]
Knowledge for serve meal: [waiter can typically do serve meal, . . .]
Knowledge for eat: [cook generally causes meal, . . .]

The topic of the question and the corresponding explanation for the selected answer “present bill” are as follows:
Topic: Restaurant Service after meal
Why? Commonsense suggests that a waiter, who is generally located in a restaurant, typically presents a bill. Therefore, the answer is “present bill”
because this is a common practice at the end of a meal in a restaurant.
Why not other options? While a waiter can serve food, set the table, and serve a meal, these actions typically occur before or during the meal, not at
the end. The option ’eat’ is not suitable as it is not a typical duty of a waiter during their service.
=======================================================================
Question: He waited for his friend at the squash court, but he was worried his friend thought he meant the at the other end of the public what?
Choices: A. country club B. rich person’s house C. pool D. park E. fitness center Selected Answer: D. park

Knowledge for park :[squash court is generally located in park, play is generally located in squash court, . . .]
Knowledge for fitness center :[squash court is generally located in fitness center, . . .]
Knowledge for country club :[squash court is generally located in country club, . . .]
Knowledge for pool :[. . .]
Knowledge for rich person’s house :[. . .]

The topic of the question and the corresponding explanation for the selected answer “park” are as follows:
topic: Public Spaces and Miscommunication
Why? The answer is park because commonsense suggests that a squash court is generally located in a park. This implies that there could be another
squash court at the other end of the park, leading to the friend’s confusion.
Why not other options? While a squash court can also be located in a fitness center or country club, these locations are not typically public spaces
with multiple ends. A pool or a rich person’s house are less likely to have multiple squash courts, making them less likely to be the source of the
friend’s confusion.
======================================================================
Question: What should the bean bag chair sit on?
Choices: A. house B. den C. family room D. wood E. floor
Selected Answer: E. floor

Knowledge for present floor: [. . .]
Knowledge for house: [. . .]
Knowledge for den: [. . .]
Knowledge for family room: [. . .]
Knowledge for wood: [. . .]

The topic of the question and the corresponding explanation for the selected answer “present bill” are as follows:

Table 4: Example of a prompt with two training examples for CSQA and an unseen question for which the LLM
generated a rationale. In practice, we provide five examples.

Given the prompt, i.e., examples followed by an un-
seen question and answer choices, the LLM greed-
ily generates a response, i.e., predicts an answer
from the choices. We repeat the process five times
and select a response based on majority voting. We
randomly sample five questions from the 40 expert-
written rationale pool as few-shot examples.

Question: At the end of your meal what will a waiter do?
Choices: A. serve food B. eat C. set table D. serve meal E. present bill
Selected answer: E. present bill
==================================
Question: He waited for his friend at the squash court, but he was worried
his friend thought he meant the at the other end of the public what?
Choices: A. country club B. rich person’s house C. pool D. park E. fitness
center Selected Answer: D. park
==================================
Question: What should the bean bag chair sit on?
Choices: A. house B. den C. family room D. wood E. floor
Selected Answer:

Table 5: A prompt with two training examples for CSQA
and an unseen question for the Reviewer to answer.

A.3 LLM-generated Rationales

Table 6 a few non-cherry-picked examples of LLM-
generated rationales. We show examples of ra-
tionales for CSQA dataset questions generated by
LLM and humans, i.e., crowdworkers in the ECQA
dataset. Since there is no crowdsourced dataset of
OBQA rationales, we only show LLM-generated
rationales. Note that the LLM greedily generates
a topic of the question and a rationale with cor-
roboration (“Why?”) and refutation (“Why Not”)
components. However, as shown in Figure 2, the
these two components are extracted from the gen-
erated output to construct the eventual rationales
(i.e., the formatting step at the end.)

B Crowd Study Details

We provide more details regarding both crowd-
worker studies such as additional statistics related
to the crowd study and quality control mechanisms.
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==================================
CSQA Dataset
==================================
Question: What should the bean bag chair sit on?
Choices: A. house B. den C. family room D. wood E. floor
Selected Answer: E. floor

LLM-generated rationale: The answer is floor because the common-
sense knowledge clearly indicates that a bean bag chair is generally located
in a floor.
While a bean bag chair can be placed in a house, den, family room, or
on wood, the floor is the most common place for a bean bag chair to be
located.

ECQA rationale: Bean bag chair is a seat people sit on which is generally
put on a floor. A bean bag chair should sit on a floor and not on anything
else from the other options.
==================================
OBQA Dataset
==================================
Question: Rainbows are always found after what?
Choices: A. A fire B. A tornado C. Rainfall D. Cereal
Selected Answer: C. Rainfall

LLM-generated rationale: The answer is Rainfall because rainbows are
always found after rain. This is because the sunlight is refracted by the
raindrops in the air, creating the rainbow. A fire, a tornado, and cereal do
not have any relation to rainbows.

Table 6: Rationales for CSQA generated by LLM and
humans (ECQA) and for OBQA generated by LLM.

B.1 Quality Control and Payment

In order to enforce quality throughout evaluation,
we use a hidden built-in Javascript function to com-
pute time per HIT spent and perform attention
checks by inserting questions with specific instruc-
tions randomly within a HIT. We filter out any an-
notator who completed the tasks in an unreasonably
low time, or failed their attention checks. To miti-
gate individual annotator bias, we also ensure that
each experiment in a study has a substantial num-
ber of distinct crowdworkers. See Tables 7 and 8
for details regarding the inter-annotaror agreement
for the comparison study. For both studies, we used
a pay rate of USD 12.00/hr. We performed periodic
check to ensure that the median HIT completion
time remains commensurate to approximately the
pay rate. Median times reported for the compara-
tive study was 208 seconds (paid at 80 cents each)
the acceptability study was 110 seconds (paid at
40 cents each.) To ensure the quality of responses,
we require annotators in Australia, New Zealand,
United Kingdom, United States, and Canada as a
proxy for English competency. We only selected
workers with a past approval rate > 98% and who
have completed over 5000 HITs. We documented a
worker’s HIT submission time and performed atten-
tion checks within each HIT to enforce quality con-
trol. Note that each crowd worker was presented
with detailed instructions about the study interface
and performed an example task as a warm-up.

Approach LLM-generated ECQA
Factuality 0.07 0.05
Insightfulness 0.15 0.03
Conciseness -0.04 -0.01
Convincingness 0.09 0.03
Sufficiency 0.08 0.07
Support 0.08 -0.01
Understandability 0.09 0.06
Preference 0.13 0.13

Table 7: Inter annotator agreement (Krippendorff’s α) of
crowdworkers on the fine-grained aspects of a rationale
evaluated in the head-to-head comparison study.

Dataset CSQA OBQA
Factual 0.02 0.03
Insightful -0.06 -0.04
Concise -0.15 -0.17
Convincing 0.08 0.13
Sufficient 0.07 0.08
Support -0.012 -0.002
Understandable 0.02 0.04
Readability -0.05 -0.02
Grammar -0.15 -0.16
Acceptability 0.12 0.15

Table 8: Inter annotator agreement (Krippendorff’s α) of
crowdworkers on all the coarse- and fine-grained aspects
of a rationale evaluated in the acceptability study.

B.2 Annotator Statistics

We now report the number of distinct crowd anno-
tators and the median and mean number of HITs
completed for each experiment. For the head-to-
head comparison study, there were 750 HITs in to-
tal. There were 29 unique annotators with a median
of 10 (mean = 21.86) HITs completed by an anno-
tator. For the acceptability study, there 750 HITs
for each of the two datasets CSQA and OBQA. For
the CSQA dataset, there were 25 unique annotators
with a median of 7 (mean = 28.80) HITs completed
by an annotator. For the OBQA dataset, there were
30 unique annotators with a median of 7 (mean
= 25.00) HITs completed by an annotator. More
detailed breakdowns of inter-annotator agreement
for both studies are reported in Tables 7 and 8.

C Credible Rationalization Study

We now provide relevant information complement-
ing the observations obtained in the preliminary
study regarding credible rationalization.

C.1 Study Details

Participants. The participants of the preliminary
study were all from Company X. However, we
still performed attention checks in the preliminary
study. The participants were unaware of the hypoth-
esis and evaluation objective of the study. None
of the participants are authors of the paper. Out
of the 20 participants in the study, 15 were male
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Agreement = yes (†) Agreement = no (*) Agreement = unsure
Accuracy 66% Accuracy 90% Stat. Sig. Accuracy 66% Accuracy 90% Stat. Sig. Accuracy 66% Accuracy 90% Stat. Sig.
η = 6.00 η = 7.00 η = 2.00 η = 3.00 η = 4.00 η = 5.00
µ = 5.89 µ = 6.29 p < 0.01 µ = 2.23 µ = 3.13 p < 0.05 µ = 4.00 µ = 5.25 p > 0.05
σ = 1.62 σ = 1.33 σ = 1.29 σ = 1.64 σ = 1.41 σ = 1.03

Table 9: Participant feedback on individual task indicates a more negative impression — rated on a scale between
1 (misleading) to 7 (helpful) — regarding the corresponding rationale. (†) indicates statistical significance with
pa < 0.01 and (*) indicates statistical significance with p < 0.05.

Metric Confidence (†) Reliability (†) Safety (†) Satisfaction Acceptability (†)
Accuracy 66% 90% 66% 90% 66% 90% 66% 90% 66% 90%
Median 3.00 4.00 2.00 4.00 3.00 4.00 3.00 5.00 3.00 4.0
Mean 2.91 4.09 1.82 3.64 2.45 3.72 3.45 4.55 3.09 4.27

Std. Dev. 1.14 0.54 0.87 1.03 1.13 0.79 1.44 0.52 1.04 0.65

Table 10: Participant feedback on individual task indicates a more negative impression regarding the corresponding
rationale. (†) indicates statistical significance with p < 0.01.

and 5 were female. The representation of the fe-
male participants (25%) compares favorably with
recent estimates of 15% women in tenure-track
faculty in computing (Way et al., 2016) and 20%
women in data science positions worldwide (King
and Magoulas, 2015). One-fourth of the partici-
pants held a Bachelor degree and the rest completed
graduate school or higher. Due to the complexity
and longer duration of this study, we wanted to en-
sure the participation of higher quality participants
by such selective recruitment.
Phases. We first collected participants’ demo-
graphic information and then provided detailed
instructions about the subsequent phases: a quiz
phase consisting of a collection of tasks and a
follow-up survey. The survey is adapted from the
Trust Scale recommended for XAI (Hoffman et al.,
2018). We opted for a follow-up survey rather than
after each task completion following Hoffman et
al. (Hoffman et al., 2018) — “the questions are
appropriate for scaling after a period of use, rather
than immediately after a rationale has been given.”
Besides questions related to the trust scale, we also
asked participants to rate their overall acceptability
of the rationales on a scale of 1 to 5. Note that
the acceptability rating scale is different from the
earlier studies in Section 5 and 4 to conform with
the Trust Scale ratings (Hoffman et al., 2018).

C.2 Feedback Statistics
We conducted Mann-Whitney U test to measure the
statistical significance of the differences between
the 66% and 90% accurate model conditions, along
various credibility metrics proposed in Section 6.
The Mann-Whitney U test is a non-parametric test
to measure the significance of difference in distri-
bution of two independent sample, i.e., accuracy
conditions in this study.

As shown in Table 9, participant feedback on in-
dividual task indicates a higher disagreement with
lower confidence model prediction and a more neg-
ative impression regarding the corresponding ratio-
nale. The differences is significant both cases i.e.,
when participants either agreed or disagree with the
KIT model prediction. Table 10 reports the sum-
mary of participant feedback during the post-quiz
survey — participants exhibited a more negative
impression regarding the corresponding rationale.
For all of the aspects except statisfaction, the differ-
ence in participant feedback between the accuracy
conditions were statistically significant.

Metric Agreement %
Overall Accuracy 66% Accuracy 90%

Agreement = yes 76.67% 67.27% 86.07%
Agreement = no 20.30% 31.52% 9.09%

Agreement = unsure 3.03% 1.21% 4.85%

Table 11: Participant feedback on individual task in-
dicates a higher disagreement with lower confidence
model prediction.

Table 11 summarizes the observations from the
quiz phase, i.e., participant agreement statistics
with the model prediction and participants’ impres-
sion of the corresponding rationale. The agreement
statistics (overall = 76.67%) of the participants
reflect both the study conditions — 67.27% and
86.07%, respectively. Due to the subjective nature
of the tasks, especially in the CSQA dataset, a few
participants were unsure whether to agree or dis-
agree with the model predictions, further reflecting
the difficulty of the tasks.

D Additional Experiments and Analysis

We now present details of various user study obser-
vations, discussed briefly in earlier sections.
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D.1 Degree of Knowledge Grounding

While our proposed knowledge-graph-based re-
trieval augmented LLM-generated rationales were
positively rated by crowdworkers, questions re-
main regarding the effectiveness of such knowledge
grounding. To evaluate whether any fragments of
the rationales generated using our proposed ap-
proach were grounded on the retrieved knowledge
facts, we conducted an experiment. We primarily
focus on the corroboration component as there is a
higher probability of the knowledge graph contain-
ing facts about the correct answer choice.

Dataset Pairwise Max BERTScore Percentage of Entailment
CSQA µ = 0.5823, σ = 0.0650 80.4%
OBQA µ = 0.5173, σ = 0.0803 38%

Table 12: Degree of knowledge grounding observed in
the LLM-generated rationales.

We measure the existence of knowledge-
grounding as follows: consider the retrieved knowl-
edge corresponding to the correct choice j for
question qi in dataset D, Gij , and the corrob-
oration component of the corresponding LLM-
generated rationale, RCi. We first measure the
BERTScore (Zhang et al., 2019) similarity between
a fact f ∈ Gij , expressed in natural language and a
sentence s ∈ RCi. We then select the fact-sentence
pair, (f, s), with the highest BERTScore as a po-
tential candidate for evaluating whether the fact f
entails the sentence s within the rationale. Such
entailment is an indicator of whether a fragment
of a rationale being grounded on retrieved knowl-
edge facts. Similar approach has been adopted in
existing work (Wu et al., 2023) to extract candi-
date sentences from long documents and evaluate
the degree to which the corresponding summary
is grounded on the source document. Following
their approach, we employ NLI models (Reimers
and Gurevych, 2019), i.e., DeBERTa-base model
fine-tuned on SNLI (Bowman et al., 2015) and
MNLI (Williams et al., 2018), to evaluate entail-
ment. For the BERTScore, we used DeBERTa-
Large model (He et al., 2020) fine-tuned on MNLI.

We measure the knowledge-grounding statistics
of the CSQA and OBQA dataset rationales evalu-
ated in the acceptability crowd study in Section 5.
As shown in Table 12, on average, at least one
fact-sentence pair achieved BERTScore of 0.5823
and 0.5173 for CSQA and OBQA datasets, respec-
tively. While a higher percentage of those pairs
were classified as entailment (80.4%) for CSQA,

the entailment statistics was a bit lower for OBQA.
On reflection, the lower value seems reasonable
since we used ConceptNet, a commonsense knowl-
ege graph, as the external source for OBQA, a
dataset on elementary science question answering.

The initial observations highlight the promise of
knowledge-guided rationalization in ensuring factu-
ality of LLM-generated rationales. However, more
in-depth analysis with a stronger metric that takes
into account multiple fact-sentence pair candidates
across corroboration and refutation components is
required to reliably capture the degree of knowl-
edge. Such fine-grained analysis is beyond the
scope of our study and can be explored in future.

D.2 A Deeper Dive into LLM vs ECQA
To better understand, we further analyze the crowd
worker feedback based on their preference of ra-
tionales. Cases where workers preferred LLM-
generated rationales over humans (i.e., the 61.8%
cases) — LLM-generated rationales were rated sub-
stantially higher than human-written rationales, ex-
cept conciseness (see Figure 8.) Even the con-
ciseness rating for both types of rationales was
almost the same, with human-written rationales far-
ing slightly better. On the other hand, for cases
where workers preferred human-written rationales
over LLMs (i.e., the 38.2% cases) — surprisingly,
apart from conciseness, human-written rationales
were rated significantly higher only on two aspects:
factuality and convincingness. For the rest of the
aspects, the differences between ratings of both
rationale types were marginal.

E Study Interfaces

In this section, we provide screenshots of the im-
portant aspects of the three studies.

E.1 Faithful Rationalization Interface Details
Both studies were conducted in the Amazon
Mehcanical Turk. We mentioned the worker inclu-
sion criteria in Section 3. Each study was launched
in separate batches and were not conducted simul-
taneously. Due to the complexity of HITs in each
of the studies, we designed the study interfaces
from scratch using HTML and JavaScript. These
interfaces were uploaded in the platform as a new
project to launch the corresponding study.

Figure 9 shows a screen shot of the HIT inter-
face of the first study — head-to-head comparison
between LLM-generated and ECQA (crowdworker-
written) rationales. The HIT contains a question
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Figure 8: (a) LLM-generated rationales preferred over human-written (ECQA) rationales. LLM-generated rationales
were rated substantially higher than human-written rationales, with the exception of conciseness. (b) ECQA
rationales preferred over LLM-generated rationales. Surprisingly, human-written rationales were rated significantly
higher only on three aspects: conciseness, factuality and convincingness.

and the choices, a selected answer, and two ratio-
nales, order of which the are determined at random
on-the-fly. Figure 10 shows a screen shot of the
HIT interface of the acceptability crowd study with
a question and the choices, a selected answer, and
an LLM-generated rationales. For both the studies,
the workers were asked several rating questions de-
signed to collect feedback on both coarse-grained
and fine-grained aspects of a rationale outlined in
Section 4 and Section 5. Workers were asked to
rate the rationale(s) using a sliding scale ([1, 7]).

We opted for Likert scale-based rating rather
than choice questions to get a more fine-grained
feedback. Given a choice questions, each choice
may not exactly capture the participants interpreta-
tion of how much a rationale observed the property
being evaluated. For example, as shown in Figure 9,
we ask the crowdworker to “rate how understand-
able each rationale is ”. To assist the participants,
we suggest how to use the scale — provide inter-
pretation of three points in the scale, i.e., 1 = Not
understandable, 4 = Somewhat understandable, and
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7 = Completely understandable.
Additional quality control measures. Note that
some instances in CSQA have multiple correct or
very similar answer choices, due to noise in the
dataset and the fact that the wrong answer choices
were deliberately collected to make the task chal-
lenging. To remove this possible confounder, fol-
lowing related work (Wiegreffe et al., 2022), in
both the crowd studies we instruct crowdworkers
to treat the selected answer as correct even if they
disagree with it, and then rate the fine-grained as-
pects of the rationales. To minimize bias, we ran-
domized the order in which rationales were dis-
played side-by-side across workers of each HIT.
We also randomized randomized the order of the
rating questions on the fine-grained aspects pre-
sented across workers of each HIT. Three different
workers completed each HIT. The workers who par-
ticipated in the comparative study were excluded
from the acceptability study. Furthermore, for the
acceptability study, we launched the OBQA dataset
HITs after the conclusion of the CSQA HITs and
excluded workers participating in the CSQA HITs.

E.2 Credible Rationalization Interface Details
As shown in Figure 11, participants are first asked
to answer a multiple choice question sampled ran-
domly from the CSQA and OBQA datasets. We
ensure the accurate distribution of questions with
correct and incorrect KIT model prediction for
each study condition by grouping questions in each
dataset by prediction accuracy. Once the partic-
ipant selects an answer, they are shown the KIT
model prediction and the LLM-generated rationale
(Figure 12). At this point, the QA component is
disabled so the the participants cannot change their
options. Finally, participants are provided two fol-
low up questions to collect immediate feedback
regarding the task (Figure 13). Finally, participant
conclude the study by completing a survey with
questions adapted from the XAI trust scale (Hoff
and Bashir, 2015) (see Figrue 14.)
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Figure 9: A partial screenshot of the head-to-head comparison interface.

Figure 10: A partial screenshot of the acceptability task interface.

Figure 11: For each task, participants are first asked to answer a multiple choice question.
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Figure 12: Once the participant selects an answer, they are shown the KIT model prediction and the LLM-generated
rationale.

Figure 13: Collecting immediate participant feedback for a task.
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Figure 14: Trust scale-based survey of participant experience.
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