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Abstract
Citation count of a paper is a commonly used
proxy for evaluating the significance of a pa-
per in the scientific community. Yet citation
measures are widely criticized for failing to ac-
curately reflect the true impact of a paper. Thus,
we propose CAUSALCITE, a new way to mea-
sure the significance of a paper by assessing the
causal impact of the paper on its follow-up pa-
pers. CAUSALCITE is based on a novel causal
inference method, TEXTMATCH, which adapts
the traditional matching framework to high-
dimensional text embeddings. TEXTMATCH
encodes each paper using text embeddings from
large language models (LLMs), extracts similar
samples by cosine similarity, and synthesizes a
counterfactual sample as the weighted average
of similar papers according to their similarity
values. We demonstrate the effectiveness of
CAUSALCITE on various criteria, such as high
correlation with paper impact as reported by
scientific experts on a previous dataset of 1K
papers, (test-of-time) awards for past papers,
and its stability across various subfields of AI.
We also provide a set of findings that can serve
as suggested ways for future researchers to use
our metric for a better understanding of the
quality of a paper.1

1 Introduction
Recent years have seen explosive growth in the number
of scientific publications, making it increasingly chal-
lenging for scientists to navigate the vast landscape of
scientific literature. Therefore, identifying a good paper
has become a crucial challenge for the scientific commu-
nity, not only for technical research purposes, but also
for making decisions, such as funding allocation (Carls-
son, 2009), research evaluation (Moed, 2006), recruit-
ment (Gary Holden and Barker, 2005), and university
ranking and evaluation (Piro and Sivertsen, 2016).

A traditional approach to recognize paper quality is
peer review, a mechanism that requires large efforts,

∗Equal contribution.
1Our code is available at https://github.com/

causalNLP/causal-cite.

Causal Effect
Paper a Paper b

What is the impact of Paper a on its followup study b?

Paper topic
Publication year
...

Success metric: y

Attributes

Paper a Paper b
Paper topic
Publication year
...

Success metric: y'

Attributes

We make a counterfactual situation
Had Paper a not existed... Yet Paper b still has the same topic, year, etc.

What would the counterfactual success metric y' be?

Figure 1: An overview of our research question.

and yet has inherent randomness and flaws (Cortes
and Lawrence, 2021; Rogers et al., 2023; Shah, 2022;
Prechelt et al., 2018; Resnik et al., 2008). Moreover, the
number of papers after peer review is still overwhelm-
ingly large for researchers to read, leaving the challenge
of identifying truly impactful research unaddressed. An-
other commonly used metric is citations. However, this
metric faces criticism for biases, such as a preference
for survey, toolkit, and dataset papers (Zhu et al., 2015;
Valenzuela-Escarcega et al., 2015). Together with alt-
metrics (Wilsdon et al., 2015), which incorporates social
media attention to a paper, both metrics also bias to-
wards papers from major publishing countries (Rungta
et al., 2022; Gomez et al., 2022), with extensive public-
ity and promotion, and authored by established figures.

To provide a more equitable assessment of paper quality,
we employ the causal inference framework (Hernán
and Robins, 2010) to quantify a paper’s impact by how
much of the academic success in the follow-up papers
should be causally attributed to this paper. We introduce
CAUSALCITE, an enhanced citation based metric that
poses the following counterfactual question (also shown
in Figure 1): “had this paper never been published,
what would have happened to its follow-up studies?”
To compute the causal attribution of each follow-up
paper, we contrast its citations (the treatment group)
with citations of papers that address a similar topic, but
are not built on the paper of interest (the control group).

Traditionally, this problem is solved by using the match-
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ing method (Rosenbaum and Rubin, 1983) in causal
inference, which discretizes the value of the confounder
variable, and compares the treatment and control groups
with regard to each discretized value of the confounder
variable. However, this approach does not apply when
the confounder variable is high-dimensional, e.g., text
data, such as the content of the paper. Thus, we improve
the matching method to adapt for textual confounders,
by marrying recent advancement of large language mod-
els (LLMs) with traditional causal inference. Specif-
ically, we propose TEXTMATCH, which uses LLMs
to encode an academic paper as a high-dimensional
text embedding to represent the confounders, and then,
instead of iterating over discretized values of the con-
founder, we match each paper in the treatment group
with papers from the control group with high cosine
similarity by the text embeddings.

TEXTMATCH makes contributions in three different
aspects: (1) it relaxes the previous constraint that the
confounder variable should be binned into a limited set
of intervals, and makes the matching method applicable
for high-dimensional continuous variable type for the
confounder; (2) since there are millions of papers, we
enable efficient matching via a matching-and-reranking
approach, first using information retrieval (IR) (Man-
ning et al., 2008) to extract a small set of candidates,
and then applying semantic textual similarity (STS) (Ma-
jumder et al., 2016; Chandrasekaran and Mago, 2022)
for fine-grained reranking; and (3) we enable a more sta-
ble causal effect estimation by leveraging all the close
matches to synthesize the counterfactual citation score
by a weighted average according to the similarity scores
of the matched papers.

CAUSALCITE quantifies scientific impact via a causal
lens, offering an alternative understanding of a paper’s
impact within the academic community. To test its ef-
fectiveness, we conduct extensive experiments using
the Semantic Scholar corpus (Lo et al., 2020; Kinney
et al., 2023), comprising of 206M papers and 2.4B ci-
tation links. We empirically validate CAUSALCITE by
showing higher predictive accuracy of paper impact (as
judged by scientific experts on a past dataset of 1K pa-
pers (Zhu et al., 2015)) compared to citations and other
previous impact assessment metrics. We further show a
stronger correlation of the metric with the test-of-time
(ToT) paper awards. We find that, unlike citation counts,
our metric exhibits a greater balance across various re-
search domains in AI, e.g., general AI, NLP, and com-
puter vision (CV). While citation numbers for papers in
these domains vary significantly – for example, while
an average CV paper has many more citations than an
average NLP paper, CAUSALCITE scores papers across
AI sub-fields more similarly.

After demonstrating the desirable properties of our met-
ric, we also present several case studies of its applica-
tions. Our findings reveal that the quality of conference
best papers is noisier on average than that of ToT papers

(Section 5.1). We then showcase and present CAUSAL-
CITE for several well-known papers (Section 5.3) and
utilize CAUSALCITE to identify high-quality papers that
are less recognized by citation counts (Section 5.4).

In conclusion, our contributions are as follows:

1. We introduce CAUSALCITE, a counterfactual
causal effect-based formulation for paper citations.

2. We develop TEXTMATCH, a new method that lever-
ages LLMs and causal inference to estimate the
counterfactual causal effect of a paper.

3. We conduct comprehensive analyses, including var-
ious performance evaluations and present new find-
ings using our metric.

2 Problem Formulation
Our problem formulation involves a citation graph and
a causal graph. We use lowercase letters for specific
papers and uppercase for an arbitrary paper treated as a
random variable.

Citation Graph In the citation graph G := (P,L), P
is a set of papers, and each edge ℓi,j ∈ L indicates
that an earlier paper pi influences (i.e., is cited by) a
follow-up paper pj . To obtain the citation graph, we use
the Semantic Scholar Academic Graph dataset (Kinney
et al., 2023) with 206M papers and 2.4B citation edges.

Treatment T
Building Paper b on Paper a

Effect Y
Success of Paper b

What is the causal effect size?

Confounders X
Title+Abstract
incl., topic, research

question

Year

Treatment T
Building Paper b on Paper a

Effect Y
Success of Paper b

Mediators
Performance

e.g., "90%"
Venue

e.g., "ACL"

Colliders
Post-Hoc Award

e.g., "Test of Time"
...

...

We use the causal graph to identify the correct variables to control for:

Target:

T's Ancestors (but not Y's)
Paper a's venue,

publicity, ... Should be
controlled for

Should not be
controlled for

Y's Ancestors (but not T's)

Paper b's efforts into PR...

Figure 2: The causal graph of our study.
Causal Graph. The causal graph, shown in Figure 2,
highlights the contribution of a paper a to a follow-up
paper b. We use a binary variable T to indicate if a
influences b and an effect variable Y to represent the
success of b. We use log10 of citation counts to quantify
Y , although other transformations can also be used. We
introduce two sets of variables in this causal graph: (i)
The set of confounders, which are the common causes
of T and Y . For instance, the research area of b im-
pacts both the likelihood of a paper citing a and its own
citation count. (ii) Descendants of the treatment, com-
prising mediators (e.g., paper a influencing the quality
of paper b and subsequently influencing its citations)
and colliders (e.g., both the influence from a and the
citations of b influencing later awards received by b).
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2.1 CAUSALCITE Indices
In this section, we introduce various indices that mea-
sure the causal impact of a paper.

Two-Paper Interaction: Pairwise Causal Impact
(PCI). To examine the causal impact of a paper a on a
follow-up paper b, we define the pairwise causal impact
PCI(a, b) by unit-level causal effect:

PCI(a, b) := yt=1 − yt=0 , (1)

where we compare the outcomes Y of the paper b had it
been influenced by paper a or not, denoted as the actual
yt=1 and the counterfactual yt=0, respectively. Note
that the counterfactual yt=0 can never be observed, but
only estimated by statistical methods, as we will discuss
in Section 3.2.

Single-Paper Quality Metrics: Total Causal Impact
(TCI) and Average Causal Impact (ACI). Let S de-
note the set of all follow-up studies of paper a. We
define total causal impact TCI(a) as the sum of the pair-
wise causal impact index PCI(a, b) across all b ∈ S.
That is,

TCI(a) :=
∑

b∈S

PCI(a, b) . (2)

This definition provides an aggregated measure of a
paper’s influence across all its follow-up papers.

As the causal inference literature is usually interested
in the average treatment effect, we further define the
average causal impact (ACI) index as the average per
paper PCI:

ACI(a) :=
TCI(a)

|S| =
1

|S|
∑

b∈S

(
yt=1 − yt=0

)
. (3)

We note that ACI(a) is equal to the average treatment
effect on the treated (ATT) of paper a (Pearl, 2009).

3 The TEXTMATCH Method

As illustrated in Figure 1, the objective of our study
is to quantify the causal effect of the treatment T (i.e.,
whether paper b is built on paper a) on the effect Y
(i.e., the outcome of paper b). To approach this, we
envision a counterfactual scenario: what if paper a had
never been published, yet certain key characteristics of
paper b remain unchanged? The critical question then
becomes: which key characteristics of paper b should
be controlled for in this hypothetical situation?

3.1 What Does Causal Inference Tell Us about
What Variables to Control for, and What Not?

In causal inference, selecting the appropriate variables
for control is a delicate and crucial process that affects
the accuracy of the analysis. Pearl’s seminal work on
causality guides us in differentiating between various
types of variables (Pearl, 2009).

Firstly, we must control for confounders – variables
that influence both the treatment and the outcome. Con-
founders can create spurious correlations; if not con-
trolled, they can lead us to mistakenly attribute the ef-
fect of these external factors to the treatment itself. For
example, in assessing the impact of one paper on an-
other, if both papers are in a trending research area, the
apparent influence might be due to the popularity of the
topic rather than the papers’ content.

However, not all variables warrant control. Mediators
and colliders should be explicitly avoided in control.
Mediators are part of the causal pathway between the
treatment and outcome. By controlling them, we would
block the very effect we are trying to measure. Collid-
ers, affected by both the treatment and the outcome, can
introduce bias when controlled. Controlling a collider
can inadvertently create associations that do not natu-
rally exist. In general, this also includes not controlling
for the descendants of the treatment, as it could obscure
the direct impact we intend to study.

Lastly, variables that do not share a causal path with
both the treatment and outcome, known as unshared
ancestors, are less critical in our analysis. They do not
contribute to or confound the causal relationship we are
exploring, and thus, controlling for them does not add
value to our causal understanding.

3.2 Can Existing Causal Inference Methods
Handle This Control?

Several causal inference methods have been proposed
to address the problem of estimating treatment effects
while controlling for confounders. Next, we will discuss
the workings and limitations of three classical methods.

Randomized Control Trials (RCTs) Assumes Inter-
venability. The ideal way to obtain causal effects is
through randomized control trials (RCTs). For example,
when testing a drug, we randomly split all patients into
two groups, the control group and the treatment group,
where the random splitting ensures the same distribu-
tion of the confounders across the two groups such as
gender and age. However, RCTs are usually not easily
achievable, in some cases too expensive (e.g., tracking
hundreds of people’s daily lives for 50 years), and in
other cases unethical (e.g., forcing a random person to
smoke), or infeasible (e.g., getting a time machine to
change a past event in history).

For our research question on a paper’s impact, utilizing
RCTs is impractical as it is infeasible to randomly divide
researchers into two groups, instructing one group to
base their research on a specific paper a while the other
group does not, and then observe the citation count of
their papers years later.

Ratio Matching Iterates over Discretized Con-
founder Values. In the absence of RCTs, matching
is as an alternate method for determining causal effects
from observational data. In this case, we can let the
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treatment assignment happen naturally, such as taking
the naturally existing set of papers and running causal
inference by adjusting for the variables that block all
paths. Given a set of naturally observed papers, one of
the most commonly used causal inference methods is
ratio matching (Rosenbaum and Rubin, 1983), whose
basic idea is to iterate over all possible values x of
the adjustment variables X and obtain the difference
between the treatment group T and control group C:

‘ACI(a) =
∑

x

P (x)

Ñ
1

|Tx|
∑

i∈Tx

yi −
1

|Cx|
∑

j∈Cx

yj

é
,

(4)
where for each value x, we extract all the units corre-
sponding to this value in the treatment and control sets,
compute the average of the effect variable Y for each
set, and obtain the difference.

While ratio matching is practical when there is a small
set of values for the adjustment variables to sum over,
its applicability dwindles with high-dimensional vari-
ables like text embeddings in our context. This scenario
may generate numerous intervals to sum over, present-
ing numerical challenges and potential breaches of the
positivity assumption.

One-to-One Matching Is Susceptible to Variance. To
handle high-dimensional adjustment variables, one pos-
sible way is to avoid pre-defining all their possible in-
tervals, but, instead, iterating over each unit in the treat-
ment group to match for its closest control unit (e.g.,
McGue et al., 2010; Sato et al., 2022). Consider a given
follow-up paper b, and a set of candidate control papers
C, where each paper ci has a citation count yi, and vec-
tor representation ti of the confounders (e.g., research
topic). One-to-one matching estimates PCI as

‘PCI(a, b) = yb − yargmaxci∈C mi

= yb − yargmaxci∈C sim(tb,ti) ,
(5)

where we approximate the counterfactual sample by the
paper ci ∈ C which is the most similar to paper b by
the matching score mi, which is obtained by the cosine
similarity sim of the confounder vectors. A limitation
of the one-to-one matching method is that it might in-
duce large instability in the result, as only taking one
paper with similar contents may have a large variance
in citations when the matched paper slightly differs.

3.3 How Do We Extending Causal Inference to
Text Variables?

3.3.1 Theoretical Formulation of TEXTMATCH:
Stabilizing Text Matching by Synthesis

To fill in the aforementioned gap in the existing match-
ing methods, we propose TEXTMATCH, which miti-
gates the instability issue of one-to-one matching by
replacing it with a convex combination of a set of
matched samples to form a synthetic counterfactual sam-
ple. Specifically, we identify a set of papers ci ∈ C with

high matching scores mi to the paper b, and synthesize
the counterfactual sample by an interpolation of them:

‘PCI(a, b) = yb −
∑

ci∈C

wiyi = yb −
∑

ci∈C

mi∑
ci∈C mi

yi ,

(6)

where the weight wi of each paper ci is proportional to
the matching score mi and normalized.

The contributions of our method are as follows: (1)
we adapt the traditional matching methods from low-
dimensional covariates to any high-dimensional vari-
ables such as text embeddings; (2) different from the
ratio matching, we do not stratify the covariates, but
synthesize a counterfactual sample for each observed
treated units; (3) due to this iteration over each treated
unit instead of taking the population-level statistics, we
closely control for exogenous variables for the ATT es-
timation, which circumvents that need for the structural
causal models; (4) we further stabilize the estimand by
a convex combination of a set of similar papers. Note
that the contribution of Eq. (6) might seem to bear simi-
larity with synthetic control (Abadie and Gardeazabal,
2003; Abadie et al., 2010), but they are fundamentally
different, in that synthetic control runs on time series,
and fit for the weights wi by linear regression between
the time series of the treated unit and a set of time series
from the control units, using each time step’s values in
the regression loss function.

3.3.2 Overall Algorithm
To operationalize our theoretical formulation above, we
introduce our overall algorithm in Algorithm 1. We
briefly give an overview of the the algorithm with more
details to be elaborated in later sections. We use the
weighted average of the matched samples following our
TEXTMATCH method in Eq. (6) through lines 25 to 34.
In our experiments, we use the interpolation of up to top
10 matched papers. We encourage future work to ex-
plore other hyperparameter settings too. Given the PCI
estimation, the main spirit of the GETACIANDTCI(a)
function is to average or sum over all the follow-up
studies of paper a, following the theoretical formulation
in Eqs. (2) and (3) and implemented in our algorithm
through lines 7 to 12.

3.3.3 Key Challenges and Mitigation Methods
We address several technical challenges below.

3.3.3.1 Confounders of Various Types
First, as we mentioned in the causal graph in Figure 2,
the confounder set consists of a text variable (title and
abstract concatenated together) and an ordinal variable
(publication year). Therefore, the similarity operation
Sim between two papers should be customized. For our
specific use case, we first filter by the publication year in
line 16, as it is not fair to compare the citations of papers
published in different years. Then, we apply the cosine
similarity method paper embeddings as in line 22. As a
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Algorithm 1 Get causal impact indices ACI and TCI

1: Input: Paper a.
2: procedure GETACIANDTCI(a)
3: D ← GetDesc(a) ▷ Get descendants by DFS
4: B ← GetChildren(a)
5: B′ ← SampleSubset(B) ▷ See Section 3.3.3.4
6: C ← EntireSet\{D ∪ {a}} ▷ Get non-descendants
7: ACI← 0
8: for each bi in B′ do
9: Ii ← GETPCI(a, bi,C)

10: ACI← ACI + 1
|B′| · Ii

11: end for
12: TCI← ACI · |B|
13: return ACI and TCI
14: end procedure

15: procedure GETPCI(a, b,C)
16: CsameYear ← FilterByYear(C, byear)
17: for each pi in CsameYear ∪ {b} do
18: ti ← RemoveMediator(TitleAbstracti)
19: end for
20: Ccoarse ← BM25(b,CsameYear, topk = 100)
21: for each ci in Ccoarse do
22: mi ← Sim(tb, ti)
23: end for
24: Ctop10 ← argmax10m(Ccoarse)

25: M ← 0
26: for each ci in Ctop10 do ▷ For the normalization later
27: M ←M +mi

28: end for
29: ŷt=0 ← 0
30: for each ci in Ctop10 do
31: wi ← mi

M

32: ŷt=0 ← ŷt=0 + wi · yi ▷ Apply Eq. (6)
33: end for
34: return yb − ŷt=0

35: end procedure

general solution, we recommend to separate hard logical
constraints, and soft matching preferences, where the
hard constraints should be imposed to filter the data first,
and then all the rest of the variables can be concatenated
to apply the similarity metric on.

3.3.3.2 Excluding the Mediators from Confounders
Another key challenge to highlight is that the text vari-
able we use for the confounder might accidentally in-
clude some mediator information. For example, the
quality or performance of a paper could be expressed
in the abstract, such as “we achieved 90% accuracy.”
Therefore, we conduct a specific preprocessing proce-
dure before feeding the text variable to the similarity
function. For the RemoveMediator function in line 18,
we exclude all numerical expressions such as percentage
numbers, as well as descriptions such as “state-of-the-
art.” For generalizability, the essence of this step is a
entanglement action to separate the confounder variable
(in this case, the research content) and all the descen-
dants of the treatment variable (in this case, mentions of
the performance). For more complicated cases in future
work, we recommend a separate disentanglement model
to be applied here.

3.3.3.3 Efficient Matching-and-Reranking Method
Since we use one of the largest available paper databases,
the Semantic Scholar dataset (Kinney et al., 2023) con-
taining 206M papers, we need to optimize our algorithm
for large-scale paper matching. For example, after we
filter by the publication year, the number of candidate
papers CsameYear could be up to 8.8M. In order to con-
duct text matching across millions of papers, we use a
matching-and-reranking approach, by combining two
NLP tasks, information retrieval (IR) (Manning et al.,
2008) and semantic textual similarity (STS) (Majumder
et al., 2016; Chandrasekaran and Mago, 2022).

Specifically, we first run large-scale matching to ob-
tain 100 candidates papers (line 20) using the common
IR method, BM25 (Robertson and Zaragoza, 2009).
Briefly, BM25 is a bag-of-words retrieval function that
uses term frequencies and document lengths to estimate
relevancy between two text documents. Deploying this
method, we can find a set of candidate papers for, for
example, two million papers, at a speed 250x faster than
the text embedding cosine similarity matching. Then,
we conduct a fine-grained reranking using cosine simi-
larity (lines 21 to 23). In the cosine similarity matching
process, we use the MPNet model (Song et al., 2020)
to encode the text of each paper ci into an embedding
ti, with which we get the matching score mi according
to Eq. (5) in line 22, and the normalized weight wi by
Eq. (6) in line 31.

3.3.3.4 Numerical Estimation

Given the large number of papers, it is numerically
challenging to aggregate the TCI from individual PCIs,
because the number of follow-up papers for a study can
be up to tens of thousands, such as the 57,200 citations
by 2023 for the ImageNet paper (Deng et al., 2009). To
avoid extensively running PCI for all follow-up papers,
we propose a new numerical estimation method using a
carefully designed random paper subset.

A naive way to achieve this aggregation is Monte Carlo
(MC) sampling. However, unfortunately, MC sampling
requires very large sample sizes when it comes to esti-
mating long-tailed distributions, which is the usual case
of citations. Since citations are more likely to be con-
centrated in the head part of the distribution, we cannot
afford the computational budget for huge sample sizes
that cover the tails of the distribution. Instead, we pro-
pose a novel numerical estimation method for sampling
the follow-up papers, inspired by importance sampling
(Singh, 2014; Kloek and van Dijk, 1976).

Our numerical estimation method works as follows:
First, we propose the formulation that the relation be-
tween ACI and TCI is an integral over all possible paper
b’s. Then, we formulated the above sampling problem as
integral estimation or area-under-the-curve estimation.
We draw inspiration from Simpson’s method, which
estimates integrals by binning the input variable into
small intervals. Analogously, although we cannot run
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through all PCIs, we use citations as a proxy, bin the
large set of follow-up papers according to their citations
into n equally-sized intervals, and perform random sam-
pling over each bin, which we then sum over. In this
way, we make sure that our samples come from all parts
of the long-tailed distribution and are a more accurate
numerical estimate for the actual TCI.

4 Performance Evaluation
The contribution of a paper is inherently multi-
dimensional, making it infeasible to encapsulate its rich-
ness fully through a scalar. Yet the demand for a single,
comprehensible metric for research impact persists, fuel-
ing the continued use of traditional citations despite their
known limitations. In this section, we show how our
new metrics significantly improve upon traditional cita-
tions by providing quantitative evaluations comparing
the effectiveness of citations, Semantic Scholar’s highly
influential (SSHI) citations (Valenzuela-Escarcega et al.,
2015), and our CAUSALCITE metric.

4.1 Experimental Setup
Dataset We use the Semantic Scholar dataset (Lo et al.,
2020; Kinney et al., 2023)2 which includes a corpus of
206M scientific papers, and a citation graph of 2.4B+
citation edges. For each paper, we obtain the title and
abstract for the matching process. We list some more
details of the dataset in Appendix B, such as the number
of papers reaching 8M per year after 2012.

Selecting the Text Encoder When projecting the text
into the vector space, we need a text encoder with a
strong representation power for scientific publications,
and is sensitive towards two-paper similarity compar-
isons regarding their abstracts containing key informa-
tion such as the research topics. For the representation
power for scientific publications, instead of general-
domain models such as BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019), we consider LLM variants3

pretrained on large-scale scientific text, such as SciB-
ERT (Beltagy et al., 2019), SPECTER (Cohan et al.,
2020), and MPNet (Song et al., 2020).

To check the quality of two-paper similarity measures,
we conduct a small-scale empirical study comparing
human-ranked paper similarity and model-identified se-
mantic similarity in Appendix A.3, according to which
MPNet outperforms the other two models.

Implementation Details We deploy the all-mpnet-base-
v2 checkpoint of the MPNet using the transformers
Python package (Wolf et al., 2020), and set the batch
size to be 32. For the set of matched papers, we consider
papers with cosine similarity scores higher than 0.81,
which we optimize empirically on 100 random paper
pairs. We take the top ten most similar papers above the

2https://api.semanticscholar.org/api-docs/datasets
3Note that we follow the standard notion by Yang et al.

(2023) to refer to BERT and its variants as LLMs.

threshold. In special cases where there is no matched
paper above the threshold, it means that no other paper
works on the same idea as Paper b, and we make the
counterfactual citation number to be zero, which also
reflects the quality of Paper b as its novelty is high.

To enable efficient operations on the large-scale citation
graph, we use the Dask framework,4 which optimizes
for data processing and distributed computing. We opti-
mize our program to take around 100GB RAM, and on
average 25 minutes for each PCI(a, b) after matching
against up to millions of candidates. More implemen-
tation details are in Appendix A.1. For the estimation
of TCI, we empirically select the sample size to be 40,
which is a balance between the computational time and
performance, as found in Appendix A.2.

4.2 Author-Identified Paper Impact
In this experiment, we follow the evaluation setup in
Valenzuela-Escarcega et al. (2015) to use an annotated
dataset (Zhu et al., 2015) comprised of 1,037 papers,
annotated according to whether they serve as signifi-
cant prior work for a given follow-up study. Although
paper quality evaluation can be tricky, this dataset was
cleverly annotated by first collecting a set of follow-up
studies and letting one of the authors of each paper go
through the references they cite and select the ones that
significantly impact their work. In other words, for a
given paper b, each reference a is annotated as whether
a has significantly impacted b or not.

Table 1 reports the accuracy of our CAUSALCITE met-
ric, together with two existing citation metrics: citations,
and SSHI citations (Valenzuela-Escarcega et al., 2015).
See the detailed derivation of the accuracy scores in
Appendix C.2. From this table, we can see that our
CAUSALCITE metric achieves the highest accuracy,
80.29%, which is 5 points higher than SSHI, and 9
points higher than the traditional citations.

4.3 Test-of-Time Paper Analysis
The test-of-time (ToT) paper award is a prestigious
honor bestowed upon papers that have made substan-
tial and enduring impacts in their field. In this section,
we collect a dataset of 792 papers, including 72 ToT
papers, and a control group of 10 randomly selected
non-ToT papers from the same conference and year as
each ToT paper. To collect this ToT paper dataset, we
look into ten leading AI conferences spanning general
AI (NeurIPS, ICLR, ICML, and AAAI), NLP (ACL,
EMNLP, and NAACL), and CV (CVPR, ECCV, and
ICCV), for which we go through each of their websites
to identify all available ToT papers.5

In Table 2, we show the correlations of various met-
rics with the ToT awards. In this table, CAUSAL-

4https://dask.org/
5We get this list by selecting the top conferences on Google

Scholar using the h5-Index ranking in each of the above do-
mains: general AI (link), CV (link), and NLP (link).
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Metric Accuracy
Citations 71.33
SSHI Citations 75.25
CAUSALCITE 80.29

Table 1: Accuracy of all three citation
metrics.

Metric Corr. Coef.
Citations 0.491
SSHI Citations 0.317
TCI 0.640

Table 2: Correlation coefficients of
each metric and ToT paper award by
Point Biserial Correlation (Tate, 1954).
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Figure 3: Distributions of ToT
(mean: 142) and non-ToT pa-
pers (mean: 1,623).
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Figure 4: The CAUSALCITE values of three exam-
ple ToT papers from general AI, NLP, and CV.

CITE achieves the highest correlation of 0.639, which is
+30.14% better than that of citations. Furthermore, we
visualize the correspondence of our metric and ToT, and
observe a substantial difference between the CAUSAL-
CITE distributions of ToT vs. non-ToT papers in Fig-
ure 3. We also show three examples of ToT papers in
Figure 4, where the ToT papers differ from the non-ToT
papers by one or two orders of magnitude.

4.4 Topic Invariance of CAUSALCITE

Research Area ACI Citations SSHI
General AI (n=16) 0.748 2,024 267
CV (n=36) 0.734 7,238 1,088
NLP (n=20) 0.763 1,785 461

Table 3: The average of each metric by research area on our
collected set of 72 ToT papers.

A well-known issue with citations is their inconsistency
across different fields. What might be considered a
large number of citations in one field might be seen as
average in another. In contrast, we show that our ACI
index does not suffer from this issue. We show this
using our ToT dataset, where we control for the quality
of the papers to be ToT but vary the domain by the three
fields: general AI, CV, and NLP. We observe in Table 3
that even though some domains have significantly more
citations (for instance, CV ToT papers have, on average,
4.05 times more citations than NLP), the ACI remains
consistent across various fields.

5 Findings
Having demonstrated the effectiveness of our metrics,
we now explore some open-ended questions: (1) Do best
papers have high causal impact? (Section 5.1) (2) How
does the CAUSALCITE value distribute across papers?
(Section 5.2) (3) What is the impact of some famous pa-
pers evaluated by CAUSALCITE? (Section 5.3) (4) Can
we use this metric to correct for citations? (Section 5.4).

5.1 Do Best Papers Have High Causal Impact?
Selecting best paper awards is an arguably much harder
task than ToT papers, as it is difficult to predict of the
impact of a paper when it is just newly published. There-

fore, we are interested in the actual causal impact of best
papers. Similar to our study on ToT papers, we collect
a dataset of 444 papers including 74 best papers and a
control set of random 5 non-best papers from the same
conference in the same year, using the same set of the
top ten leading AI conferences. We find that the cor-
relation of the CAUSALCITE metric with best papers
is 0.348, which is very low compared to the 0.639 cor-
relation with the ToT papers. This shows that the best
papers do not necessarily have a high causal impact.
One interpretation can be that the best paper evaluation
is a forecasting task, which is much more challenging
than the retrospective task of ToT paper selection.

5.2 What Is the Nature of the CAUSALCITE
Distribution?
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Figure 5: The distribution of TCI values by percentile of 100
random papers, which shows a long tail indicating that high
impact is concentrated in a relatively small portion of papers.

We explore how the CAUSALCITE scores are distributed
across papers in general. We plot Figure 5 using a
random set of 100 papers from the Semantic Scholar
dataset, which is a reasonably large size given the com-
putation budget mentioned in Section 4.1. From this
plot, we can see a power law distribution with a long tail,
echoing with the common belief that the paper impact
follows the power law, with high impact concentrated
in a relatively small portion of papers.

5.3 Selected Paper Case Study
In addition to the shape of the overall distribution, we
also look at our metric’s correspondence to some se-
lected papers shown in Table 4. For example, we know
that the Transformer paper (Vaswani et al., 2017) is a
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Paper Name TCI Citations ACI
Transformers 52,507 68,064 0.771
BERT 40,675 59,486 0.683
RoBERTa 6,932 14,434 0.480

Table 4: Case study of some selected NLP papers.

more foundational work than its follow-up work BERT
(Devlin et al., 2019), and BERT is more foundational
than its later variant, RoBERTa (Liu et al., 2019). This
monotonic trend is confirmed in their TCI and ACI val-
ues too. Again, this is a preliminary case study, and we
welcome future work to cover more papers.

5.4 Discovering Quality Papers beyond Citations
Another important contribution of our metric is that
it can help discover papers that are traditionally over-
looked by citations. To achieve the discovery, we for-
mulate the problem as outlier detection, where we first
use a linear projection to handle the trivial alignment of
citations and CAUSALCITE, and then analyze the out-
liers using the interquartile range (IQR) method (Smiti,
2020). See the exact calculation in Appendix C.1. We
show the three subsets of papers in Table 5, where the
two outlier categories, the overcited and undercited pa-
pers, correspond to the false positive and false negative
oversight by citations, respectively. An additional note
is that, when we look into some characteristics of the
three categories, we find that the citation frequency in
result section, i.e., the percentage of times they are cited
in results section compared to all the citations, corre-
lates with these categories. Specifically, we find that the
undercited papers tend to have more of their citations
concentrated in the results section, which usually indi-
cates that this paper constitutes an important baseline
for a follow-up study, while the overcited papers tend to
be cited out of the results section, which tends to imply
a less significant citation.

Paper Category Result Citations Residual
Overcited Papers (7.04%) 1.26 -1.792
Aligned Papers (91.20%) 1.51 0.118
Undercited Papers (1.76%) 1.90 1.047

Table 5: We use our CAUSALCITE metric to discover outlier
papers that are overlooked by citations. For each paper cate-
gory, we include their portion relative to the entire population,
the percentage of citations occurred in the result section (Re-
sult Citations), and average residual value by linear regression.

6 Related Work
The quantification of scientific impact has a rich his-
tory and continuously evolves with technology. Bib-
liometric analysis has been largely influenced by early
methods that relied on citation counts (Garfield et al.,
1964; Garfield, 1972, 1964). Hou (2017) investigate the
evolution of citation analysis, employing reference pub-
lication year spectroscopy (RPYS) to trace its historical
development in scientometrics. Donthu et al. (2021)
provide practical guidelines for conducting bibliometric

analysis, focusing on robust methodologies to analyze
scientific data and identify emerging research trends.

Indices such as the h-index, introduced by Hirsch
(2005), are established tools for measuring research
impact. The more recent Relative Citation Ratio
(RCR), developed by Hutchins et al. (2016), provides
a field-normalized alternative to traditional metrics.
Valenzuela-Escarcega et al. (2015) introduced SSHI,
an approach to identify meaningful citations in schol-
arly literature. However, these metrics are not without
limitations. As Wróblewska (2021) discussed, conven-
tional citation-based metrics often fail to capture the
multidimensional nature of research impact. In this con-
text, Elmore (2018) discussed the Altmetric Attention
Score, which evaluates the broader societal and online
impact of research.

With the increasing availability of large datasets and
the advent of digital technologies, new opportunities for
bibliometric analysis have emerged. Iqbal et al. (2021)
highlighted the role of NLP and machine learning in
enhancing in-text citation analysis. Similarly, Umer
et al. (2021) explored the use of textual features and
SMOTE resampling techniques in scientific paper ci-
tation analysis. Jebari et al. (2021) analyzed citation
context to detect research topic evolution, showcasing
data analysis for scientific discourse. Chang et al. (2023)
explored augmenting citations in scientific papers with
historical context, offering a novel perspective on cita-
tion analysis. Manghi et al. (2021) introduced scientific
knowledge graphs, an innovative method for evaluating
research impact. Bittmann et al. (2021) explored sta-
tistical matching in bibliometrics, discussing its utility
and challenges in post-matching analysis. The use of
AI in bibliometric analysis is highlighted in research by
Chubb et al. (2022) and the systematic review of AI in
information systems by Collins et al. (2021). Network
analysis approaches, as discussed by Chakraborty et al.
(2020) in the context of patent citations and by Daw-
son et al. (2014) in learning analytics, further illustrate
the diverse applications of advanced methodologies in
understanding citation patterns.

7 Conclusion
In this study, we propose CAUSALCITE, a novel causal
formulation for paper citations. Our method combines
traditional causal inference methods with the recent ad-
vancement of NLP in LLMs to provide a new causal out-
look on paper impact by answering the causal question:
”Had this paper never been published, what would be the
impact on this paper’s current follow-up studies?”. With
extensive experiments and analyses using expert ratings
and test-of-time papers as criteria for impact, our new
CAUSALCITE metric demonstrates clear improvements
over the traditional citation metrics. Finally, we use this
metric to investigate several open-ended questions like
“Do best papers have high causal impact?”, conduct a
case study of famous papers, and suggest future usage of

8402



our metric for discovering good papers less recognized
by citations for the scientific community.

Limitations and Future Work
There are several limitations for our work. For example,
as mentioned previously, our metric has a high compu-
tational budget. Future work can explore more efficient
optimization methods. Also, we model the content of
the paper by its title and abstract, it could also be pos-
sible for future work to benefit from modeling the full
text, given appropriate license permissions.

As for another limitation, our study is based on data
provided by the Semantic Scholar corpus. This corpora
has certain properties such as being more comprehen-
sive with computer science papers, but less so in other
disciplines. Its citation data also has a delay compared
to Google Scholar, so for the newest papers, the citation
score may not be accurate, making it more difficult to
calculate our metric.

Additionally, our study provides a general framework
for causal inference given a causal graph that involves
text. It is totally possible that for a more fine-grained
problem, the causal graph will change, in which case,
we undersuggest future researchers to derive the new
backdoor adjustment set, and then adjust the algorithm
accordingly. An example of such a variable could be the
author information, which might also be a confounder.

Finally, since quality evaluation of a paper is a multi-
faceted task, theoretically, a single number can never
give more than a rough approximation, because it col-
lapses multiple dimensions into one and loses informa-
tion. Our argument in this paper is just to show that
our formulation is theoretically more accurate than the
citation formulation. We take one step further, instead
of solving the quality evaluation problem which is much
more nuanced. Some intrinsic problems in citations that
we can also not solve (because our metrics still rely on
using citations, just contrasting them in the right away)
include (1) if a paper is newly published, with zero cita-
tions, there is no way to obtain a positive causal index,
and (2) we do not solve the fair attribution problem
when multiple authors share credit of a paper, as our
metric is not sensitive towards authors.

Ethical Considerations
Data Collection and Privacy The data used in this
work are all from Open Source Semantic Scholar data,
with no user privacy concerns. The potential use of this
work is for finding papers that are unique and innovative
but do not get enough citations due to lack of popularity
or awareness of the field. This metric can act as an aid
when deciding impact of papers, but we do not suggest
its usage without expert involvement. Through this
work, we are not trying to demean or criticize anyone’s
work we only intend to find more papers that have made
a valuable contribution to the field.

CS-Centric Perspective The authors of this paper work
in Computer Science (mostly Machine Learning) hence
a lot of analysis done on the quality of papers that re-
quired sanity checks are done on ML papers. The con-
ferences selected for doing the ToT evaluation were also
CS Top conferences, hence they might have induced
some biases. The metric in general has been created
generically and should be applicable to other domains
as well, the Author Identified Most Influential Papers
study is also done on a generalized dataset, but we en-
courage readers in other disciplines to try out the metric
on papers from their field.
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Appendix

A Additional Implementation Details

A.1 Time and Space Complexity Details
For the time cost of running the causal impact indices,
each PCI(a, b) takes around 1,500 seconds, or 25 min-
utes. Multiplying this by 40 samples per paper a, we
spend 16.67 hours to calculate each ACI or TCI for
the paper’s overall impact. For a fine-grained division
into the time cost, the majority of the time is spend on
the BM25 indexing (800s) and the sentence embedding
cosine similarities calculation (400s). The rest of the
time-consuming steps are the BFS search (150-200s ev-
ery time) to identify descendants and non-descendants
of a paper.

For the space complexity, we loaded the 2.4B edges of
the citation graph into a parquet gzip format for faster
loading, and use Dask’s lazy load operation to load it
part by part to RAM for better parallelization. The pro-
gram can fit into different sizes of RAMs by modifying
the number of partitions and reducing the number of
workers in Dask, at the cost of an increased computa-
tion time. On the hard disk, citation graph takes up 19G
space, and paper data takes 11G.

A.2 Numerical Estimation Method: Finding the
Sample Size

For our numerical estimation method, we first calculate
the ACI on a subset of carefully sampled papers and then
aggregate it to TCI. One design choice question is how
to decide the size of this random subset. In our case, we
need to balance both the computation time (25 minutes
per pairwise paper impact) and the estimation accuracy.
To identify the best sample size, we conduct a small-
scale study, first obtaining the TCI using our upper-
bound budget of n = 100 samples and then gradually
decreasing the number of samples to see if there is a
stable point in the middle which also leads to a result
close to that obtained with 100 samples. In Figure 6, we
show the trade-off of the two curves, the error curve and
time cost, where we can see n = 40 seems to be a good
point balancing the two. It is at the elbow of the arrow
curve, making it relatively close to the estimation result
of n = 100, and also in the meantime vastly saving
our computational budget, enabling us to run efficient
experiments for more analyses.

A.3 Experiment to Select the Best Embedding
Method

When selecting the text encoder for our TEXTMATCH
method, we compare among the three LLMs pre-trained
on scientific papers, SciBERT, MPNet, and SPECTER.
Specifically, we conduct a small-scale experiment to
see how much the similarities scores based on the em-
bedding of each model align with human annotations.
As for the annotation process, we first collect a set of
random papers, and for each such paper (which we call
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Figure 6: We show the trade-off of two curves: the error curve
(orange), and the time cost curve (blue). For the error curve,
we see an elbow point at around n = 40, when the error starts
to be small. The curve for the computational time is linear,
taking 25 minutes for each paper. Balancing the trade-offs, we
decided to choose the sample size n = 40.

a pivot paper), we identify ten papers, from the most
similar to the least, with monotonically decreasing sim-
ilarity. We collect a total of 100 papers consisting of
ten such collections, for which we show an example in
Table 6. Then we see how the resulting similarity scores
conform to this order by deducting the percentage of
papers that are out of place in the ranking.

We find that MPNet correlates the best with human
judgments, achieving an accuracy of 82%, which is 10
points better the second best one, SPECTER, which gets
72%, and 18 points better than SciBERT with a score of
64%. It also gives more distinct scores to papers with
different levels of similarity. This capability advantage
may be attributed to its Siamese network objectives
in the training process (Song et al., 2020). We open-
sourced our annotated data in the codebase.

B Dataset Overview

Figure 7: The number of papers published per year from 1684
to 2023. We can see that in recent years since 2010, there are
more than 7 million papers each year.
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Paper Index Title SciBERT SPECTER MPNet
Pivot Paper: GPT-3 (Brown et al., 2020)

1 (Most similar) PaLM (Chowdhery et al., 2022) 0.9787 0.8689 0.7679
2 GPT-2 (Radford et al., 2019) 0.9346 0.9064 0.8196
3 GPT (Radford and Narasimhan, 2018) 0.9488 0.8778 0.7790
4 BERT (Devlin et al., 2019) 0.9430 0.8321 0.6784
5 Transformers (Vaswani et al., 2017) 0.9202 0.8644 0.6385
6 SciBERT (Beltagy et al., 2019) 0.8396 0.8112 0.5667
7 Latent Diffusion Models (Rombach et al., 2021) 0.9586 0.7755 0.4567
8 Sentiment Analysis Using DL (Fang and Zhan, 2015) 0.7775 0.7298 0.2911
9 Sentiment Analysis Using ML (Zainuddin and Selamat, 2014) 0.6462 0.6403 0.2563
10 (Least similar) New High Energy Accelerator (Courant et al., 1952) 0.8033 0.5617 0.0359

Table 6: An example collection of papers with monotonically decreasing similarity to the pivot paper. As can be seen from the
similarities scores produced by the three text embedding methods, MPNet corresponds to the ground truth the most, and also
shows clear score distinctions between less similar and more similar papers.

Figure 8: The year-wise average of the number of references
per paper, also with a sharply increasing trend.

For the Semantic Scholar dataset (Kinney et al., 2023;
Lo et al., 2020), we obtain the set of 206M papers using
the “Papers” endpoint to get the Paper Id, Title, Abstract,
Year, Citation Count, Influential Citation Count (Valen-
zuela et al., 2015), and the Reference Count for each
paper. The papers come from a variety of fields such as
law, computer science, linguistics, chemistry, material
science, physics, geology, etc. For the citation network
with 2.4B edges, we use the Semantic Scholar Citations
API to get each edge of the citation graph in a triplet
format of (fromPaper, toPaper, isInfluentialCitations).

In general, the number of publications shows an ex-
plosive increase in recent years. Figure 7 shows the
number of papers publish the per year, which reaches
on average 7.5M per year since 2010. Figure 8 shows
the number of references each paper cites, which also
increases from less than five before 1970s, to around 25
in recent years. Both statistics support the need of our
paper, which helps distinguish the quality of scientific
studies given such massive growths of papers.

C Additional Analyses

C.1 Citation Outlier Analysis

For the outlier detection, we first visualize the scatter
plot between our CAUSALCITE and citations. Then, we
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Figure 9: The scatter plot between our CAUSALCITE and
citations, with the fitted function as log(TCI) = 1.026 ∗
log(Cit)− 0.541, and a non-outlier band width of 0.8809.

fit a log-linear regression to learn the line log(TCI) =
1.026 log(Cit)−0.541, as shown in Figure 9, with a root
mean squared error (RMSE) of 0.6807. After fitting the
function, we use the interquartile range (IQR) method
(Smiti, 2020), which identify as outliers any samples
that are either lower than the first quartile by over 1.5
IQR, or higher than the third quartile by more than 1.5
IQR, where IQR is the difference between the first and
third quartile.

We denote as overcited papers the ones that are iden-
tified as outliers by the IQR method due to too many
citations than what it should have deserved given the
CAUSALCITE value. Symmetrically, we denote as un-
dercited papers the ones that are identified as outliers
by the IQR method due to too few citations than what
it should have deserved given the CAUSALCITE value.
And we denote the non-outlier papers as the aligned
ones.
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C.2 Additional Information for the
Author-Identified Paper Impact Experiment

As mentioned in the main paper, the dataset is annotated
by pivoting on each paper b, and going through each
of its references a to label whether a has a significant
influence on b or not. We show an example of paper b
and all its 31 references in Table 7. We calculate the
accuracy of each metric with the spirit that each non-
significant paper’s impact value should be lower than a
significant paper’s. Specifically, we go through the score
of each non-significant paper, and count its accuracy as
100% if it is lower than all the significant papers’, or the
more general form nlower/|Sig| of conformity, where
nlower is the number of significant papers which it is
lower than, and |Sig| is the total number of significant
papers. Then we report the overall accuracy for each
score by averaging the accuracy numbers on each non-
significant paper. To illustrate the idea better, we show
the calculated accuracy numbers for all three metrics on
our example batch in Table 7.

C.3 Step Curve for PCI Values Given a Fixed
Paper b

Apart from the long-tailed curve shape of TCI in Sec-
tion 5.2, we also look into the pairwise paper impacts
by PCI. If we fix the paper b, we can see that PCI(·, b)
often has a step curve shape in Figure 10. The reason
behind it lies in the nature of PCI, which is calculated
based on the top K papers that are similar in content
with paper b, but do not cite paper a. When we go
through different references, e.g., from a1 to a2 of the
same paper b, the semantically matched top K papers
could still be largely the same pool, and only change
when some papers in the pool need to be swapped when
releasing the constraint to be that they can cite a1, and
adding the constraint that they cannot cite a2.
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Figure 10: We take an example paper b, Sentence BERT
(Reimers and Gurevych, 2019), and plot its PCI values with
all its reference paper a’s. We can see clearly that there is a
plateau in the curve, showing a step function-like nature.
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References of the Paper “Sorting improves word-aligned bitmap
indexes”

Label PCI Citations SSHI

- A Quantitative Analysis and Performance Study for Similarity-
Search Methods in High-Dimensional Spaces

0 3.519 1777 156

- Optimizing bitmap indices with efficient compression 0 3.519 375 40
- Data Warehouses And Olap: Concepts, Architectures And Solu-
tions

0 3.526 187 11

- Histogram-aware sorting for enhanced word-aligned compression
in bitmap indexes

0 3.543 17 1

- CubiST++: Evaluating Ad-Hoc CUBE Queries Using Statistics
Trees

0 3.543 5 1

- Improving Performance of Sparse Matrix-Vector Multiplication 0 3.543 114 11
- Binary Gray Codes with Long Bit Runs 0 3.543 53 4
- Analysis of Basic Data Reordering Techniques 0 3.543 16 1
- Tree Based Indexes Versus Bitmap Indexes: A Performance Study 0 3.543 24 0
- Secondary indexing in one dimension: beyond b-trees and bitmap
indexes

0 3.543 10 1

- A comparison of five probabilistic view-size estimation techniques
in OLAP

0 3.543 24 1

- Compression techniques for fast external sorting 0 3.543 16 0
- A Note on Graph Coloring Extensions and List-Colorings 0 3.543 33 1
- Using Multiset Discrimination to Solve Language Processing Prob-
lems Without Hashing

0 3.543 52 2

- Monotone Gray Codes and the Middle Levels Problem 0 3.543 80 5
- The Art in Computer Programming 0 3.543 9242 678
- An Efficient Multi-Component Indexing Embedded Bitmap Com-
pression for Data Reorganization

0 3.543 8 2

- The LitOLAP Project: Data Warehousing with Literature 0 3.543 8 0
- Multi-resolution bitmap indexes for scientific data 0 3.583 96 3
- Notes on design and implementation of compressed bit vectors 0 3.583 81 12
- Compressing Large Boolean Matrices using Reordering Techniques 0 3.595 88 7
- Compressing bitmap indices by data reorganization 1 3.595 53 4
- Model 204 Architecture and Performance 0 3.635 238 10
- On the performance of bitmap indices for high cardinality
attributes

1 3.654 196 10

- A performance comparison of bitmap indexes 0 3.655 86 9
- Minimizing I/O Costs of Multi-Dimensional Queries with Bitmap
Indices

0 3.692 16 0

- Evaluation Strategies for Bitmap Indices with Binning 0 3.692 69 3
- C-Store: A Column-oriented DBMS 0 3.710 1241 111
- Byte-aligned bitmap compression 0 3.793 209 48
- Bit Transposed Files 0 3.837 84 10
- Space efficient bitmap indexing 0 4.011 96 16

Table 7: All the reference papers for a given study “Sorting improves word-aligned bitmap indexes.” Among all its 31 references,
we boldface the reference papers that are annotated to be significant influencers. For the three metrics, PCI, citations, and SSHI,
we report their impact scores for each reference paper on the given study, where we mark a score in green when it conforms to
the rule that a non-significant paper’s value should be lower than that of a significant paper, and mark a score in dark green if it
conforms to the rule to have a lower score than one of the significant paper, but violates the rule, i.e., having a higher score than
the other significant paper. In this example, our PCI metric has an accuracy score of 79.3%, which is higher than both citations
(68.1%), and SSHI (65.0%).
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