@inproceedings{zhang-etal-2024-ultra,
title = "{ULTRA}: Unleash {LLM}s{'} Potential for Event Argument Extraction through Hierarchical Modeling and Pair-wise Self-Refinement",
author = "Zhang, Xinliang Frederick and
Blum, Carter and
Choji, Temma and
Shah, Shalin and
Vempala, Alakananda",
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2024",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-acl.487",
doi = "10.18653/v1/2024.findings-acl.487",
pages = "8172--8185",
abstract = "Structural extraction of events within discourse is critical since it avails a deeper understanding of communication patterns and behavior trends. Event argument extraction (EAE), at the core of event-centric understanding, is the task of identifying role-specific text spans (i.e., arguments) for a given event. Document-level EAE (DocEAE) focuses on arguments that are scattered across an entire document. In this work, we explore open-source Large Language Models (LLMs) for DocEAE, and propose ULTRA, a hierarchical framework that extracts event arguments more cost-effectively. Further, it alleviates the positional bias issue intrinsic to LLMs. ULTRA sequentially reads text chunks of a document to generate a candidate argument set, upon which non-pertinent candidates are dropped through self-refinement. We introduce LEAFER to address the challenge LLMs face in locating the exact boundary of an argument. ULTRA outperforms strong baselines, including strong supervised models and ChatGPT, by 9.8{\%} when evaluated by Exact Match (EM).",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhang-etal-2024-ultra">
<titleInfo>
<title>ULTRA: Unleash LLMs’ Potential for Event Argument Extraction through Hierarchical Modeling and Pair-wise Self-Refinement</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xinliang</namePart>
<namePart type="given">Frederick</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carter</namePart>
<namePart type="family">Blum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Temma</namePart>
<namePart type="family">Choji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shalin</namePart>
<namePart type="family">Shah</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alakananda</namePart>
<namePart type="family">Vempala</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Structural extraction of events within discourse is critical since it avails a deeper understanding of communication patterns and behavior trends. Event argument extraction (EAE), at the core of event-centric understanding, is the task of identifying role-specific text spans (i.e., arguments) for a given event. Document-level EAE (DocEAE) focuses on arguments that are scattered across an entire document. In this work, we explore open-source Large Language Models (LLMs) for DocEAE, and propose ULTRA, a hierarchical framework that extracts event arguments more cost-effectively. Further, it alleviates the positional bias issue intrinsic to LLMs. ULTRA sequentially reads text chunks of a document to generate a candidate argument set, upon which non-pertinent candidates are dropped through self-refinement. We introduce LEAFER to address the challenge LLMs face in locating the exact boundary of an argument. ULTRA outperforms strong baselines, including strong supervised models and ChatGPT, by 9.8% when evaluated by Exact Match (EM).</abstract>
<identifier type="citekey">zhang-etal-2024-ultra</identifier>
<identifier type="doi">10.18653/v1/2024.findings-acl.487</identifier>
<location>
<url>https://aclanthology.org/2024.findings-acl.487</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>8172</start>
<end>8185</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T ULTRA: Unleash LLMs’ Potential for Event Argument Extraction through Hierarchical Modeling and Pair-wise Self-Refinement
%A Zhang, Xinliang Frederick
%A Blum, Carter
%A Choji, Temma
%A Shah, Shalin
%A Vempala, Alakananda
%Y Ku, Lun-Wei
%Y Martins, Andre
%Y Srikumar, Vivek
%S Findings of the Association for Computational Linguistics: ACL 2024
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F zhang-etal-2024-ultra
%X Structural extraction of events within discourse is critical since it avails a deeper understanding of communication patterns and behavior trends. Event argument extraction (EAE), at the core of event-centric understanding, is the task of identifying role-specific text spans (i.e., arguments) for a given event. Document-level EAE (DocEAE) focuses on arguments that are scattered across an entire document. In this work, we explore open-source Large Language Models (LLMs) for DocEAE, and propose ULTRA, a hierarchical framework that extracts event arguments more cost-effectively. Further, it alleviates the positional bias issue intrinsic to LLMs. ULTRA sequentially reads text chunks of a document to generate a candidate argument set, upon which non-pertinent candidates are dropped through self-refinement. We introduce LEAFER to address the challenge LLMs face in locating the exact boundary of an argument. ULTRA outperforms strong baselines, including strong supervised models and ChatGPT, by 9.8% when evaluated by Exact Match (EM).
%R 10.18653/v1/2024.findings-acl.487
%U https://aclanthology.org/2024.findings-acl.487
%U https://doi.org/10.18653/v1/2024.findings-acl.487
%P 8172-8185
Markdown (Informal)
[ULTRA: Unleash LLMs’ Potential for Event Argument Extraction through Hierarchical Modeling and Pair-wise Self-Refinement](https://aclanthology.org/2024.findings-acl.487) (Zhang et al., Findings 2024)
ACL