@inproceedings{jinnai-etal-2024-generating,
title = "Generating Diverse and High-Quality Texts by Minimum {B}ayes Risk Decoding",
author = "Jinnai, Yuu and
Honda, Ukyo and
Morimura, Tetsuro and
Zhang, Peinan",
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2024",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-acl.503",
doi = "10.18653/v1/2024.findings-acl.503",
pages = "8494--8525",
abstract = "One of the most important challenges in text generation systems is to produce outputs that are not only correct but also diverse.Recently, Minimum Bayes-Risk (MBR) decoding has gained prominence for generating sentences of the highest quality among the decoding algorithms. However, existing algorithms proposed to generate diverse outputs are predominantly based on beam search or random sampling, thus their output quality is capped by these underlying decoding algorithms. In this paper, we investigate an alternative approach {--} we develop diversity-promoting decoding algorithms by enforcing diversity objectives to MBR decoding.We propose two variants of MBR; (i) Diverse MBR (DMBR) that adds a diversity penalty to the decoding objective and (ii) $k$-medoids MBR (KMBR) that reformulates the decoding task as a clustering problem.We evaluate DMBR and KMBR on a variety of directed text generation tasks using encoder-decoder models and a language model with prompting. The experimental results show that the proposed method achieves a better trade-off than the diverse beam search and sampling algorithms overall.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="jinnai-etal-2024-generating">
<titleInfo>
<title>Generating Diverse and High-Quality Texts by Minimum Bayes Risk Decoding</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yuu</namePart>
<namePart type="family">Jinnai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ukyo</namePart>
<namePart type="family">Honda</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tetsuro</namePart>
<namePart type="family">Morimura</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Peinan</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>One of the most important challenges in text generation systems is to produce outputs that are not only correct but also diverse.Recently, Minimum Bayes-Risk (MBR) decoding has gained prominence for generating sentences of the highest quality among the decoding algorithms. However, existing algorithms proposed to generate diverse outputs are predominantly based on beam search or random sampling, thus their output quality is capped by these underlying decoding algorithms. In this paper, we investigate an alternative approach – we develop diversity-promoting decoding algorithms by enforcing diversity objectives to MBR decoding.We propose two variants of MBR; (i) Diverse MBR (DMBR) that adds a diversity penalty to the decoding objective and (ii) k-medoids MBR (KMBR) that reformulates the decoding task as a clustering problem.We evaluate DMBR and KMBR on a variety of directed text generation tasks using encoder-decoder models and a language model with prompting. The experimental results show that the proposed method achieves a better trade-off than the diverse beam search and sampling algorithms overall.</abstract>
<identifier type="citekey">jinnai-etal-2024-generating</identifier>
<identifier type="doi">10.18653/v1/2024.findings-acl.503</identifier>
<location>
<url>https://aclanthology.org/2024.findings-acl.503</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>8494</start>
<end>8525</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Generating Diverse and High-Quality Texts by Minimum Bayes Risk Decoding
%A Jinnai, Yuu
%A Honda, Ukyo
%A Morimura, Tetsuro
%A Zhang, Peinan
%Y Ku, Lun-Wei
%Y Martins, Andre
%Y Srikumar, Vivek
%S Findings of the Association for Computational Linguistics: ACL 2024
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F jinnai-etal-2024-generating
%X One of the most important challenges in text generation systems is to produce outputs that are not only correct but also diverse.Recently, Minimum Bayes-Risk (MBR) decoding has gained prominence for generating sentences of the highest quality among the decoding algorithms. However, existing algorithms proposed to generate diverse outputs are predominantly based on beam search or random sampling, thus their output quality is capped by these underlying decoding algorithms. In this paper, we investigate an alternative approach – we develop diversity-promoting decoding algorithms by enforcing diversity objectives to MBR decoding.We propose two variants of MBR; (i) Diverse MBR (DMBR) that adds a diversity penalty to the decoding objective and (ii) k-medoids MBR (KMBR) that reformulates the decoding task as a clustering problem.We evaluate DMBR and KMBR on a variety of directed text generation tasks using encoder-decoder models and a language model with prompting. The experimental results show that the proposed method achieves a better trade-off than the diverse beam search and sampling algorithms overall.
%R 10.18653/v1/2024.findings-acl.503
%U https://aclanthology.org/2024.findings-acl.503
%U https://doi.org/10.18653/v1/2024.findings-acl.503
%P 8494-8525
Markdown (Informal)
[Generating Diverse and High-Quality Texts by Minimum Bayes Risk Decoding](https://aclanthology.org/2024.findings-acl.503) (Jinnai et al., Findings 2024)
ACL