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Abstract

Recent evaluations of Large Language Models
(LLMs) have centered around testing their zero-
shot/few-shot capabilities for basic natural lan-
guage tasks and their ability to translate instruc-
tions into tool APIs. However, the evaluation
of LLMs utilizing complex tools to finish multi-
turn, multi-modal instructions in a complex
multi-modal environment has not been inves-
tigated. To address this gap, we introduce the
PowerPoint Task Completion (PPTC) bench-
mark to assess LLMs’ ability to create and edit
PPT files based on user instructions. It con-
tains 279 multi-turn sessions covering diverse
topics and hundreds of instructions involving
multi-modal operations. We also propose the
PPTX-Match Evaluation System that evaluates
if LLMs finish the instruction based on the pre-
diction file rather than the label API sequence,
thus it supports various LLM-generated API
sequences. We measure 3 closed LLMs and
6 open-source LLMs. The results show that
GPT-4 outperforms other LLMs with 75.1%
accuracy in single-turn dialogue testing but
faces challenges in completing entire sessions,
achieving just 6% session accuracy. We find
three main error causes in our benchmark: er-
ror accumulation in the multi-turn session, long
PPT template processing, and multi-modality
perception. These pose great challenges for
future LLM and agent systems 1.

1 Introduction

Recent evaluation works for Large Language Mod-
els (e.g. ChatGPT and GPT-4 (OpenAI, 2023)) fo-
cus on their zero-shot/few-shot abilities on basic
natural language tasks (Jiao et al., 2023; Zhong
et al., 2023; Wang et al., 2023; Qin et al., 2023a)
and their tool-use ability to generate APIs for solv-
ing user instructions, such as basic APIs like a
calculator in tool transformer (Schick et al., 2023),
RapidAPIs in ToolLLM (Qin et al., 2023c), and

1Code: https://github.com/gydpku/PPTC

hugggingface APIs in Gorilla (Patil et al., 2023).
However, these tool-use works emphasize the trans-
lation of natural language instructions into APIs
and ignore the challenge of using APIs in the ob-
servation of complex multi-modal environments
to finish user instructions. Also, their evaluation
approach focuses on comparing the generated APIs
with the label API sequence, assuming there’s only
one unique solution. This approach becomes im-
practicable in situations with multiple/unlimited
correct solutions. To address these challenges, we
introduce Power-Point Task Completion (PPTC),
a benchmark that measures LLMs’ performance in
creating and editing PPT file tasks based on user
instructions. We choose PowerPoint as it includes
various elements like textbox, table, and image and
supports a wider range of APIs than Word and Ex-
cel.

Our benchmark has three distinctive features
from other task completion benchmarks: (1) Multi-
turn dialogue with varying difficulty. Our PPTC
benchmark simulates the multi-turn dialogue ses-
sion between the user and the LLM and contains
279 multi-turn sessions. Each multi-turn session
in our benchmark includes 2 to 17 turns. Each
turn consists of a user instruction that describes
the user’s needs, a feasible solution that provides
the correct solution, and the resulting label output
file. Some turns can be easily addressed using a
single API, while over half of the instructions re-
quire multiple APIs for completion. We provide
the LLM with a reference API file that contains all
feasible APIs for selection. (2) Multi-modality.
Finishing the instruction of our benchmark requires
understanding the multi-modal PPT file content
and using multi-modal API operations (e.g., PPTC
has 268 image operation-related instructions). (3)
Evaluation based on the final status: We propose
the PPTX-Match Evaluation system to evaluate the
LLM’s outcome. To identify if the LLM completes
the instruction, it checks the PPT file produced by
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Figure 1: We illustrate how LLMs complete one turn in a session. (A) To prompt the LLM, we provide it with
the current instruction, previous instructions (dialogue history), PPT file content, and the API reference file. ’PPT
reader’ is a function that transforms the PPT file into the text-based format as the PPT file content. (B) The LLM
then generates the API sequence and executes it to obtain the prediction PPT file. (C) We evaluate attributes and
position relations in the prediction file.

executing the LLM-generated APIs rather than the
LLM-generated APIs, thus all API sequences that
lead to the correct final status are acceptable.

To finish the instruction, we use the current in-
struction, past turns’ instructions (dialogue history),
the PPT file content (specific environment informa-
tion), and the reference API file as the input to
prompt the LLM to generate an API sequence as
the solution (See Figure 1 (A)). Then we use the
API executor to execute the API sequence and re-
turn the user the resulting PPT file (See Figure 1
(B)). We name the resulting PPT file as the predic-
tion file. In the evaluation step (See Figure 1 (C)),
the PPTX-Match Evaluation system first uses the
Python-PPTX library to extract all attributes from
the prediction PPT file and the label output file.
Then it uses the position relation checker to check
if objects’ positions conform to the label relation
and the attribute content checker to check if the at-
tribute’s content is matched with the corresponding
label attribute’s content. The LLM correctly com-
pletes the current turn’s instruction if all attributes

of the file pass these tests.

We measure the performance of three closed-
source LLMs (GPT-4, ChatGPT, and Davince-003)
and six open-source LLMs (e.g., LLaMa-2) in
our benchmark. We further test planning (e.g.,
CoT (Wei et al., 2022)) and content selection algo-
rithms’ performance based on GPT-4. Evaluation
metrics include turn-based accuracy as the ratio of
correctly completed turns to the total number of
turns and session-based accuracy as the ratio of
correctly completed sessions to the overall session
count. Experiment results show that GPT-4 is the
strongest LLM among all LLMs but still encoun-
ters challenges when completing entire multi-turn
sessions. For example, although GPT-4 achieves
75.1% turn-based accuracy in the creating new PPT
file task, it only achieves 22.7% session-based ac-
curacy as errors made in previous turns. GPT-4 and
other LLMs also struggle to process long PPT tem-
plates (complex file environment). For example,
GPT-4 only achieves 38.1% turn-based accuracy
in the editing task. We further find that GPT-4
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struggles to finish instructions involving non-text
modality operations, especially for position-related
operations, such as ’Put object A on the top of
the slide’. It only achieves 24% accuracy in these
instructions.

In summary, this paper has the following contri-
butions:

(1) We propose the PowerPoint Task Completion
benchmark to measure LLM’s task completion per-
formance within the PowerPoint official software.
This benchmark contains 279 multi-turn sessions
with hundreds of multi-modal instructions in the
complex multi-modal environment.

(2) We propose the PPTX-evaluation system to
automatically measure LLMs’ performance in our
benchmark. We test 3 closed-source LLMs and
7 open-source LLMs and find that GPT-4 is the
strongest LLM among all LLMs.

(3) We further analyze LLMs in our benchmarks
and find three key error factors: error accumulation
in the session, long PPT template processing, and
multi-modality perception. These findings pose
significant challenges for future LLMs and LLM-
based systems.

2 PPTC Benchmark

In this section, we introduce our Power-Point
Task Completion (PPTC) benchmark, including
the overview of our benchmark, its collection and
validation process, and the PPTX-Match Evalua-
tion System for evaluation. We further analyze the
statistics information of our benchmark.

2.1 Benchmark Overview

Benchmark components Our benchmark focuses
on two basic tasks within PowerPoint: creating the
new PPT file and editing the existing long PPT
template for measuring long PPT Content under-
standing. We have gathered 229 multi-turn dia-
logue sessions for creating the new PPT file and
50 sessions for editing existing templates. Each
multi-turn session includes 2 to 17 turns. Each turn
comprises three parts: (1) the user instruction (2)
the label output file as the ground truth (3) one feasi-
ble API sequence for finishing the instruction. Our
benchmark also contains an API reference file that
includes 49 feasible APIs for various operations
and can complete all instructions in our benchmark.
For each API, we describe its functionality and
arguments and provide usage guidelines. For com-
plex APIs, we also offer example cases. We also

provide a PPT reader function and an API executor
for LLMs to process the multi-modal PPT file and
execute the API sequence, respectively. The details
of all APIs, PPT reader, and API executor are in
Appendix A.

Task description To complete the instruction in
one turn, in general, the AI assistant must compre-
hend the user’s current and prior instructions for
context. It should also analyze the content of the
PPT file to identify relevant objects mentioned in
the instruction. Additionally, it needs to select ap-
propriate APIs from a reference API file to achieve
the user’s goals. So we use these as the input of the
AI assistant and it should output an API sequence
as the solution. Then, it executes this API sequence
and provides the user with the resulting PPT file as
its response (See the whole process in Figure 1).

2.2 Benchmark Collection

Design Principles We follow these principles to
design our benchmark: (1) Multi-turn instructions:
One session in our benchmark should contain multi-
turn instructions to finish the user’s complex need.
(2) Instructions of varying difficulty: Some instruc-
tions can be achieved with a single API, while
others necessitate a sequence of APIs for success-
ful completion. (3) Diverse multimodal operations:
User instructions should cover a wide range of op-
erations on PPT, such as text-related, image-related,
and position-related APIs. (4) Topic Consistency:
The dialogue in a session should center around the
session topic. Each user instruction in a session
aligns closely with the previous instructions (the
context), ensuring a coherent and contextually rel-
evant dialogue flow. (5) Practicability First: The
session topic and specific instructions should simu-
late the user’s need in real world

Benchmark Collection and Validation To col-
lect user instructions, we engage 6 skilled crowd
workers who craft instructions in accordance with
the principles we’ve outlined. To achieve practi-
cability first, we request crowd workers to write
instructions based on their actual PowerPoint ex-
perience. On each session, the workers are asked
to first find and list a practicable session topic. For
the editing PPT template task, the topic must based
on the template file background and is practicable
to the template2. To achieve multi-instructions and
topic consistency, the workers write instructions

2We collect 50 PPT templates from the SlidesCarnival
website (https://www.slidescarnival.com/).
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Figure 2: Statistics for PPTC. a) Session turn number distribution. b) Instruction API number distribution (tokens).
c) Distribution of instructions involving Chart, Table, Picture, and Position. Instructions involving ’Position’ need
the system to conduct position-related operations based on the understanding of spatial information. Note that one
instruction may involve multiple different modalities.

step by step and make them consistent with the
topic. To achieve diverse multi-operations, we ask
them not to write session that only involves a single
modality operation.

Then we ask the seventh worker to write the
feasible API sequence with minimal API usage
for each instruction. Next, the workers create the
PPT label file by using the provided API sequence.
More details and steps for the collection and vali-
dation process are in Appendix B.

2.3 PPTX-Match Evaluation System

We design the PPTX-Match Evaluation System to
evaluate LLMs’ performance on the PPTC bench-
mark. It’s based on the PPT file (final status). To
judge if the LLM has successfully completed the
user instruction in one turn, it compares all non-
position attributes in the LLM’s prediction file with
those in the label file and verifies if objects follow
the correct position relation. The detailed steps are
in Appendix C.

2.4 Benchmark Statistics Analysis

To understand the properties of PPTC, we analyze
the instructions and APIs and report statistics about
the PPTC benchmark in Figure 2.

The number of turns in a session The session
turn number distribution (Figure 2 (a)), measured
as the number of turns in a session, shows that al-
most all sessions have at least 3 turns (between 3
and 13 turns for the 5th to 95th percentile, respec-
tively). The longest session has 17 turns, which
is very challenging as the errors made in previous
turns can influence the completion of the current
instruction.

Diffculty varies in APIs number The number

of APIs in a sequence falls between 1 and 5 for the
5th to 95th percentile (Figure 2 (b)), respectively,
shows that our instructions vary from a simple one
that can be finished by one API to a complex in-
struction that requires multiple APIs. The longest
API sequence consists of 29 APIs. Generating long
API sequences is very challenging as the LLM
needs to understand sub-goals in the complex in-
struction, select appropriate APIs, and generate
APIs in a reliable order.

Rich multi-modal instructions Our benchmark
has hundreds of instructions that involve multi-
modalities content (Figure 2 (c)). The "chart"
modality has the fewest instructions, with 120,
while the "position" modality has the most, with
292 instructions. To finish these instructions,
LLMs need to employ related-modal APIs based
on the understanding of multi-modal file content.

3 Algorithms

In this section, we introduce the algorithms we con-
sidered to enhance the LLM’s performance in our
benchmark. These algorithms can be categorized
into two approaches: planning algorithms that help
the LLM in decomposing the user instruction and
solving it step by step and selection algorithms that
assist the LLM in choosing important environmen-
tal information or APIs.

3.1 Planning Algorithms

Complex user instructions often require multiple
intermediate steps to complete. We mainly consider
two planning algorithms:

Zero-shot-CoT (Kojima et al., 2022) enables
LLMs to autonomously generate intermediate
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Inference prompt in PPTC

(Task instruction) You are an AI assistant to help the user to operate PowerPoint and edit the contents.
Give you the user instruction:<Current user instruction>, you can complete it based on the following APIs and PPT
file content. Current you are at page <Page id>. Please finish the user instruction with the functions you have. Don’t
generate instructions beyond what the user has instructed. Don’t guess what the user may instruct in the next step and
generete API for them. Don’t use python loop to call API. You can only call API once in one line. If the user does not
specify the page to be modified, you can directly start using the APIs without having to navigate to other pages.
You need to generate code which can finish the user instruction. The multiple lines of code should be surrounded by
<code> and </code> such as: <code> API(); API(); </code>
For example, if the user instruction is "create a slide", then the answer should be:
<code> create_slide(); </code>

(API file) Now, you have access to a list of PowerPoint APIs with the following functions: <APIs and their
descriptions>
(e.g.,API(name="set_width", parameters="(width)",
description="This API sets the width of the selected object.",
parameter_description="It takes one parameter ’width’, the width of an object in centimeters as float.",
composition_instruction="You should first choose an object before you can change the width of it.",
api_desc="width of picture and shapes") )

(PPT file content) All the PPT contents are:
<Begin of PPT>
Turn-based: <Parsed PPT file content of the label PPT file of the previous turns>
Session-based: <Parsed PPT file content of the LLM prediction file of the previous turns>
<End of PPT>

(Dialogue history)
¬User¬: Hello!
¬AI¬: Hi there! How can I help you?
¬User¬: <the first instruction>
¬AI¬:
Turn-based: <the correct feasible API sequence>,
Session-based: <the LLM-generated API sequence>
...
¬User¬: <Current user instruction>. Surrounding your answer with <code> and </code>.
¬AI¬:

Figure 3: The inference prompt we used in both turn-based and session-based evaluation settings. In the turn-based
evaluation, we assess the LLM’s performance for the current turn and assume the LLM has correctly finished
previous turns. We then use feasible API sequences of previous turns as the AI response in the dialogue history
and parse the label file of previous turns as the PPT file content. In the session-based evaluation, we evaluate the
completion of the entire session and do not assume the LLM has correctly finished previous turns. We use the
LLM’s generated API sequences as the response and parsed the LLM prediction file as the PPT file content.

reasoning processes for complex instruction by
prompting LLMs to "Let’s think step by step".

Tree of Thoughts (ToT) (Yao et al., 2023) en-
ables LLMs to follow tree-like reasoning paths,
where each tree node represents a thinking state. It
leverages LLMs to generate evaluations or votes
on different thoughts.

3.2 Selection Algorithms

Combining the whole PPT file and the whole API
file into the LLM’s input can result in redundant in-
formation and filtering out them would improve the
efficiency of the LLM. In this context, we primarily
focus on two algorithms for selecting the relevant
PPT file content and helpful APIs, respectively:

Content Selection algorithm Firstly, we extract
all shapes of the PPT file by Python-PPTX. Next,
we prompt the LLM to select the shapes for com-
pleting the user’s instruction. We show the prompt
in Figure 9 of Appendix D, in which we add three
demonstration examples to guide the LLM to do
selection. In this algorithm, we replace the whole
PPT file with the selected shapes when prompting
the LLM to generate the API sequence.

API Selection algorithm The API selection al-
gorithm is based on the embedding similarity to
select the most relevant APIs for user instructions.
Specifically, we use the text embedding API to get
the embeddings of all API descriptions and the cur-
rent user instruction. Next, we compute the cosine
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similarity between the instruction embedding and
each API description’s embedding and rank them
based on the similarity score. In this algorithm, we
replace the whole reference API file with the top
k APIs when prompting the LLM to generate the
API sequence.

4 Experiments

4.1 Large Language Models Selected for
Evaluation

We assess different cutting-edge large language
models using our benchmark. These chosen models
showcase a wide array of capabilities and are highly
regarded in the field. The evaluated large lan-
guage models include 3 closed-source LLMs:GPT-
4 (OpenAI, 2023), ChatGPT, and Text-Davinci-
003 (Brown et al., 2020). We also consider 7
open-source LLMs: LLaMa-2-Chat (Touvron et al.,
2023), Baichuan-Chat, Baichuan-2-Chat (Yang
et al., 2023), WizardLM v1.2 (Xu et al., 2023a),
Vicuna v1.5 (16k) (Chiang et al., 2023), and Code-
LLaMa-instruct (Chiang et al., 2023), and Mistral-
instruct (Jiang et al., 2023). The detailed introduc-
tion of these LLMs is in Appendix E.

4.2 Experimental Setup

In this section, we provide an overview of the ex-
perimental setup utilized to assess the performance
of LLMs on our PPTC benchmark.

4.2.1 Turn-Based and Session-Based
Evaluations

We consider two performance evaluation ap-
proaches in our benchmark: turn-based and session-
based evaluations. For the turn-based evaluation,
we measure the LLM’s ability to finish a single turn.
For the session-based evaluation, we measure the
LLM’s ability to finish a session containing multi-
ple turns. One core difference is that the turn-based
evaluation assumes that the previous turns have
been correctly finished but the session-based evalu-
ation does not. We put more details and illustrate
the prompts for the two evaluations in Appendix F.

Metrics For turn-based evaluation, we report
the turn-based accuracy as the ratio of the number
of successfully finished turns to the total number
of turns. We also report the average token num-
ber of the input of one turn and the average API
number for finishing one turn as the cost measure-
ment. For session-based evaluation, we report the
session-based accuracy as the ratio of the number

of successfully finished sessions to the total num-
ber of sessions. We also report the average value of
the token number of all inputs in one session and
the average API number required to complete one
session as the cost measurement.

4.3 Implementation Details
All closed-LLMs experiments were conducted us-
ing the respective language models’ API provided
by Azure OpenAI Service. For open-source LLMs,
we choose their chat/instructed version with 13
billion parameters model. For the zero-shot CoT
method, we add the sentence ’Let’s think step by
step’ after the dialogue history of the prompt. Our
inference prompts are in Figure 3. We run the
four algorithm methods based on the GPT-4 model.
More details are in Appendix G

4.4 Main results
We report the results of LLMs in both turn-based
and session-based evaluations in Table 1 and 2.
From the results, we highlight the following key
findings.

(1) Superior Performance of GPT-4: GPT-4
consistently outperforms other closed-source and
open-source LLMs in both two tasks. For example,
GPT-4 achieves 75.1% turn-based accuracy in the
creating new PPT file task, demonstrating its strong
capability to finish one turn of the user instruction.
GPT-4 also has a lower API cost compared to other
closed-source LLMs since its precise API usage.
GPT-4 incurs the highest token expense when edit-
ing PPT templates. That is because its higher token
limit than other LLMs allows us to input more PPT
template content.

(2) Code continual pre-training and further
instruction finetuning can boost open-source
LLMs’ performance.: Current open-source LLMs
struggle to match the performance of closed-source
LLMs in Table 1. For example, LLaMa-2-chat
only achieves 16.2% turn-based accuracy in the
creating PPT slide task. Code continual pretraining
(Code-LLaMa) and instruction fine-tuning based
on LLaMa-2 (WizardLM and Vicuna) can further
improve LLaMa-2 potential PPT task completion
performance on our benchmark. For example,
Code-LLaMa improves LLaMa-2’s turn-based ac-
curacy in the creating new PPT slide task by 20.4
%.

(3) Planning and selection algorithms can im-
prove LLMs’ turn-based performance From Ta-
ble 2, we observe that the planning algorithms (CoT
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Models and Methods
Creating new PPT Editing PPT template

Turn-based Session-based Turn-based Session-based
Accuracy Avg token Avg API Accuracy Avg token Avg API Accuracy Avg token Avg API Accuracy Avg token Avg API

TD-003 72.6 2.8k 3.0 12.7 20.8k 23.9 24.4 2.9k 8.1 4.0 13.2k 26.6
ChatGPT 70.6 2.9k 3.2 12.7 20.0k 23.4 26.3 4.1k 7.9 2.0 9.2k 22.9

GPT-4 75.1 2.9k 2.9 22.7 20.8k 22.4 38.1 7.5k 7.8 6.0 24.1k 24.7
LLaMa-2 16.4 2.8k 3.9 3.4 21.6k 24.7 8.7 2.2k 7.2 0.0 9.5k 15.6

Code-LLaMa 36.8 2.8k 3.4 0.0 20.7k 32.1 18.7 3k 7.3 2.0 9.6k 22.6
WizardLM 23.9 1.3k 3.3 4.3 12.5k 22.4 10.0 1.3k 5.7 0.0 4.3k 16.5

Vicuna-v1.5 24.3 1.3k 3.9 2.2 11.0k 33.7 6.8 1.3k 6.7 0.0 4.3k 22.7
Baichuan 15.5 1.3k 9.8 0.0 10.9k 44.7 4.4 1.3k 9.6 0.0 4.3k 24.3

Baichuan-2 16.3 1.3k 9.1 3.6 11.6k 48.9 8.7 1.3k 9.2 0.0 4.2k 22.3
Mistral-Instruct 14.1 1.3k 12.1 0.0 11.6k 73.5 12.5 1.3k 17.9 2.0 5.1k 41.6

Table 1: We report the results of LLMs and methods based on GPT-4 in this table.’ TD-003’ is the Text-Davinci-003
model. We directly use the prompts in Figure ?? to prompt LLMs to generate the API sequence.

Models and Methods
Creating new PPT file Editing PPT template

Turn-based Session-based Turn-based Session-based
Accuracy Avg token Avg API Accuracy Avg token Avg API Accuracy Avg token Avg API Accuracy Avg token Avg API

GPT-4 75.1 2.9k 2.9 22.7 20.8k 22.4 38.1 7.5k 7.8 6.0 24.1k 24.7
GPT-4+CoT 77.0 2.9k 3.1 23.1 20.8k 22.7 40.6 7.5k 8.0 6.0 24.1k 25.2
GPT-4+ToT 76.5 20.8k 3.0 21.8 146.4k 22.6 40.6 81k 7.6 4.0 256.8k 24.0

GPT-4+Content selection 77.5 3.4k 3.0 21.8 24.5k 22.0 43.1 5.8k 8.0 4.0 18.7k 25.2
GPT-4+API selection 76.4 1.5k 2.9 18.8 10.6k 21.3 38.1 7k 8.0 10.0 22.4k 25.8

Table 2: We report the results of GPT-4 and algorithms based on the GPT-4 model. ’CoT’ and ’ToT’ are the chain of
thought and tree of thought algorithms.

and ToT) can further improve the turn-based per-
formance of GPT-4 by 1∼2 percent. However, we
find that the more complex ToT algorithm does
not outperform the zero-shot CoT algorithm with
a 5∼10 times token cost. Content and API selec-
tion algorithms can further improve the turn-based
performance of GPT-4 by 1∼ 5 percent. That is
because they reduce the task difficulty by filtering
irrelevant PPT content/APIs in the input prompt.
The API selection algorithm also reduces the av-
erage token cost by reducing the number of APIs
listed in the prompt.

4.5 Three challenges in our PPTC benchmark

From the result Table 1 and Figure 4. we highlight
the following three key challenges.

(1) Error accumulation makes LLMs perfor-
mance poor in finishing the entire multi-turn
session.: The performance of all LLMs in handling
sessions consisting of multiple turns is notably poor.
GPT-4, achieves only a 22.7% session-based accu-
racy for the "creating new PPT file" task and a
mere 6.0% session-based accuracy for the "editing
PPT template" task. The session-based evaluation
is challenging since errors made in previous turns
make the LLM fail to finish the session and also
influence the completion of the current turn. Cur-
rent planning and selection algorithms usually fail
to improve session-based accuracy markedly. In
some cases, they can even make the performance
worse.

(2) LLMs perform badly in processing long
PPT template: Current LLMs’ performance in
the editing PPT temples task is pretty poor. For
example, the strongest GPT-4 only achieves 38.1%
turn-based accuracy and 6.0% session-based accu-
racy in this task. The content selection algorithm
can partially solve this challenge by filtering out
irrelevant file content, but GPT-4 with it still only
achieves 43.1% turn-based accuracy. For open-
source LLMs, there’s a risk of information loss due
to token limitations (typically 2∼4K tokens limit),
which often require truncating lengthy PPT content.
When it comes to session-based performance, the
accuracy remains nearly zero. That means current
LLMs (e.g., GPT-4 and LLaMa-2) still struggle to
handle complex and lengthy PPT templates.

(3) Multi-modal instructions increase the
LLM’s failure rate significantly. To assess LLMs’
task completion performance for instructions in-
volving multi-modal operations (Table, Chart, Pic-
ture, Position, and text), we calculate the aver-
age accuracy of GPT-4 for each modality by di-
viding the number of correctly completed instruc-
tions within each modality by the total number
of instructions involving that modality’s operation.
The results are presented in Figure 4 (a). From
the figure, we observe that GPT-4’s performance
becomes poorer when processing structured data
(Chart and Table) rather than text, with 12.4%
and 16.2% lower accuracy. Instructions involving
picture-related operations pose a greater challenge
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Figure 4: We illustrate the analysis results of the creating new PPT file task (task 1) and the editing PPT template
task (task 2). In sub-figure (a), we report the average turn-based accuracy for instructions involving chart, table,
picture, position, and pure text. We don’t draw the accuracy of task 2 as no chart instruction in this task. In sub-figure
(b), we report the ratio of four common errors made by GPT-4. In sub-figure (c), we report the accuracy with the
model size. We don’t plot the session-based accuracy of task 2 as it is zero.

for GPT-4 and GPT-4 exhibits its weakest perfor-
mance in instructions involving position-related op-
erations, with only 24% accuracy. This underscores
GPT-4’s limitations in spatial perception ability.

5 Analysis

In this section, we analyze the reasons for GPT-4’s
errors. We further analyze the influence of model
size and dialogue history.

5.1 Error Analysis of GPT-4 in our benchmark

To analyze the error made by GPT-4, in our bench-
mark, we gather 50 wrong samples for each of the
two tasks in our benchmark in the turn-based eval-
uation. We find that these wrong samples fall into
four error types and visualize the distribution of
these four main error types in Figure 4 (b): (1) Posi-
tion errors: These occur when GPT-4 struggles with
instructions involving position adjustments. For ex-
ample, when asked to move the shape to the bottom
of the slide, GPT-4 wrongly calls the "set_top" API.
(2) Calling unavailable APIs: GPT-4 sometimes
generates APIs that don’t actually exist in the ref-
erence API file, resulting in what we call the "API
hallucination problem." (3) Misunderstanding PPT
file content: GPT-4’s wrong comprehension of the
PPT content leads to incorrect APIs. For example,
when instructed to make the font size of the current
slide’s title consistent with previous slides, GPT-4
set a font size that is different from what was used
in previous slides’ titles. Misunderstanding the PPT
content becomes the main error in the editing tem-
plate task. (4) Unfollowing Powerpoint task rules:
LLMs don’t understand the Powerpoint task rules.
For instance, GPT-4 may directly insert the new

content into the original title when instructed to
rewrite the title. For the session-based evaluation,
we also collect 50 wrong examples. And we find
that the main reasons for errors are similar. One
unique phenomenon in this evaluation is that the
LLM would repeat previous errors (e.g., repeatedly
employing infeasible APIs) in subsequent turns.

We analyze the error of open-source LLMs and
explain the reasons for their performance gap com-
pared to closed-source LLMs in Appendix H.

5.2 Does bigger LLM work better on PPTC?

To investigate how the model size impacts the
LLM’s performance in our benchmark, we con-
duct tests using LLaMa-2-chat LLM with 7, 13,
and 70 billion parameters and plot the results in
Figure 4 (c). We observe that larger LLM consis-
tently achieve higher turn-based accuracy for both
the creating new PPT and editing PPT template
tasks. For example, in the creating new PPT file
task, we find that the turn-based accuracy increases
from 13.2 (7B) to 30.1 (70B). However, we do not
observe a clear positive correlation between model
size and session-based performance. One possible
explanation is that although the 70B LLM can cor-
rectly finish more intermediate steps, it still falls
short of completing the entire session. A larger
LLM may be necessary.

5.3 Does dialogue history help LLMs to
generate the API sequence?

To investigate the influence of dialogue history in
our prompt (see Figure ??), we make an ablation
experiment for the dialogue history component of
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our turn-based evaluation prompt3. In this evalua-
tion, the dialogue history contains previous turns
along with their feasible API sequences. When we
removed the dialogue history from the prompt, we
observed a decline in GPT-4’s performance. Specif-
ically, GPT-4 drops its performance from 75.1 %
to 73.1 % in the creating new PPT file task and
decreases its performance by 6.2 % in the editing
template task. This experiment shows the positive
effect of the dialogue history, as it helps the LLM
to both understand the dialogue background and
instruct the LLM to correctly use the APIs, similar
to few-shot demonstration examples.

6 Related Works

Large Language Models like ChatGPT, GPT-
4 (Bubeck et al., 2023; OpenAI, 2023), and Bard
have billions of parameters and have been trained
on the Internet corpus with trillions of tokens. They
can write code (Liu et al., 2023a), prove mathemat-
ical theorems (Jiang et al., 2022), pass the pro-
fessional exam (Zhong et al., 2023; Gilson et al.,
2023; Katz et al., 2023), employ other models and
APIs (Schick et al., 2023; Liang et al., 2023; Wu
et al., 2023; Patil et al., 2023), and also perform
well on other basic natural language tasks (Kim
et al., 2023; Jiao et al., 2023; Zhong et al., 2023;
Wang et al., 2023). That raises the hope of achiev-
ing artificial general intelligence (AGI).

To further boost LLM’s performance on the spe-
cific task, one approach involves prompting en-
gineerings, such as the chain of thought prompt-
ing (Wei et al., 2022; Shi et al., 2022; Yao et al.,
2023), self-consistency (Wang et al., 2022) and the
least to most prompting (Zhou et al., 2022). An-
other approach aims to use feedback to improve
performance. The self-refine method (Madaan
et al., 2023; Shinn et al., 2023) refines the output
through iterative feedback and refinement Provided
by LLM itself or sparse reward signal. The learn-
ing to program method (Guo et al., 2023) learns
the task program by inducing the general solutions
from the errors (feedback) iteratively and uses the
program to guide the test inference.

Task completion benchmarks for measuring
large language models. To measure LLM’s task
completion performance, Saycan (Brohan et al.,
2023) and VirtualHome (Puig et al., 2018) bench-

3The task instruction, current user instruction, API file,
PPT content in the prompt are necessary parts for generating
the API sequence. So we don’t conduct ablation studies on
them.

marks ask LLM to generate the correct action se-
quence for controlling the robot to finish user in-
struction. WebShop (Yao et al., 2022) and Android
in the wild (Rawles et al., 2023) ask LLM to navi-
gate websites and conduct actions to meet the user
requirement. APIBench (Patil et al., 2023) and
ToolBench (Xu et al., 2023b; Qin et al., 2023b) in-
volve selecting and using APIs to complete the task
instruction. Agentbench (Liu et al., 2023b)assesses
LLM as autonomous agents in 8 environments and
WebArena (Zhou et al., 2023) considers task com-
pletion in web-based interactions. We make a com-
prehensive comparison for these benchmarks in
Appendix I.

7 Conclusion

We introduce the PowerPoint Task Completion
benchmark to measure LLMs’ ability to complete
multi-turn user instructions within the context of
the multi-modal PowerPoint software. We further
propose the PPTX-evaluation system to access and
compare the performance of 10 LLMs and 2 LVMs.
We further analyze the behavior of LLMs and find
three main error factors that limit their performance.
Our benchmark and findings can help the research
community design better AI assistants.

8 Limitations and potential risks

Our benchmark does not consider instructions that
involve subjective evaluation. For example, the
user may want to make the slide more beautiful.
However, it’s hard to automatically evaluate if the
generated file (the model output) is more beautiful.
Another limitation is that we do not consider the
instructions that need non-API operations. For ex-
ample, the user may want to draw a cat on the slide.
That instruction needs the AI-assistant system to
draw the cat by dragging the mouse and is still in-
feasible for LLMs and LLM-based systems. We
only consider instructions that can be completed
by directly executing the API sequence.

For privacy concerns, we replace all real human
names, emails, and addresses with those generated
randomly. Completing the virtual PPT task could
not hurt humans and we do not see any further
potential risk in our benchmark.
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A The API Reference File, PPT reader,
and API excutor

We list all APIs and their descriptions in Figures 7
and 8. We provide 49 feasible APIs.

Compared to the general AI assistant, LLMs still
have two limitations for completing the task in our
benchmarks: (1) LLMs can not directly process the
PPT file. So we provide a PPT reader function that
extracts all shapes and their information from the
PPT file and transforms them into the text format
as the PPT file content. Then LLMs can understand
and process the PPT file content. The code of the
PPT reader is in the supplementary. We illustrate
two examples for how the PPT reader turns the
shapes (e.g., title, figure and table) of the PPT file
into the text description of them in Figure 5 & 6.
(2) LLMs cannot directly use PPT software through
a keyboard and mouse. Therefore, we have defined
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PPT APIs based on the operational logic within
the PPT software. and provide an implementation
for these APIs in Python that can swiftly gener-
ate PPT files. In future work, it may be possible
to explore the use of large multimodal models to
understand on-screen content and implement APIs
using a keyboard and mouse.

B Details for the dataset collection and
validation

In the collection process, we employ 6 skilled
crowd workers. Our crowd workers comprise pro-
fessional data science engineers well-versed in
PowerPoint. Each worker takes on a specific role
in the instructional writing work and is encouraged
to write instructions in his/her own words. Workers
were asked to spend at least 20 minutes on every
session. We delete repeated sessions and short ses-
sions that have no more than 50 tokens. For the
editing PPT template task, the 50 PPT templates are
collected from the SlidesCarnival website (https:
//www.slidescarnival.com/). SlidesCar-
nival is a free and open-source PPT template web-
site. Each session in the editing task has a unique
template.

To ensure the data quality of this benchmark,
the principal engineer reviews and refines the in-
structions and API sequences written by the above
7 workers for initial quality assurance. Then the
three authors of this paper further undertake the fol-
lowing validation steps: (1) Assessing Instruction
Clarity and Relevance: They examine whether the
instructions are clear, contextually related to the
session topic, and align with the ongoing conver-
sation. (2) API Sequence Execution: The authors
execute the provided API sequences to identify and
rectify coding errors. (3) Goal Achievement Check:
They verify if the instructions’ intended goals are
successfully completed in the label files.

In the event that errors are identified during this
validation process, the authors promptly report
them to the respective workers for revision. The
three authors are computer science senior students
and researchers.

C The Details for PPTX-Match
Evaluation System

Specifically, our PPTX-Match Evaluation System
first uses a Python-PPTX Content Reader Module
to iterate over all shapes in the prediction PPT file
produced with the LLM and the label output file.

A shape in the PPTX library typically refers to an
individual object, such as a text box or table. Then
our system extracts attributes like text, style, and
position of the shapes using the PPTX library. Next,
we check all attributes from the prediction PPT file.
For non-position attributes (e.g., text content), we
first convert it and the corresponding attribute in
the label PPT file into two strings, and then we
use the Exact Match method to examine if the two
strings are the same. If they are different or we do
not find the corresponding attribute in the label file,
then we find an incorrect match. For the position
attribute (e.g., location information), we focus on
checking if the objects in the prediction PPT file
satisfy the correct position relation <A, B, REL>,
where A and B are objects that should satisfy the
relation REL. In the benchmark collection process,
we ask crowd workers to label the position relation
that objects should satisfy to finish the instruction.

If there are no incorrect matches for all non-
position attributes and no rule violations for all
position-related attributes, we consider the LLM
has successfully completed the user instruction.

D The Prompt for Content Selection
Algorithm

We put the prompt of content selection algorithm
in Figure 9.
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Figure 5: The PPT reader transforms the figure and title into their text form.

Figure 6: The PPT reader transforms the figure, table and title into their text form.
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API reference file

Slide-related APIs
API: create slide(): This API creates a new slide.
API: move to previous slide(): This API moves to the previous slide.
API: move to next slide(): This API moves to the next slide.
API: move to slide(slide id): This API moves to the slide with given slide id.It takes one parameter
’slide id’, the ID of the slide to move to as a integer.
Choose-related APIs
API: choose title(): This API selects the title on the slide. You should first call choose title() before
inserting text to or changing font attributes of the title.
API: choose content(): This API select the content on the slide. You should first call choose
content() before inserting text to or changing font attributes of the content.
API: choose textbox(idx): This API selects the textbox element on the slide. It takes one parameter,
the index of textbox as integer. idx is set to 0 by default, meaning the first textbox. You should first
call choose textbox() before inserting text to or changing font attributes of the textbox element.
API: choose picture(idx): This API selects the picture element on the slide. It takes one parameter,
the index of textbox as integer. idx is set to 0 by default, meaning the first textbox. You should first
call choose picture() before changing height, width, rotation of the picture element. You should
not call choose picture() before inserting picture element.
API: choose chart(): This API selects the chart element on the slide. You should first call choose
chart() before changing the chart. You should not call choose chart() before inserting chart element.
API: choose shape(shape name): This API selects a specific shape by shape name on the slide. It
takes one parameter ’shape name’, the name of the shape to select as a string. shape name can be
chosen from [’rectangle’,’right arrow’,’rounded rectangle’,’triangle’,’callout’,’cloud’,’star’,’circle’]
You should first call choose shape(shape name) before you can do operations on the shape. You
should not call choose shape(shape name) before inserting shape element.
API: choose table(): This API selects the table element on the slide. You should first call choose
table() before changing the table. You should not call choose table() before inserting table element.
API: choose table cell(row id, column id): This API selects a specific cell in the table by giving
row id and column id. It takes two parameters, the row id and column id of the cell to select as
integers (id starts from 0). Remember the first parameter is row id, the second parameter is column
id. You should first call choose table cell(row id, column id) before inserting text.
Basic APIs
API: set background color(color): This API sets the background color of the slide. It takes one
parameter ’color’, the color name to set as a string, such as ’red’, ’purple’.
API: set width(width): This API sets the width of the selected object. It takes one parameter
’width’, the width of an object in centimeters as float. You should first choose an object before you
can change the width of it.
API: set height(height): This API sets the height of the selected object. It takes one parameter
’height’, the height of an object in centimeters as float. You should first choose an object before
you can change the height of it
API: rotate element(angle): This API rotates the selected element by the specified angle. It takes
one parameter ’angle’, the angle to rotate clockwise as integer. You should first choose an object
before you can rotate it.
API: set fill color(color): This API sets the fill color of the selected object after the object is chosen.
It takes one parameter ’color’, the color name to set as a string, such as ’red’, ’purple’. You can set
the fill color of content, title or textbox.
API: set left(left): This API moves and changes the object’s position. It sets the x position of the
selected object’s leftmost point. It takes one parameter, the x position to set. You should first
choose an object before you can change the left of it
API: set top(top): This API moves and changes the object’s position. It sets the y position of the
selected object’s upmost point. It takes one parameter, the y position to set. You should first choose
an object before you can change the top of it.

Figure 7: The reference API file: part 1.
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API reference file

Text-related APIs
API: insert text(text): This API inserts text into a text frame (textbox, title, content, table).
API: insert bullet point(text): This API inserts a bullet point into the content. It takes one parameter,
the text of the bullet point to insert as a string.
API: insert note(text): This API inserts a note onto the slide. It takes one parameter, the note text
to insert as a string.
API: insert textbox(): This API inserts a textbox onto the slide. When you need to add a caption or
text under/above/left to/right to an object, you can call insert textbox().
API: delete text(): This API delete the text part of an object. You should first choose content or
title before you can call delete text()
API: set font size(font size): This API sets the size of the font It can take one argument ’font size’,
the font size to set as an integer.
API: set font color(color): This API sets the color of the font. It takes one parameter ’color’, the
color name to set as a string, such as ’red’, ’purple’.
API: set font bold(): This API sets the font to be bold.
API: set font italic(): This API sets the font to be italic.
API: set font underline(): This API sets the font to be underlined.
API: set font style(font name): This API sets the font style of the selected text. It can take one
argument ’font style’, the font name as a string.
API: set line space(line space level): This API sets the line spacing of the selected text. It can take
one argument ’line space level’, as an integer, default 0.
API: text align left(): This API aligns the text to left.
API: text align center(): This API aligns the text to center.
API: text align right(): This API aligns the text to right.
Image and shape-related APIs
API: insert picture(picture name): This API inserts a picture onto the slide. It takes one parameter
’picture name’, the name or description of picture as a string
API: insert rectangle(): This API inserts a rectangle or square shape onto the slide.
API: insert right arrow(): This API inserts an arrow shape onto the slide.
API: insert rounded rectangle(): This API inserts a rounded rectangle shape onto the slide.
API: insert triangle(): This API inserts a triangle shape onto the slide.
API: insert callout(): This API inserts a callout shape onto the slide.
API: insert cloud(): This API inserts a cloud shape onto the slide.
API: insert star(): This API inserts a star shape onto the current slide.
API: insert circle(): This API inserts a circle or oval shape into the current slide.
Table-related APIs
API: insert table(row num, col num): This API inserts a table of row num rows and col num
columns onto the current slide. It takes two argument, the row number and the column number of
the inserted table as integer. Remember the first parameter is row number and the second parameter
is column number.
API: insert table row(row data): This API inserts a row (list) of data into the table. It takes one
argument, the data to insert as a list of numbers or strings. You should first call choose table()
before you can call insert table row(). The parameter ’row data’ should be a list of strings.
Chart-related APIs
API: insert line chart(data, series): This API inserts a line chart onto the slide. It takes two
argument, ’data’ is a list of numbers and ’series’ is a list of strings.
API: insert bar chart(data, series): This API inserts a bar chart onto the slide. It takes two argument,
’data’ is a list of numbers and ’series’ is a list of strings.
API: insert pie chart(data, series): This API inserts a pie chart onto the slide. It takes two argument,
’data’ is a list of numbers and ’series’ is a list of strings.
API: set chart title(title): This API sets the title of a previously inserted chart. It takes one argument
’title’, the title to be set as a string.

Figure 8: The reference API file: part 2.
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Content Selection prompt

You are an AI assistant for PowerPoint. Your task is to determine what kind of content is necessary to fulfill the user’s
instruction. You have an API to extract the content, please call the get_content api with correct parameters to fulfill the
user’s instruction. You need to extract the minimum necessary information to fulfill user’s instruction.

Get_content API: get_content(need_text: Indicates whether text information is required. The text infor-
mation encompasses text in title, content, textbox, table, chart, and shape. This parameter is particularly useful when
inserting or modifying text of title, content, textbox, table, chart, and shape, or when information about these objects is
essential.
need_style: Indicates whether style information is required. Style information includes attributes like font type, font
size, color, background color, line space, bold, undeline, italic and other visual aspects of objects like rotation. This is
useful when changing the appearance of text or objects or when information about an object’s appearance is essential.
need_position: Indicates whether position information is required. The position details encompass an object’s height,
width, and its left and top positions. This is crucial when moving objects or altering an object’s size.
need_title: Determines if information related to the title is required.
need_content: Determines if information related to the content is required.
need_picture: Determines if information related to the picture is required.
need_table: Determines if information related to the table is required.
need_chart: Determines if information related to the chart is required.
need_textbox: Determines if information related to the textbox is required.
need_shape: Determines if information related to the shapes (rectangle, right arrow, rounded rectangle, triangle, callout,
cloud, star, circle) is required. )
Where the parameters are either 1 (needed) or 0 (not needed). You should only answer with calling get_content() with
the right parameters.

For examples:
Instruction: Increase the font size of the content to 20.
Explanation: For information, style information (font size) is needed. For objects, content is needed.
Answer:
get_content(need_text=1,need_style=1,need_position=0,
need_title=0,need_content=1,need_picture=0,need_
table=0,need_chart=0,need_textbox=0,need_shape=0)
...
Given the instruction, output the Answer without Explanation:
Instruction: <Current user instruction>
Answer:

Figure 9: The prompt of the content selection algorithm.

8697



E Introductions of 10 LLMs and 2 LVMs

We consider the following 10 LLMs:

• GPT-4 (OpenAI, 2023): The latest LLM in
the GPT series. GPT-4 is a cutting-edge,
large-scale generative pre-trained transformer
model. It offers improved performance and a
wider knowledge base compared to its prede-
cessors. It showcases human-level proficiency
in several scenarios.

• ChatGPT: ChatGPT is a conversational AI
model crafted for dynamic interactions. It’s
learned from extensive instruction data and
fine-tuned through reinforcement learning
with human feedback (RLHF). This empow-
ers it to deliver responses that align with hu-
man expectations, maintaining context and
coherence in conversations.

• Text-Davinci-003 (Brown et al., 2020): GPT-
3.5 sits between GPT-3 and GPT-4, enhancing
performance via additional instruction tuning.
It acts as a link between these models, facil-
itating comparison. We’ve chosen the Text-
Davinci-003 variant from the GPT-3.5 series
for our evaluation.

• LLaMa-2-Chat (Touvron et al., 2023):
LLaMa 2, an auto-regressive open-source lan-
guage model, employs an optimized trans-
former design. Chat versions utilize super-
vised fine-tuning (SFT) and reinforcement

learning with human feedback (RLHF) to
match human preferences for helpfulness and
safety.

• Baichuan-Chat: It is a transformer model
trained on approximately 1.2 trillion tokens.
It supports both Chinese and English, with a
context window length of 4096.

• Baichuan-2-Chat (Yang et al., 2023): It is
a large-scale multilingual language model
trained from scratch, on 2.6 trillion tokens.
The chat version uses Supervised Fine-Tuning
(SFT) and Reinforcement Learning from Hu-
man Feedback (RLHF) to align with humans.

• WizardLM v1.2 (Xu et al., 2023a): WizardLM
v1.2 is finetuned from LLaMa 2 using super-
vised instruction fine-tuning, where instruc-
tions are created by rewriting the initial in-
structions step by step.

• Vicuna v1.5 (16k) (Chiang et al., 2023): Vi-
cuna v1.5 (16k) is finetuned from LLaMa 2 us-
ing supervised instruction fine-tuning and lin-
ear RoPE scaling. It’s trained on about 125K
conversations sourced from ShareGPT.com.

• Code-LLaMa-instruct (Chiang et al., 2023):
Code-LLaMa is a LLaMa-based LLM de-
signed for general code completion and un-
derstanding. Its instruction version further
supports the chat function with users. Code
LLaMa models feature a multitask training ob-
jective consisting of both autoregressive and
causal infilling prediction (predicting the miss-
ing part of a program given a surrounding con-
text).

• Mistral-7b-instruct (Jiang et al., 2023)
Mistral-7b is a 7 billion size LLM that lever-
ages grouped-query attention (GQA) for faster
inference, coupled with sliding window atten-
tion (SWA) to effectively handle sequences of
arbitrary length. It outperforms many larger
LLMs (e.g., LLaMa-13b) on public evaluation
benchmarks. We use its instruction version.

F The details and inference prompts for
turn-based and session-based
evaluations

In the turn-based evaluation, we assume that the
previous turns in one session have been correctly
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finished. We prompt the LLM to generate the API
sequence to finish the current turn’s user instruc-
tion. The prompt consists of the task instruction
for finishing the current user instruction, the API
file containing feasible APIs, the parsed PPT file
content from the PPT file, and dialogue history
consisting of instructions of previous turns with
their feasible API sequences. In the session-based
evaluation, we prompt the LLM to finish all turns
in a session sequentially. The prompt in this eval-
uation has two differences: the API solutions for
previous turns in dialogue history are the outputs
of the LLM instead of the correct API sequences.
(2) The PPT content is parsed from the PPT file
obtained by executing the previous outputs of the
LLM. That means the error made by LLMs in pre-
vious turns would influence subsequent turns. We
list the inference prompt we used in Figure ??.

G Experimental details

Azure OpenAI services4 offer two API types: com-
pletion and chat completion. Completion API gen-
erates text from prompts, while chat completion
API responds based on conversation history and
new input. We use the completion API for Text-
Davinci-003 and the chat completion API for Chat-
GPT and GPT-4. We set a temperature of zero for
deterministic output and a max token limit of 2048.
The frequency penalty and top p are kept at their
default values of zero and 1, respectively. We use
the text-embedding-ada-002 API as the embedding
API in the API selection algorithm and set k as 15.
If the token number of the input prompt is beyond
the token limit, we cut the PPT file content to re-
duce the token number of the prompt. For the ToT
method, we follow the official code to run it5.

H Error Analysis for open-source LLMs

To analyze the errors of open-source LLMs and
explain why their performance is lower than that of
the closed-source LLM (e.g. GPT-4), we collect 50
wrong examples made by WizardLM and CodeL-
LaMa in turn-based evaluation, respectively. Each
example consists of a user instruction and a wrong
prediction file compared to the label file.

Drawing from incorrect examples, we find three

4https://azure.microsoft.com/
en-us/products/cognitive-services/
openai-service

5ToT:https://github.com/princeton-nlp/
tree-of-thought-llm

unique error reasons in open-source LLMs to ex-
plain their poor performance :

• Unexcutable API prediction sequence We
find that open-source LLMs frequently gen-
erate API sequences that are either meaning-
less or improperly formatted. For instance,
the WizardLM exhibits a 37% rate of gener-
ating incorrect API sequences such as ’API(),
API()’ in its erroneous examples. Although
CodeLLaMa is less prone to this type of
error, it still generates API sequences like
’set_font_size(15, 2, 5)’ that would return er-
rors ’ERROR: set_font_size() takes 1 posi-
tional argument but 3 were given’, with a rate
of 25%. In contrast, closed-source LLMs like
GPT-4 rarely make these mistakes, showcas-
ing excellent code generation abilities and the
capability to generate concise and clear API
sequences.

• Severe API hallucinations We find that both
two open-source LLMs often call APIs that
do not present in our API reference file,
such as ’delete_table()’, ’choose_slide’ (with
the correct API being ’move_to_slide’), and
’choose_slide_by_id’. These mistakes consti-
tute half of the errors made by these LLMs.
While GPT-4 sometimes also calls unavailable
APIs, it does so at a lower rate.

• Short context size limits the input of the PPT
file Open-source LLMs typically have a lim-
ited context size of 2k tokens, which proves
insufficient for handling lengthy PowerPoint
(PPT) template tasks, often comprising multi-
ple slides. Our analysis reveals that the input
for open-source LLMs generally includes file
information from only the initial 1 to 3 slides.
Consequently, these models face challenges
in executing instructions related to subsequent
slides and cross-slide operations. This limita-
tion leads to the generation of APIs contain-
ing incorrect file information or invoking im-
proper APIs. In contrast, closed-source LLMs
such as GPT-4 support an extended context
size of 32k tokens, enabling them to effec-
tively manage longer templates.

I A Comparison of Task Completion
Benchmarks

In Table 3, we compare our benchmark with other
task completion benchmarks in five aspects. Our
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benchmark is the only one that satisfies the five
requirements.
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Resource
PPTC Saycan VirtualHome WebShop ToolBench APIBench API-Bank ToolAlpaca AgentBench WebArena

Our work (Brohan et al., 2023) (Puig et al., 2018) (Yao et al., 2022) (Qin et al., 2023c) (Patil et al., 2023) (Li et al., 2023) (Tang et al., 2023) (Liu et al., 2023b) (Zhou et al., 2023)
Real-world API? " " " " " $ " $ " "

Multi-tools call? " " " " " $ " $ " "

Multi-turn interaction? " $ $ $ $ $ $ $ $ $

Multi-modal environment? " " " $ $ $ $ $ " "

Evaluation based on final status? " $ $ " $ $ $ $ " "

Table 3: A comparison of our PPTC benchmark for task completion
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