
Findings of the Association for Computational Linguistics ACL 2024, pages 8644–8652
August 11-16, 2024 ©2024 Association for Computational Linguistics

Exploring Domain Robust Lightweight Reward Models based on
Router Mechanism

Hyuk Namgoong1, Jeesu Jung1, Sangkeun Jung1* and Yoonhyung Roh2

1Computer Science and Engineering, Chungnam National University, Republic of Korea
2Electronics and Telecommunications Research Institute, Republic of Korea
{hyuk199, jisu.jung5, hugmanskj}@gmail.com and yhroh@etri.re.kr

Abstract

Recent advancements in large language models
have heavily relied on the large reward model
from reinforcement learning from human feed-
back for fine-tuning. However, the use of a
single reward model across various domains
may not always be optimal, often requiring re-
training from scratch when new domain data is
introduced. To address these challenges, we ex-
plore the utilization of small language models
operating in a domain-specific manner based on
router mechanisms. Our three approaches are:
1) utilize mixture of experts to form a single re-
ward model by modularizing an internal router
and experts, 2) employing external router to
select the appropriate reward model from mul-
tiple domain-specific models, and 3) the frame-
work reduces parameter size by loading reward
models and router adapters onto a single small
language model using adapters. Experimental
validation underscores the effectiveness of our
approach, demonstrating performance compa-
rable to baseline methods while also reducing
the total parameter size.

1 Introduction

Most widely adopted Large Language Models
(LLMs) have used the reward model of Reinforce-
ment Learning from Human Feedback (RLHF)
(Ouyang et al., 2022) for fine-tuning. These reward
models are trained from various human feedback
domains and are subsequently utilized as evalua-
tion metrics during LLM fine-tuning processes.

However, training a single reward model across
various domains to serve multiple purposes may
lead to situations where the model is not fit for
specific domains. Additionally, there is a challenge
of retraining the reward model from scratch when
new dataset from a new domain is introduced.

In this paper, we explore various router meth-
ods to address these challenges, as summarized

*Corresponding author

Method Router Reward
model type

Training
Type Parameter

Baseline × Single Full All
BaseLoRA × Single PEFT (LoRA) Partial

MoRE # (Internal) Single Full All
RODOS # (External) Multiple Full All
ARLISS # (External) Multiple PEFT (LoRA) Partial

Table 1: Comparison of each method for the reward
model. Baseline consists of a single reward model with-
out a router. BaseLoRA is similar to the baseline but
applies Parameter-Efficient Fine-Tuning (PEFT) during
training. Mixture of Reward Experts (MoRE) features
an internal router but remains a single reward model.
Router for DOmain-spcific reward modelS (RODOS)
combines multiple reward models with a external router
structure. Adapter Router Lightweight Integrated re-
wardS Switching (ARLISS) framework drastically re-
duces parameter size by applying PEFT to multiple
reward models and external router.

in Table 1. Our approach, Mixture of Reward
Experts (MoRE), involves modularizing an internal
router and experts within small language models to
form a single reward model. Router for DOmain-
specific reward modelS (RODOS) employs an ex-
ternal router to select the appropriate reward model
from multiple domain-specific reward models. The
Adapter Router Lightweight Integrated rewardS
Switching (ARLISS) framework applies adapters
to load reward models and router adapters onto a
single small language model, thereby reducing the
parameter size of the multi-models.

To validate our methodologies, we conducted
experiments with five different domains of reward
datasets. In this experiment, our methods gener-
ally outperform the baseline, while RODOS shows
the best performance. MoRE showcases a size re-
duction of about 52%, while ARLISS achieves a
reduction of approximately 55% compared to the
baseline.

8644



RM

Regression

Language Model

prompt response

Language 

Model

Adapter

Layer

Router or

Reward Model

(a) Baseline

Noisy top-k router

Expert1 Expert2 Expertn
…

Weighted �

RM

prompt response

Language Model

Regression

unselectedselected

(b) MoRE

RM1 RM2 RMn
…

RM selection

Reward Models

RMselected

Router

prompt response

Classification

Language Model

(c) RODOS

RM selection

prompt response

Regression

Language Model

RMselected

Adapter

Classification

Language Model

Router

Adapter

RM1 RM2 RMn
…

Adapters

RM

Router

(d) ARLISS

Figure 1: Illustration of each method. RM represents the reward model, and reward is scalar. n denotes the number
of domains, and Mixture of Reward Experts (MoRE) refers to Sparse Mixture of Experts with k equal to 2. Router
for DOmain-specific reward modelS (RODOS) involves loading all models for use, while the Adapter Router
Lightweight Integrated rewardS Switching (ARLISS) framework loads only router and reward model adapters and a
single language model, using adapter switching within the same language model.

2 Related Works

Recent research focuses on improving LLMs
(Chowdhery et al., 2022; Biderman et al., 2023;
Touvron et al., 2023) training efficiency. Intro-
ducing the reward model serves to evaluate LLM
performance in the RLHF fine-tuning method. In
(Ouyang et al., 2022), the reward model spans vari-
ous domains, while (Black et al., 2023) applies the
RLHF method to image generation.

Research has explored methods for routing lan-
guage models, such as routing LLMs (Shnitzer
et al., 2023; Liu and Liu, 2021; Ravaut et al., 2022;
Jiang et al., 2023). Furthermore, various studies
are underway to modularize and utilize routers
within models(Jiang et al., 2024; Dikkala et al.,
2023; Peng et al., 2023), with Mixture of Experts
(MoE) (Chen et al., 2022) being one.

Research on efficient fine-tuning of language
models is ongoing. Low-Rank Adaptation (LoRA)
(Hu et al., 2021) attaches adapters to each layer
and updates only the adapter parameters, enabling
efficient learning. Building upon LoRA, further re-
search explores efficiency improvements(Dettmers
et al., 2023; Rajabzadeh et al.; Babakniya et al.,
2023) and additional tasks(Zhang et al., 2023; Ev-
eraert et al., 2023; Blattmann et al., 2023).

We do not train a single reward model across
diverse domains. Instead, we utilize adapters to
construct multi-reward models and routers, employ-
ing a small language model with LoRA, thereby
reducing training time and parameters.

3 Router Based Switching Reward
Models

The reward model assigns rewards to prompt and re-
sponse. In RLHF, the reward model’s loss function
calculates the difference between the rewards for
the chosen and rejected responses. Reward model
dataset has the structure of one input prompt and
least two of responses.

These reward models cover diverse domains like
human preferences and toxic responses, using large-
scale models. However, relying solely on one large
model may not suit specific domains, and training
from scratch for new domains takes time.

3.1 Mixture of Reward Experts

MoRE operates by having an internal router se-
lect suitable experts among several options, with
both the router and experts modularized internally
within the model. To implement MoRE, we utilize
sparse MoE(Shazeer et al., 2017), applying to small
language models to create a single reward model.
Maintaining the structure of a single reward model,
it processes all dataset together during training,
ensuring a training process similar to traditional
method.

Sparse MoE, as depicted in Figure 1b, utilizes
noisy top-k gating within the router layer directs
the output to multiple expert layers before reaching
the output layer. These expert layers follow a feed-
forward network structure, computing a weighted
sum based on the top-k expert outputs, and then the

8645



regression layer generates the reward. Additionally,
layer normalization is applied before the sparse
MoE and regression layer.

3.2 Router for Domain-Specific Reward
Models

We introduce RODOS, in Figure 1c, which involves
training a small language model for each domain
to create multiple domain-specific reward models.
The external router is trained to select the reward
model suitable for each prompt’s domain. This re-
solves the challenge of a single large reward model
trained across multiple domains, which may not be
suitable for specific domains.

Furthermore, RODOS offers a time-efficient so-
lution by training new reward models for new data
and retraining the router, rather than restarting the
entire reward model training process. This effi-
ciency is attributed to smaller model sizes and
shorter router training times relative to reward
model training.

3.3 Adapter Router Lightweight Integrated
Rewards Switching Framework

Deploying all reward models and router creates
deployment challenges for GPU memory. Hosting
various models simultaneously results in the total
parameter count becoming a multiple of the model
parameters, thus demanding a considerable amount
of GPU memory.

In the ARLISS framework, in Figure 1d, all re-
ward models and routers are trained using adapters,
with only the adapter parameters retained, and
adapters are dynamically switched during infer-
ence. The router adapter selects and switches to the
appropriate reward adapter during utilization. This
approach consolidates multiple reward models and
router into a single language model with multiple
adapters, thereby reducing the total size of model
parameters, making them lightweight.

We utilize Parameter-Efficient Fine-Tuning
(Mangrulkar et al., 2022) alongside LoRA, func-
tioning as the adapter mechanism. This enables
efficient fine-tuning by updating only adapter pa-
rameters, contributing to the overall efficiency of
the ARLISS framework.

4 Experiments Setup

4.1 Datasets

In this study, we validate the methodology using
reward model datasets from five different domains.

In cases where the dataset structure is unsuitable for
training a reward model, we convert it to a suitable
reward dataset structure using only English data.

Anthropic dataset detects toxic responses and
distinguishes whether a response is helpful or harm-
less (Bai et al., 2022). SHP is a dataset that has
two human-written summary responses in a given
context (Ethayarajh et al., 2022). HellaSwag is a
dataset used for sentence completion tasks, featur-
ing multiple responses to a given prompt (Zellers
et al., 2019). Dahoas is a dataset where the model
generates two responses to a prompt and humans
distinguish between good and bad responses (Alex
Havrilla, 2023). Oasst is a dataset that has ranked
human-written responses in a given prompt 1.The
conversion of each dataset into a reward dataset
structure is detailed in Appendix B

4.2 Language Models
We employed the encoder-only model DeBER-
TaV3(DeB) (He et al., 2021), which leverages
Transformer’s encoder. For our methods, we imple-
ment language models such as DeBbase, DeBsmall,
and DeBxsmall. The router model is implement
with the same language model as the reward model.

4.3 Baseline Methods
In Table 1, the baseline method is a traditional
single reward model trained without a router.
This method is implemented using DeBlarge and
DeBbase for comparison with our proposed ap-
proaches. During fine-tuning, all datasets are pro-
cessed together. Preliminary experiments with
other models are detailed in the Appendix E.

Additionally, BaseLoRA was included in the ex-
periments. This method follows the same training
process as the baseline but incorporates LoRA. The
purpose is to determine if applying LoRA yields
higher performance than the baseline DeBlarge.
However, it was observed that BaseLoRA exhib-
ited lower performance. BaseLoRA were conducted
using DeBbase.

4.4 Evaluation Metric for Reward Model
To evaluate the performance of reward model, we
utilized binary accuracy. During reward compu-
tation for each prompt-response pair, if the reward
for the chosen response exceeds that of the rejected
response, it is classified as true; otherwise, it is
classified as false.

1https://huggingface.co/datasets/
OpenAssistant/oasst2

8646

https://huggingface.co/datasets/OpenAssistant/oasst2
https://huggingface.co/datasets/OpenAssistant/oasst2


Method
Language

model
Total

Parameter (M)
Accuracy

Anthropic SHP HellaSwag Dahoas Oasst Average

Baseline
DeBlarge 435 0.6359.0058 0.6350 .0117 0.4992 .0009 0.9984 .0003 0.7174 .0053 0.6972 .0048

DeBbase 185 (42.5%) 0.6204 .0031 0.6229 .0054 0.5019 .0025 0.9978 .0008 0.7311 .0060 0.6948 .0036

BaseLoRA DeBbase 187 (43.0%) 0.6146 .0053 0.6236 .0083 0.4978 .0012 0.9974 .0007 0.7234 .0072 0.6914 .0030

MoRE
DeBbase 207 (47.6%) 0.6205 .0032 0.6265 .0080 0.4995 .0010 0.9972 .0009 0.7368 .0099 0.6961 .0029

DeBsmall 164 (37.7%) 0.6097 .0021 0.6187 .0044 0.4944 .0026 0.9965 .0007 0.7180 .0089 0.6875 .0024

DeBxsmall 77 (17.7%) 0.5892 .0041 0.6117 .0020 0.5019 .0027 0.9945 .0007 0.7207 .0023 0.6836 .0015

RODOS
DeBbase 1,110 (255.2%) 0.6332 .0005 0.6424 .0017 0.4975 .0027 0.9987 .0000 0.7299 .0002 0.7003 .0007

DeBsmall 846 (194.5%) 0.6236 .0004 0.6367 .0026 0.4969 .0027 0.9981 .0000 0.7290 .0002 0.6969 .0004

DeBxsmall 420 (96.6%) 0.5927 .0002 0.6301 .0023 0.5072 .0027 0.9965 .0000 0.6961 .0003 0.6845 .0005

ARLISS
DeBbase 197 (45.3%) 0.6254 .0004 0.6525 .0017 0.4967 .0000 0.9977 .0003 0.7150 .0031 0.6975 .0009

DeBsmall 147 (33.8%) 0.6167 .0004 0.6297 .0010 0.4991 .0001 0.9984 .0005 0.7240 .0023 0.6936 .0007

DeBxsmall 76 (17.5%) 0.6042 .0004 0.6430 .0032 0.5018 .0001 0.9975 .0001 0.7168 .0050 0.6927 .0007

Table 2: Average performance across five domains and the total model parameters for each method. Language
models are organized by the DeBERTaV3 (DeB) size. Cyan highlight indicates the best performance per our
method within each domain, while Bold denotes the best performance across all methods. The parentheses in "Total
Parameters" represent the percentage relative to the baseline size. Performances are evaluated with five seeds, and
small numbers denotes standard deviation.

Method Language
model

Total
Parameter (M)

1 epoch train time (sec)
Total Anthropic SHP HellaSwag Dahoas Oasst Router

Baseline DeBlarge (435) 435 17,392 - - - - - -
MoRE DeBbase (184) 207 (47.6%) 5,010 - - - - - -

RODOS DeBbase (184) 1,110 (255.2%) 7,355 2,768 696 702 528 235 2,426
ARLISS DeBbase (184) 197 (45.3%) 7,067 2,682 663 672 506 216 2,328

Table 3: Training time for 1 epoch and the total model parameters for each method. Language models are DeBER-
TaV3 (DeB) used in the experiments, with the original parameter size(M) indicated in parentheses. Baseline and
Mixture of Reward Experts (MoRE) are single models, so only the total time is presented. The parentheses in "Total
Parameters" represent the percentage relative to the baseline.

5 Experimental Results

Our study investigates the effectiveness of the pro-
posed router methods through experimental analy-
ses, focusing on key aspects: evaluating the router’s
impact on application performance, analyzing train-
ing time across methods, and comparing total pa-
rameters with and without ARLISS integration.

5.1 Reward Models Performance

We analyze the accuracy of our proposed frame-
work compared to other methods. In this regard,
we conduct statistical significance analysis for each
test dataset. To ensure meaningful evaluation, we
conduct evaluations with 5 different seeds.

Table 2 displays the accuracy for each dataset’s
test data and the corresponding average. Generally,
when the accuracy is less than 0.02, it is consid-
ered statistically similar. Excluding the Anthropic
dataset, our methods generally outperform the base-
line, with RODOS showing the best performance.
Moreover, MoRE and ARLISS demonstrate a size
reduction of approximately half of the baseline.
This suggests that our methods offer the potential

to replace the baseline with smaller model sizes.

5.2 Training Time

We analyze the implementation time for mod-
els with and without the router. For multi-reward
model methods, we assess the training time for
each reward model and the router. For single re-
ward model methods, only the training time for the
reward model across all datasets is considered.

Table 3 presents the training time for each
method per epoch. Overall, our methods show
a reduction in time by approximately 63%, with
ARLISS demonstrating around a 5% decrease com-
pared to RODOS.

5.3 Total Parameter Size

We analyze our ARLISS framework along with
other methods. In this context, we perform parame-
ter size analysis using the same language model.

Table 3 reveals that the ARLISS framework
boasts the smallest parameter size. MoRE show-
cases a size reduction of about 52%, while ARLISS
achieves a reduction of approximately 55% com-
pared to the baseline. Although ARLISS employs a

8647



multi-reward model structure, it features 10 million
fewer parameters than MoRE and achieves over
an 80% reduction compared to RODOS, another
multi-reward model framework.

6 Conclusion

In addressing the limitations of a single large re-
ward model, which can be unsuitable for specific
domains and requires retraining when new domain
data is introduced, we have implemented router
methods. MoRE features an internal router along-
side a single small reward model, while RODOS
incorporates an external router and domain-specific
reward models. These methods effectively miti-
gate challenges related to domain specificity and
the need for retraining when new domain data
is introduced. Moreover, the ARLISS framework,
with adapters for routers and multi-reward models,
shows potential for GPU memory optimization by
reducing model size.

Further research will focus on optimizing the
ARLISS framework. Additionally, we plan to in-
vestigate the integration of the ARLISS framework
into MoRE.

Limitation

The ARLISS framework requires more inference
time compared to RODOS, as discussed in Ap-
pendix D. This delay arises from the router select-
ing the reward model and switching the adapter
within the same language model, resulting in time
consumption during the switching process.

Acknowledgements

This work was supported by Institute of Informa-
tion & Communications Technology Planning &
Evaluation(IITP) grant funded by the Korea govern-
ment(MSIT) (2019-0-00004, Development of semi-
supervised learning language intelligence technol-
ogy and Korean tutoring service for foreigners),
the National Research Foundation of Korea(NRF)
grant funded by the Korea government(MSIT)(No.
2022R1F1A1071047) and research fund of Chung-
nam National University.

References
Alex Havrilla. 2023. synthetic-instruct-gptj-pairwise

(revision cc92d8d).

Sara Babakniya, Ahmed Roushdy Elkordy, Yahya H
Ezzeldin, Qingfeng Liu, Kee-Bong Song, Mostafa

El-Khamy, and Salman Avestimehr. 2023. Slora:
Federated parameter efficient fine-tuning of language
models. arXiv preprint arXiv:2308.06522.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda
Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan,
Nicholas Joseph, Saurav Kadavath, Jackson Kernion,
Tom Conerly, Sheer El-Showk, Nelson Elhage, Zac
Hatfield-Dodds, Danny Hernandez, Tristan Hume,
Scott Johnston, Shauna Kravec, Liane Lovitt, Neel
Nanda, Catherine Olsson, Dario Amodei, Tom
Brown, Jack Clark, Sam McCandlish, Chris Olah,
Ben Mann, and Jared Kaplan. 2022. Training a help-
ful and harmless assistant with reinforcement learn-
ing from human feedback.

Prajjwal Bhargava, Aleksandr Drozd, and Anna Rogers.
2021. Generalization in nli: Ways (not) to go beyond
simple heuristics.

Stella Biderman, Hailey Schoelkopf, Quentin Anthony,
Herbie Bradley, Kyle O’Brien, Eric Hallahan, Mo-
hammad Aflah Khan, Shivanshu Purohit, USVSN Sai
Prashanth, Edward Raff, Aviya Skowron, Lintang
Sutawika, and Oskar van der Wal. 2023. Pythia:
A suite for analyzing large language models across
training and scaling.

Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov,
and Sergey Levine. 2023. Training diffusion models
with reinforcement learning.

Andreas Blattmann, Tim Dockhorn, Sumith Ku-
lal, Daniel Mendelevitch, Maciej Kilian, Dominik
Lorenz, Yam Levi, Zion English, Vikram Voleti,
Adam Letts, Varun Jampani, and Robin Rombach.
2023. Stable video diffusion: Scaling latent video
diffusion models to large datasets.

Zixiang Chen, Yihe Deng, Yue Wu, Quanquan Gu, and
Yuanzhi Li. 2022. Towards understanding mixture of
experts in deep learning.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. 2022. Palm: Scaling
language modeling with pathways. arXiv preprint
arXiv:2204.02311.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning
of quantized llms.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Nishanth Dikkala, Nikhil Ghosh, Raghu Meka, Rina
Panigrahy, Nikhil Vyas, and Xin Wang. 2023. On
the benefits of learning to route in mixture-of-experts
models. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 9376–9396, Singapore. Association for Com-
putational Linguistics.

8648

https://doi.org/10.57967/hf/1428
https://doi.org/10.57967/hf/1428
http://arxiv.org/abs/2204.05862
http://arxiv.org/abs/2204.05862
http://arxiv.org/abs/2204.05862
http://arxiv.org/abs/2110.01518
http://arxiv.org/abs/2110.01518
http://arxiv.org/abs/2304.01373
http://arxiv.org/abs/2304.01373
http://arxiv.org/abs/2304.01373
http://arxiv.org/abs/2305.13301
http://arxiv.org/abs/2305.13301
http://arxiv.org/abs/2311.15127
http://arxiv.org/abs/2311.15127
http://arxiv.org/abs/2208.02813
http://arxiv.org/abs/2208.02813
http://arxiv.org/abs/2305.14314
http://arxiv.org/abs/2305.14314
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://doi.org/10.18653/v1/2023.emnlp-main.583
https://doi.org/10.18653/v1/2023.emnlp-main.583
https://doi.org/10.18653/v1/2023.emnlp-main.583


Kawin Ethayarajh, Yejin Choi, and Swabha
Swayamdipta. 2022. Understanding dataset
difficulty with V-usable information. In Proceedings
of the 39th International Conference on Machine
Learning, volume 162 of Proceedings of Machine
Learning Research, pages 5988–6008. PMLR.

Martin Nicolas Everaert, Marco Bocchio, Sami
Arpa, Sabine Süsstrunk, and Radhakrishna Achanta.
2023. Diffusion in style. In Proceedings of the
IEEE/CVF International Conference on Computer
Vision (ICCV), pages 2251–2261.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. 2021.
Debertav3: Improving deberta using electra-style pre-
training with gradient-disentangled embedding shar-
ing.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2021. Lora: Low-rank adaptation of
large language models.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las
Casas, Emma Bou Hanna, Florian Bressand, Gi-
anna Lengyel, Guillaume Bour, Guillaume Lam-
ple, Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian,
Sophia Yang, Szymon Antoniak, Teven Le Scao,
Théophile Gervet, Thibaut Lavril, Thomas Wang,
Timothée Lacroix, and William El Sayed. 2024. Mix-
tral of experts.

Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. 2023.
LLM-blender: Ensembling large language models
with pairwise ranking and generative fusion. In Pro-
ceedings of the 61st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 14165–14178, Toronto, Canada. As-
sociation for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining ap-
proach. CoRR, abs/1907.11692.

Yixin Liu and Pengfei Liu. 2021. SimCLS: A sim-
ple framework for contrastive learning of abstractive
summarization. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 2: Short
Papers), pages 1065–1072, Online. Association for
Computational Linguistics.

Sourab Mangrulkar, Sylvain Gugger, Lysandre De-
but, Younes Belkada, Sayak Paul, and Benjamin
Bossan. 2022. Peft: State-of-the-art parameter-
efficient fine-tuning methods. https://github.
com/huggingface/peft.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,

Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural
Information Processing Systems, 35:27730–27744.

Bo Peng, Ben Burns, Ziqi Chen, Srinivasan
Parthasarathy, and Xia Ning. 2023. Towards
efficient and effective adaptation of large language
models for sequential recommendation.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Hossein Rajabzadeh, Mojtaba Valipour, Marzieh Tahaei,
Hyock Ju Kwon, Ali Ghodsi, Boxing Chen, and
Mehdi Rezagholizadeh. Qdylora: Quantized dy-
namic low-rank adaptation for efficient large lan-
guage model tuning.

Mathieu Ravaut, Shafiq Joty, and Nancy Chen. 2022.
SummaReranker: A multi-task mixture-of-experts
re-ranking framework for abstractive summarization.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 4504–4524, Dublin, Ireland.
Association for Computational Linguistics.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,
Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff
Dean. 2017. Outrageously large neural networks:
The sparsely-gated mixture-of-experts layer.

Tal Shnitzer, Anthony Ou, Mírian Silva, Kate Soule,
Yuekai Sun, Justin Solomon, Neil Thompson, and
Mikhail Yurochkin. 2023. Large language model
routing with benchmark datasets.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models.

Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. Well-read students learn better:
The impact of student initialization on knowledge
distillation. CoRR, abs/1908.08962.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics.

Xuan Zhang, Navid Rajabi, Kevin Duh, and Philipp
Koehn. 2023. Machine translation with large lan-
guage models: Prompting, few-shot learning, and
fine-tuning with QLoRA. In Proceedings of the
Eighth Conference on Machine Translation, pages
468–481, Singapore. Association for Computational
Linguistics.

8649

https://proceedings.mlr.press/v162/ethayarajh22a.html
https://proceedings.mlr.press/v162/ethayarajh22a.html
http://arxiv.org/abs/2111.09543
http://arxiv.org/abs/2111.09543
http://arxiv.org/abs/2111.09543
http://arxiv.org/abs/2106.09685
http://arxiv.org/abs/2106.09685
http://arxiv.org/abs/2401.04088
http://arxiv.org/abs/2401.04088
https://doi.org/10.18653/v1/2023.acl-long.792
https://doi.org/10.18653/v1/2023.acl-long.792
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/2021.acl-short.135
https://doi.org/10.18653/v1/2021.acl-short.135
https://doi.org/10.18653/v1/2021.acl-short.135
https://github.com/huggingface/peft
https://github.com/huggingface/peft
http://arxiv.org/abs/2310.01612
http://arxiv.org/abs/2310.01612
http://arxiv.org/abs/2310.01612
https://doi.org/10.18653/v1/2022.acl-long.309
https://doi.org/10.18653/v1/2022.acl-long.309
http://arxiv.org/abs/1701.06538
http://arxiv.org/abs/1701.06538
http://arxiv.org/abs/2309.15789
http://arxiv.org/abs/2309.15789
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/1908.08962
http://arxiv.org/abs/1908.08962
http://arxiv.org/abs/1908.08962
https://doi.org/10.18653/v1/2023.wmt-1.43
https://doi.org/10.18653/v1/2023.wmt-1.43
https://doi.org/10.18653/v1/2023.wmt-1.43


A Hyperparameter Settings

In this section, we provide details of the hyperpa-
rameter and LoRA settings in our experiments.

Each model is trained with the same hyperparam-
eters to evaluate under identical conditions. Train-
ing utilizes a learning rate of 5.0e-6, a batch size
of 32, and 3 epochs, with the AdamW optimizer.
However, DeBlarge is trained with batch size of 8
due to memory limitations.

For LoRA, we established the projection layer
for query, key, and value, along with the dense
module. We set the rank to 12, alpha to 768, and
dropout to 0.1 based on the layers and dimensions
of DeBbase. The experiments were conducted using
Nvidia V100 GPUs.

B Conversion to Reward Dataset
Structure

In this section, we discuss the process of convert-
ing each dataset into the structure of a reward
model dataset. First, we introduce the reward model
dataset, which consists of one input prompt and at
least two responses. Each response is designated
as either chosen or rejected, and the reward model
learns to assign higher reward to the chosen re-
sponse compared to the rejected response when
given the prompt and response as input. The re-
quirement of "at least two responses" means that
responses must be paired as chosen and rejected;
if there are more than two responses, ranking or
selecting is performed to pair them into sets.

Anthropic resembles the reward model dataset
but combines the prompt and response. To facilitate
the training of a reward model, we preprocess it
by separating human input as the prompt and the
Assistant’s response as responses, resulting in a
format of one prompt and two responses.

SHP consists of two human-written summary
responses in a given context. Based on the desired
human-written summary label, we select chosen
and rejected responses for the context.

HellaSwag involves sentence completion tasks
with more than two endings. We designate the cor-
rect endings as chosen and randomly select from
the incorrect endings as rejected responses.

Dahoas and Oasst did not require separate con-
version into reward model datasets. However, since
our experiments were conducted in English, we
only used English data from Oasst, which contains
multiple languages.

C Size of Datasets

In this section, Table 4 and 5 presents the sizes of
the datasets used in the experiments. These datasets
are used for train and test the reward models and
router.

Dataset # of data % of data
Anthropic 80,307 57.02

SHP 19,493 13.84
HellaSwag 19,952 14.17

Dahoas 14,913 10.59
Oasst 6,176 4.39
Total 140,841 100

Table 4: Data size used to train the reward model and
router. The number of data for each domain as a percent-
age of the total training data.

Dataset # of data % of data
Anthropic 8,539 34.59

SHP 2,166 8.77
HellaSwag 10,003 40.52

Dahoas 3,313 13.42
Oasst 668 2.71
Total 24,689 100

Table 5: Data size used to test the reward model and
router. The number of data for each domain as a percent-
age of the total testing data.

D Inference Time

In this section, Table 6 provides the inference times
for each method and language model. The exper-
iments were conducted using a total of 2500 data
samples. We measure the time it takes for the
method to process one input from each dataset.

Method Language model 1step(sec)
Baseline DeBlarge 0.08

MoRE
DeBbase 0.04
DeBsmall 0.02
DeBxsmall 0.04

RODOS
DeBbase 0.08
DeBsmall 0.05
DeBxsmall 0.08

ARLISS
DeBbase 0.19
DeBsmall 0.10
DeBxsmall 0.19

Table 6: The inference time is measured for each method
and language model. We select 500 samples from each
of the five test datasets used in the experiment, measure
the inference time, and calculate the average.

8650



E Preliminary Model Selection
Experiments

In this section, Table 7 presents the results of pre-
liminary experiments conducted to determine the
models to be used in subsequent experiments.The
Baseline method was applied using DeBERTaV3
and four other models: BERTbase (Devlin et al.,
2018), BERTsmall (Bhargava et al., 2021; Turc
et al., 2019), RoBERTabase (Liu et al., 2019), and
GPT-2 (Radford et al., 2019). These results help in
assessing the performance and suitability of each
model for the primary experiments. The experi-
ments are conducted with five seeds each, and the
performance metrics are averaged and standard de-
viation is computed accordingly.

8651



Language
model

Parameter
Size (M)

Accuracy
Anthropic SHP HellaSwag Dahoas Oasst Average

DeBlarge 435 0.6359 .0058 0.6350 .0117 0.4992 .0009 0.9984 .0003 0.7174 .0053 0.6972 .0048

DeBbase 185 0.6204 .0031 0.6229 .0054 0.5019 .0025 0.9978 .0008 0.7311 .0060 0.6948 .0036

DeBsmall 141 0.6046 .0052 0.6213 .0035 0.4926 .0021 0.9963 .0011 0.7156 .0097 0.6861 .0043

DeBxsmall 70 0.5853 .0051 0.6165 .0061 0.5016 .0016 0.9956 .0007 0.7213 .0022 0.6841 .0031

BERTbase 109 0.6157 .0042 0.6095 .0050 0.4993 .0032 0.9951 .0009 0.7087 .0083 0.6857 .0043

BERTsmall 29 0.5857 .0032 0.6156 .0070 0.4986 .0020 0.9917 .0011 0.7117 .0080 0.6807 .0043

RoBERTabase 125 0.6241 .0029 0.6194 .0058 0.4973 .0009 0.9974 .0008 0.7162 .0126 0.6909 .0046

GPT-2 124 0.5987 .0031 0.6206 .0064 0.4954 .0018 0.9925 .0021 0.6904 .0124 0.6795 .0052

Table 7: Average performance across five domains and model parameter sizes for experiments using the Base-
line method. The language models include DeBERTaV3 (DeB) as used in the paper, BERTbase, BERTsmall,
RoBERTabase, and GPT-2. Performances are evaluated with five seeds, and small numbers denotes standard devia-
tion.

8652


