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Abstract

Extractive summarization can produce faithful
summaries but often requires additional con-
straints such as a desired summary length. Tra-
ditional sentence compression models do not
typically consider the constraints because of
their restricted model abilities, which require
model modifications for coping with them. To
bridge this gap, we propose Instruction-based
Compression (InstructCMP), an approach to
the sentence compression task that can consider
the length constraint through instructions by
leveraging the zero-shot task-solving abilities
of Large Language Models (LLMs). For this
purpose, we created new evaluation datasets
by transforming traditional sentence compres-
sion datasets into an instruction format. By
using the datasets, we first reveal that the cur-
rent LLMs still face challenges in accurately
controlling the length for a compressed text.
To address this issue, we propose an approach
named “length priming,” that incorporates ad-
ditional length information into the instructions
without external resources. While the length
priming effectively works in a zero-shot setting,
a training dataset with the instructions would
further improve the ability of length control.
Thus, we additionally created a training dataset
in an instruction format to fine-tune the model
on it. Experimental results and analysis show
that applying the length priming significantly
improves performances of InstructCMP in both
zero-shot and fine-tuning settings without the
need of any model modifications.

1 Introduction

Sentence compression is a task of creating a con-
cise summary from an original sentence while con-
veying its key information, by deleting words in
the sentence. Generally, sentence compression in
extractive summarization provides more faithful
summaries than abstractive summarization (Cao
et al., 2018).
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Figure 1: Process of transforming a traditional labeled
dataset into an instruction-based format. The binary
output of “1” or “0” from the traditional methods cor-
responds to keeping or dropping words, respectively.
Length constraints in “length priming” are highlighted
in red in the instruction.

While traditional sentence compression methods
used tree trimming, the approaches can be affected
by parsing errors (Jing, 2000; Knight and Marcu,
2000; Berg-Kirkpatrick et al., 2011; Filippova and
Altun, 2013). The introduction of LSTM-based
Seq2Seq approaches aims to address this issue al-
though their performance tends to degrade in han-
dling longer sentences (Filippova et al., 2015). To
solve this problem, Kamigaito and Okumura (2020)
incorporated syntactic dependency trees into the
Seq2Seq attention mechanism (Kamigaito et al.,
2018) by jointly learning the dependency trees and
sentence compression models. However, the state-
of-the-art model required a considerable amount of
ground-truth data for training (Filippova and Altun,
2013; Hasegawa et al., 2017).

Recently, unsupervised sentence compression
has gained attention by exploiting BERT-based en-
coder models (Devlin et al., 2019). These models
incorporated various scoring functions that target
improving fluency and faithfulness in compres-
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sion without relying on ground-truth data (Niu
et al., 2019; Zhou and Rush, 2019; Schumann
et al., 2020; Ghalandari et al., 2022). However,
these approaches are inefficient because they re-
quire extensive model modifications, such as in-
cluding classifiers or modifying beam search for
objective-specific fine-tuning.

In general, summarization requires additional
constraints such as a summary length (Takase and
Okazaki, 2019; Dou et al., 2021; Kwon et al.,
2023a). The traditional task setting for sentence
compression often did not consider this factor be-
cause of the restricted model abilities, which re-
quire model modifications to handle such con-
straints (Schumann et al., 2020; Ghalandari et al.,
2022).

Recently, LLMs have gained considerable atten-
tion for their remarkable zero-shot task-solving
abilities, especially under instruction-based set-
tings (Ouyang et al., 2022; Wei et al., 2022a). In-
spired by these latest advancements, we present
Instruction-based Compression (InstructCMP), a
novel approach to sentence compression that ac-
commodates a length constraint through explicit
instructions, without necessitating model modifi-
cations. To the best of our knowledge, this ap-
proach represents the first implementation of sen-
tence compression in an instruction-based frame-
work. For this purpose, we transformed traditional
sentence compression datasets into an instruction-
based format for evaluation.

However, recent LLMs do not consistently gener-
ate an output of the precise length, even when spe-
cific instructions to include such constraints are pro-
vided in a zero-shot manner (Zhou et al., 2023; Qin
et al., 2023). Furthermore, as we validate it later,
even when testing with the latest powerful mod-
els, such as ChatGPT (GPT-4) and ChatGPT (GPT-
4-1106-preview),1 accurately adhering to length
constraints remains a substantial challenge.

To address this problem, we propose an instruc-
tion approach for better length control, which is
named “length priming.” We incorporate additional
length information (Misra et al., 2020) into the in-
struction. In addition to specifying the number of
deleted words for the desired length, we include
the length to be retained and the number of words
in the source sentence in the instruction, without
any external resources. To further improve length
controllability, we additionally created a training

1https://chat.openai.com/

Work Length Const. Mod.

Filippova et al. (2015)∗ ✗ ✗

Zhao et al. (2018)∗ ✗ ✗

Kamigaito and Okumura (2020)∗ ✗ ✗

Schumann et al. (2020) ✗

Ghalandari et al. (2022) ✗

Ours (InstructCMP)

Table 1: Comparison of various sentence compression
models with InstructCMP. ∗ indicates that the model
was learned in a supervised manner, while others were
learned in an unsupervised manner. Mod. indicates a
requirement of model modifications for constraints.

dataset with the instructions to fine-tune the model
using the dataset. Figure 1 shows the transforma-
tion process for an instruction format.

We conducted experiments on four benchmark
datasets and performed an in-depth analysis to eval-
uate the effectiveness of LLMs in compressing sen-
tences under the length constraint. The analysis
considers the following factors: the model type and
the number of parameters for the model size. Exper-
imental results show that InstructCMP with length
priming compresses sentences in a zero-shot set-
ting while successfully keeping the desired length
without model modifications. The performance can
be further improved by fine-tuning it with the cre-
ated instruction-based training dataset. The “length
priming” method proves effective in both zero-shot
and fine-tuning settings, as shown by significant im-
provements in the ROUGE metrics and adherence
to the length constraint, even when using ChatGPT
(GPT-4) and ChatGPT (GPT4-1106-preview). Our
in-depth analysis also showed that InstructCMP
can compress sentences while maintaining faithful-
ness. Our experiments show that instruction-based
models like ChatGPT can effectively control the
length when provided with more specific length-
related information.2

2 Problem Statement

The traditional approach to sentence compression is
considered as a sequential labeling task (Filippova
et al., 2015; Wang et al., 2017; Zhao et al., 2018;
Kamigaito and Okumura, 2020; Schumann et al.,
2020; Ghalandari et al., 2022). Each source token
in a sequence, represented as x = {x0, x1, ..., xn},
is processed using a sentence compression model
to predict a corresponding label sequence, which is

2Our code and datasets are available at: https://github.
com/JuseonDo.

8981

https://chat.openai.com/
https://github.com/JuseonDo
https://github.com/JuseonDo


y = {y0, y1, ..., yn}, where yi ∈ {1, 0}.
While the method is straightforward, it has limi-

tations in incorporating additional constraints such
as a desired length. Addressing these requirements
in the traditional approach typically involves modi-
fications to the model, which is inefficient (Schu-
mann et al., 2020; Ghalandari et al., 2022).

To overcome these limitations, we utilize the
recent powerful instruction-based LLMs for the
sentence compression task (Touvron et al., 2023;
Chung et al., 2022). Table 1 shows a compari-
son between previous work on traditional sentence
compression and InstructCMP. Unlike the previous
work, InstructCMP incorporates a length constraint
directly into the instruction format, allowing mod-
els to process and learn the constraint as a part of
their input. This allows an efficient and flexible so-
lution for practical sentence compression, without
extensive model modifications.

3 Instruction-based Compression

In this section, we describe InstructCMP. We con-
sider “length priming” for a length constraint in
it. We created new evaluation datasets by trans-
forming traditional sentence compression datasets
into an instruction format. To further improve per-
formances of InstructCMP, we also created a new
training dataset in an instruction-based template.

3.1 Instruction Template

Table 2 shows instructions that include a length con-
straint. The first instruction permits InstructCMP
to compress text by deleting words without any
constraints. However, in general, summariza-
tion requires a desired length for compressed
texts (Makino et al., 2019; Dou et al., 2021; He
et al., 2022; Kwon et al., 2023a).
Length Priming. To apply the length constraint,
we first construct an instruction that deletes words
to meet a desired length (Constraint 2). It is easy
to calculate the number of words to be deleted for
any desired length.

However, LLMs do not consistently follow in-
structions, particularly when processing length con-
straints (Zhou et al., 2023; Qin et al., 2023). To
address this issue, we propose the “length prim-
ing” method for the length constraint instruction
for enhanced length comprehension. Constraint 3
considers the total length of the source text and the
number of words that should be kept and deleted
together. Considering such additional length infor-

mation can enable InstructCMP to recognize the
length constraint more effectively. The number of
words that should be kept is automatically calcu-
lated from the target desired length.

Constraint 3-1 applies the “length priming” only
to the source text based on its length, whereas Con-
straint 3-2 applies it solely to the target text based
on the number of words that should be kept and
deleted together.

3.2 Dataset Creation

We consider four benchmark datasets. The Google
dataset (Google) was automatically created by con-
sidering the syntactic dependency tree structure
from news headlines (Filippova and Altun, 2013).
The training, validation, and test datasets consist of
200,000, 1,000, and 1,000 pairs, respectively. For
the test dataset used in the evaluation, the gold com-
pression ratio is 0.45. The Broadcast (Broad) and
BNC (BNC) datasets (Clarke and Lapata, 2008)
comprise manually compressed sentences. Each of
these datasets contains 1,370 and 1,629 evaluation
pairs, respectively. The gold compression ratios of
these datasets, which are 0.76 and 0.72 respectively,
are longer than those of other evaluation datasets.
DUC2004 (TASK1) (DUC) comprises 500 pairs
with a gold compression ratio of 0.39. Unlike other
evaluation datasets, this dataset includes abstract
summaries as its ground truth.

We created new datasets by transforming tradi-
tional sentence compression datasets into an in-
struction format. For length constraint instructions,
we inject lengths of ground-truth summaries.

3.3 Instruction-based Fine-tuning

To improve performances by leveraging LLM’s
generalizability (Wang et al., 2022; Wei et al.,
2022a; Chung et al., 2022), we also created a
training dataset for instruction-based fine-tuning by
sampling 5% of the training dataset from Google.
Through this fine-tuning, we aim to enhance a
model for better learning and improving abilities to
handle length constraints in compressing sentences
without any model modifications.

4 Experiments

4.1 Experimental Settings

Evaluation Metrics. F1 scores of ROUGE-1 (R-
1), -2 (R-2), and -L (R-L), the F1-score for kept
tokens (F1), and the BERT score (BS) (Zhang*
et al., 2020) were used to evaluate compression
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# Constraint Instruction

1 ✗ Sentence:\n{src}\nThe sentence without the less important words would be:\n

2 Length w/o priming Sentence:\n{src}\nThe sentence without the less important {del} words would be:\n

3 Length
Sentence that consists of {src len} words:\n{src}\nThe sentence that consists of {keep} words
without the less important {del} words would be:\n

3-1
Length Sentence that consists of {src len} words:\n{src}\nThe sentence without the less important {del}

w/o tgt priming words would be:\n

3-2
Length Sentence:\n{src}\nThe sentence that consists of {keep} words without the less important {del}

w/o src priming words would be:\n

Table 2: Instruction formats for length constraints, created by transforming a traditional dataset. “src” indicates the
placeholder for a source sentence. “del” denotes the placeholder for the number of deleted words. “keep” and “src
len” denote additional length information.

quality. The ROUGE scores were calculated using
the implementation provided by Google Research.3

To evaluate performances related to a length
constraint, we calculated ∆CR, the difference be-
tween the model-generated compression ratio and
the gold compression ratio. ∆CR evaluates how
close the compression ratio of model-generated
outputs is to the gold compressed summary (Kami-
gaito et al., 2018; Kamigaito and Okumura, 2020).
Because InstructCMP can produce novel words,
we counted the number of the novel words in the
model-generated compressed summaries. Thus,
novel represents the ratio of novel words that do
not appear in the source text.
Implementation Details. We employed the
instruction-based open-source Llama2-13B-chat
model (Touvron et al., 2023)4 as our backbone
model. We tested various instructions on the val-
idation dataset from Google and made selections
based on their performance. To explore various
parameter numbers, we experimented with 4-bit
and 8-bit quantizations, as well as without quanti-
zation (Jacob et al., 2018) using PyTorch.5 We also
evaluated the performance across various model
sizes, including 7B and 70B, and compared vari-
ous model types, specifically the encoder-decoder
based models of FLAN-T5-XXL (11B) (Chung
et al., 2022)6 and FLAN-UL2 (20B) (Tay et al.,
2023).7

For instruction-based fine-tuning, we consid-
ered QLoRA, which can preserve the full 16-bit
fine-tuning performance (Dettmers et al., 2023).

3https://github.com/google-research/
google-research/tree/master/rouge

4https://huggingface.co/meta-llama/
Llama-2-13b-chat-hf

5https://github.com/pytorch/pytorch
6https://huggingface.co/google/flan-t5-xxl
7https://huggingface.co/google/flan-ul2

QLoRA is an extended version of Low-Rank
Adapters (LoRA) (Hu et al., 2022), an improved
Parameter-Efficient Fine-Tuning (PEFT) (Man-
grulkar et al., 2022) method for LLMs. This
method combines low-rank and trainable matrices
with the frozen weights in each layer of Trans-
former, building upon the foundational approach
of LoRA. We incorporated low-rank matrices into
the query and value weights using a LoRA atten-
tion dimension of 8. During training, we used 8-bit
quantization for QLoRA, and during inference, we
employed 4-bit quantization.

4.2 Main Results
Table 3 shows the performances of InstructCMP
based on the Llama2-13B-chat model in a zero-
shot setting, used directly without additional train-
ing, and in the QLoRA instruction-tuning setting,
which involves fine-tuning of InstructCMP. Be-
cause prompting techniques for LLMs, such as
few-shot (Min et al., 2022), directional stimulus (Li
et al., 2023), and generated knowledge (Liu et al.,
2022) methods, require external resources, we com-
pared “length priming” to prompting techniques
of chain-of-thought (Wei et al., 2022b) and tree-
of-thought in a single prompt (Yao et al., 2023;
Hulbert, 2023) by adding them at the beginning of
length constraint instructions (#2 in Table 2).
Performance in Instruction-based Zero-shot.8
Even in a zero-shot setting, InstructCMP without a
length constraint (#1 in Table 2) successfully com-
presses sentences, while it cannot necessarily meet
the length. In applying length constraints with
“length priming”, consistently improved perfor-
mances are observed in both ROUGE and ∆CR. In
addition, our “length priming” significantly outper-

8Experiments considering various instructions on the vali-
dation dataset from Google are detailed in Appendix A.
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Dataset Setting Instruction Prompting R-1 R-2 R-L F1 BS ∆ CR novel

Google

Zero-shot

#1 ✗ 65.88 55.48 65.42 0.66 0.66 +30.22 0.28
#2 Chain-of-Thought 65.74 56.12 65.56 0.66 0.66 +32.46 0.11
#2 Tree-of-Thought 65.56 55.34 65.19 0.66 0.66 +30.99 0.17
#3 Priming 74.59† 62.45† 73.69† 0.74† 0.73 +10.13† 0.57

QLoRA fine-tuning

#1 ✗ 82.85 75.15 82.58 0.84 0.82 -1.28 0.17
#2 Chain-of-Thought 84.88 77.20 84.56 0.86 0.83 -0.90 0.18
#2 Tree-of-Thought 84.69 76.89 84.26 0.85 0.83 -1.90 0.17
#3 Priming 86.88† 79.55† 86.26† 0.87† 0.84 -0.16† 0.17

Zero-shot

#1 ✗ 79.30 65.54 78.27 0.79 0.76 +4.21 0.32
#2 Chain-of-Thought 78.94 65.76 78.21 0.79 0.75 +3.99 0.19
#2 Tree-of-Thought 78.02 63.90 77.32 0.78 0.74 +4.17 0.33

Broad
#3 Priming 80.27† 66.62† 79.30† 0.80† 0.76 -0.01† 0.33

QLoRA fine-tuning

#1 ✗ 70.14 58.15 69.70 0.68 0.68 -15.88 0.34
#2 Chain-of-Thought 78.24 65.61 77.78 0.77 0.72 -3.96 0.36
#2 Tree-of-Thought 77.68 64.94 77.06 0.76 0.71 -7.46 0.32
#3 Priming 82.63† 69.76† 81.16† 0.81† 0.75 -1.38† 0.35

Zero-shot

#1 ✗ 74.81 61.21 73.64 0.75 0.70 +10.38 0.37
#2 Chain-of-Thought 74.46 61.03 73.66 0.75 0.69 +3.57 0.11
#2 Tree-of-Thought 73.81 60.11 72.82 0.74 0.68 +7.01 0.26

BNC
#3 Priming 75.78† 61.76 74.52† 0.76† 0.70 +0.16† 0.25

QLoRA fine-tuning

#1 ✗ 61.28 49.61 60.51 0.60 0.59 -24.21 0.27
#2 Chain-of-Thought 75.58 62.55 74.76 0.74 0.68 -4.35 0.27
#2 Tree-of-Thought 73.37 60.22 72.30 0.72 0.66 -10.81 0.25
#3 Priming 77.54† 64.38† 76.00† 0.76† 0.70 -4.13 0.26

Zero-shot

#1 ✗ 27.09 8.72 22.65 0.23 0.33 +37.97 0.25
#2 Chain-of-Thought 26.28 8.35 21.86 0.23 0.32 +40.53 0.10
#2 Tree-of-Thought 26.13 8.20 21.75 0.23 0.32 +40.31 0.19

DUC
#3 Priming 28.19† 9.66† 24.56† 0.24† 0.34 +15.08† 0.81

QLoRA fine-tuning

#1 ✗ 27.31 9.21 24.34 0.24 0.35 +0.28 0.18
#2 Chain-of-Thought 26.29 8.62 23.40 0.23 0.34 -3.10 0.19
#2 Tree-of-Thought 26.28 8.38 23.58 0.23 0.34 -2.29 0.20
#3 Priming 26.83 8.57 23.96 0.23 0.33 +0.78 0.21

Table 3: Experimental results of InstructCMP using Llama2-13B-chat on Google, Broad, BNC, and DUC. Checkmark
indicates not applying a length constraint. † indicates the improvement is significant (p<0.05) compared with the
underlined (generally, the best baseline score) on each dataset.

forms other prompting methods, chain-of-thought
and tree-of-thought, in both length controllability
and ROUGE metrics.

However, controlling the length of outputs for
Google and DUC proved to be more challenging
than Broad and BNC, specifically, in a zero-shot
setting. We think this challenge arises from the na-
ture of datasets, whose compression ratio is lower.
Table 4 shows the results based on a target com-
pression ratio of 0.2 and a target word count of 5
words, respectively. We observed that when the
compression ratio is lower, the LLMs have difficul-
ties maintaining both informativeness and length
controllability.
Performance in Instruction-based Fine-tuning.9
Following instruction-based QLoRA fine-tuning,
the created training dataset further improves per-

9Experiments considering 0.5% and 1% randomly sampled
training datasets from Google are detailed in Appendix B.

formances of InstructCMP. As shown in ∆CR for
Broad and BNC, the model without the length con-
straint was trained to compress sentences more
closely aligned with the gold compression ratio of
Google. However, the performance degradation
was observed on DUC when fine-tuning was applied
using Google, due to the different natures of their
abstractive and extractive ground-truth summaries.

Length Priming. The ablation results for “length
priming” in instructions are presented in Table 6.
We first compare performances of “length priming”
in an unsupervised zero-shot setting. It signifi-
cantly improved performances on all datasets in
terms of ∆CR compared to w/o priming. Even in
a supervised instruction-based fine-tuning, “length
priming” largely improved performances in both
ROUGE metrics and length controllability. The
exception is on DUC because of its nature of the
abstractive gold summary.
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Data Boundary cnt R-1 R-2 R-L F1 ∆ CR src len tgt len gen len

Google

0.8∼1.0 32 86.05 74.22 85.18 0.85 -1.02 - - -
0.6∼0.8 180 81.09 69.64 79.96 0.80 8.24 - - -
0.4∼0.6 343 77.86 66.87 77.15 0.78 10.96 - - -
0.2∼0.4 403 70.15 56.94 69.15 0.69 11.05 - - -
0.0∼0.2 42 53.78 39.52 53.36 0.51 11.18 - - -

20∼ 13 80.43 69.01 79.67 0.79 - 38.08 20.85 25.31
15∼20 127 78.22 66.98 76.86 0.77 - 29.46 16.31 18.58
10∼15 518 75.97 64.40 75.03 0.76 - 26.74 11.68 14.75
5∼10 338 71.11 57.75 70.45 0.70 - 25.90 7.69 10.16
0∼5 4 55.42 43.45 55.52 0.58 - 27.25 4.00 7.75

DUC

0.8∼1.0 8 11.23 3.43 10.26 0.15 -9.44 - - -
0.6∼0.8 20 18.18 5.27 15.36 0.16 15.43 - - -
0.4∼0.6 118 30.51 10.48 26.12 0.27 14.60 - - -
0.2∼0.4 326 29.56 10.24 25.93 0.24 17.64 - - -
0.0∼0.2 18 20.61 5.91 17.88 0.18 11.86 - - -

15∼20 26 22.97 5.96 18.45 0.24 - 32.15 15.65 19.96
10∼15 363 29.95 10.23 26.07 0.26 - 33.55 11.62 17.06
5∼10 101 25.66 9.37 22.81 0.19 - 33.06 8.38 14.11

Table 4: Effect of compression ratio and word count. cnt indicates the number of instances in each boundary.

Data Setting Output Gram. Faith. Info.

Google
QLoRA 13B 4.14† 4.09 4.06†

Zero-shot 13B 4.06 4.09 4.00

Gold - 4.03 4.11 4.05

Broad
Zero-shot 13B 3.92 3.88 3.86

70B 3.90 3.87 3.90†

Gold - 3.92 3.88 3.85

BNC
Zero-shot 13B 3.98 3.93 3.93

70B 3.96 3.91 3.96
Gold - 3.96 3.94 3.92

Table 5: Human evaluation results. The notations are
the same as those in Table 3.

We also compare the effectiveness of “length
priming,” using larger models, such as Llama-
2-70B-chat-hf, ChatGPT (GPT-4), and ChatGPT
(GPT-4-1106-preview). Figure 2 shows the results.
We confirm that “length priming” is essential for
length constraints, even in the most recent and pow-
erful LLMs.10

5 Analysis

5.1 Parameter Sizes

The left graph of Figure 3 shows the F1 score for
kept tokens and the model-generated compression
ratio (CR), compared to the gold compression ratio,
based on zero-shot InstructCMP without a length

10When we additionally tested the chain-of-thought and
tree-of-thought prompting methods on these larger models,
their length controllability was similar to each other, which is
similar to the results in Table 3.

Data Method Instruction R-1 R-2 R-L F1 BS ∆ CR

#2 63.73 54.04 63.54 0.64 0.64 +38.44

Zero-shot #3 74.59† 62.45† 73.69† 0.74† 0.73 +10.13†

#3-1 67.32 57.61 67.01 0.68 0.67 +30.63

Google
#3-2 73.72 60.66 72.94 0.72 0.72 +9.58

#2 84.99 77.43 84.69 0.86 0.83 +1.45
QLoRA #3 86.88† 79.55† 86.26† 0.87† 0.84 -0.16†

fine-tuning #3-1 85.20 77.46 84.72 0.86 0.83 +0.76
#3-2 86.80 79.58 86.29 0.87 0.84 +0.12

#2 81.08 67.79 80.55 0.81 0.77 +8.78

Zero-shot #3 80.27 66.62 79.30 0.80 0.76 -0.01†

#3-1 81.13 68.14 80.55 0.81 0.77 +6.91

Broad
#3-2 78.64 64.58 77.63 0.78 0.74 -1.42

#2 80.34 67.77 79.81 0.78 0.75 -1.02
QLoRA #3 82.63† 69.76† 81.16† 0.81† 0.75 -1.38

fine-tuning #3-1 82.80 70.39 82.05 0.81 0.77 +0.90
#3-2 82.66 69.81 81.16 0.81 0.75 -1.08

#2 77.36 63.64 76.59 0.78 0.72 +10.46

Zero-shot #3 75.78 61.76 74.52 0.76 0.70 +0.16†

#3-1 77.24 63.52 76.50 0.77 0.72 +8.53

BNC
#3-2 73.16 59.17 71.82 0.73 0.68 -4.05

#2 73.74 61.52 72.92 0.72 0.68 -5.50
QLoRA #3 77.54† 64.38† 76.00† 0.76† 0.70 -4.13†

fine-tuning #3-1 77.62 64.58 76.45 0.77 0.70 -1.49
#3-2 77.40 64.20 75.81 0.76 0.68 -4.03

#2 26.23 8.38 21.70 0.23 0.31 +46.37

Zero-shot #3 28.19 † 9.66† 24.56† 0.24† 0.34 +15.08†

#3-1 26.53 8.59 22.33 0.23 0.32 +41.51

DUC
#3-2 28.41 9.85 24.66 0.24 0.34 +16.45

#2 27.20 8.98 24.27 0.24 0.35 +0.47
QLoRA #3 26.83 8.57 23.96 0.23 0.33 +0.78

fine-tuning #3-1 26.25 8.27 23.49 0.23 0.34 -1.22
#3-2 26.46 8.31 23.62 0.23 0.33 +1.32

Table 6: Ablation study for “length priming.” The nota-
tions are the same as those in Table 3.

constraint on the Llama2-chat model with 7B, 13B,
and 70B parameters. On Google and DUC, the F1

scores increased with enlarging the model size,
achieving compression closer to the gold compres-
sion ratio. However, on Broadcast and BNC, which
have high gold compression ratios, InstructCMP
with the 70B model compresses sentences more
concisely, resulting in a compression ratio that sig-
nificantly deviates from the gold compression ratio,
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Figure 2: Absolute ∆CR for “length priming” types.

Figure 3: Performances for different model sizes and
quantizations.

consequently decreasing F1 scores compared to the
13B model.

To further investigate this, we conducted human
evaluations. We sampled 100 instances each from
Google, Broad, and BNC. By using Amazon Me-
chanical Turk, we assigned in total 120 evaluators
who obtained both US high school and US bach-
elor’s degrees for grading the results with scores
from 1 to 5 (5 is the best) in terms of grammati-
cal correctness (Gram), factual consistency (Faith),
and a balance of redundancy and informativeness
(Info). Table 5 shows the results. Because of the
automatically constructed nature of Google, QLora
and zero-shot settings can yield higher grammati-
cality scores than the gold summary. These results
also indicate gold summaries of Broad and BNC
are actually redundant (Ghalandari et al., 2022),
and our instruction-based approach can generate
faithful, informative, and grammatical summaries.

The right graph of Figure 3 shows the results of
zero-shot InstrcutCMP without a length constraint
on Llama2-13B-chat. Interestingly, there are no
significant differences in performance among the
4-bit, 8-bit, and nonquantized versions.

5.2 Model Types

It is also of interest to draw comparisons with
other instruction-based models, such as FLAN-T5-
XXL and FLAN-UL2, both of which employ the
encoder-decoder architecture. However, they did
not effectively compress sentences using instruc-
tion templates in Table 2. We think this is due

Data Model Instruction R-1 R-2 R-L F1 ∆ CR

T5-XXL
#1 60.06 50.52 59.81 0.60 +47.84
#2 62.41 51.18 61.90 0.61 +35.72

Google
#3 66.22† 51.68 65.43† 0.62† +19.51†

UL2
#1 63.53 45.79 62.35 0.57 +11.92
#2 64.72 44.38 63.87 0.57 +1.11
#3 66.06† 47.24† 65.39† 0.59† +6.34

T5-XXL
#1 82.45 69.33 81.93 0.81 +12.72
#2 74.42 59.57 72.96 0.72 +2.18

Broad
#3 77.68 63.47 76.58 0.76 +4.78

UL2
#1 73.82 56.45 70.90 0.70 -7.77
#2 68.79 52.27 66.70 0.66 -9.84
#3 74.31 59.12† 72.79† 0.71† -4.04†

T5-XXL
#1 75.35 61.44 74.33 0.74 +11.30
#2 63.99 48.06 61.90 0.61 -5.48

BNC
#3 65.43 49.78 63.55 0.62 -3.43†

UL2
#1 67.42 49.90 63.88 0.62 -10.64
#2 60.40 43.54 57.45 0.56 -13.62
#3 64.88 49.03 62.81 0.61 -8.17†

Table 7: Experimental results from zero-shot instruction-
based FLAN models using encoder-decoder architec-
tures. The notations are the same as those in Table 3.

to the nature of their pre-training, which causes
potential gaps between the pre-training steps and
the instruction templates for extractive summariza-
tion settings (Kwon et al., 2023a). Thus, we used
slightly modified instruction templates.11 Table 7
shows the results. Our “length priming” can im-
prove length controllability by keeping ROUGE
metrics compared to w/o priming.

5.3 Case Study
Table 8 shows the outputs of zero-shot InstructCMP
based on the Llama-13B-chat model. The first ex-
ample shows the controllability of the length con-
straint instruction. Even when instructed to delete
zero words, InstructCMP follows the instruction
correctly. The second example shows the flaw-
less grammatical capabilities of LLMs (Mitrović
et al., 2023). When deleting a single word can
cause a grammatical error, InstructCMP can cor-
rect the error by paraphrasing, represented as novel
in Table 3. The third example shows the output of
InstructCMP in response to the length constraint.
“Length priming” assists InstructCMP to compress
a source text to meet a desired length, performing
better than the length constraint without priming.

5.4 Comparison with the Baselines
We compare InstructCMP with traditional state-
of-the-art (SOTA) baselines, specifically SCRL,12

which employs reinforcement learning optimized
11Experimental results using instruction templates in Ta-

ble 2 and modified instruction templates are in Appendix C.
12https://github.com/complementizer/

rl-sentence-compression
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Source. Eni has won a license for exploration block SM-857 offshore
Brazil.
Instruction. Sentence that consists of 11 words:\n{source}\nThe
sentence that consists of 11 words without the less important 0 words
would be\n:
InstructCMP. Eni has won a license for exploration block SM-857
offshore Brazil.

Source. Rick Riordan has revealed the cover for his latest crossover
short story, “Staff of Serapis”, which features Annabeth Chase and
Sadie Kane.
InstructCMP. Rick Riordan has revealed the cover for his latest
crossover short story, featuring Annabeth Chase and Sadie Kane.

Source. Chinese shares closed lower Wednesday dragged down by
the bio-pharmaceutical sector and small enterprises with growth
potential.
Length const. w/o priming. Chinese shares closed lower Wednesday
dragged down by the bio-pharmaceutical sector.
Length const. Chinese shares closed lower Wednesday.
Gold: Chinese shares closed lower Wednesday.

Table 8: Outputs of InstructCMP on Google.

Data Model R-1 R-2 R-L F1 BS len

Unsupervised

Google
SCRL∗ 70.22 53.03 69.84 0.71 10.8

SCRL 70.53 53.30 70.07 0.71 0.65 10.3
InstructCMP 74.92† 62.53† 73.83† 0.75† 0.75 10.8†

Broad SCRL 83.04 66.64 82.64 0.82 0.74 81%
InstructCMP 77.93 63.33 76.85 0.78 0.74 77%†

BNC SCRL 79.55 62.24 78.69 0.79 0.69 79%
InstructCMP 75.11 60.56 74.03 0.75 0.70 74%†

DUC SCRL 26.78 8.14 23.30 0.22 0.25 10.0
InstructCMP 28.14† 9.43† 24.82† 0.23† 0.32 10.6†

Supervised

Google
SLAHAN∗ 0.86

SLAHAN 82.98 74.35 82.75 0.83 0.78 9.3
InstructCMP 82.85 75.15† 82.58 0.84† 0.82 9.5

Table 9: Comparison with traditional state-of-the-art
baselines. ∗ indicates the reported score in the original
paper. len indicates the generated summary length. The
notations are the same as those in Table 3.

in unsupervised settings, and SLAHAN,13 which
recursively tracks parent and child words and lever-
ages BERT embeddings optimized in supervised
settings, trained on Google (Kamigaito and Oku-
mura, 2020).

Following SCRL, we set a desired length of 11
for Google and DUC. In line with the previous work,
we truncated model-generated outputs to 75 charac-
ters and used ROUGE recall scores for DUC (Schu-
mann et al., 2020; Ghalandari et al., 2022). For
Broadcast and BNC, the desired length was set to
75% of the length of the source sentence. Table 9
shows the results. Because zero-shot InstructCMP
faces challenges in compressing sentences with
length constraints when the gold compression ratio
is low, we increased the model capability by using
Llama2-70B-chat for Google and DUC instead of

13https://github.com/kamigaito/SLAHAN

Data Size R-1 R-2 R-L F1 ∆CR

Google

10%

87.45 80.47 87.00 0.88 0.69
Broad 79.21 66.31 77.51 0.78 -1.44
BNC 83.38 70.29 81.84 0.81 0.42
DUC 27.02 8.34 23.85 0.23 2.09

Google

15%

89.01 82.24 88.56 0.89 0.39
Broad 79.72 66.47 78.27 0.79 0.02
BNC 82.92 69.65 81.90 0.82 0.57
DUC 26.30 7.92 23.53 0.23 2.14

Table 10: LoRA fine tuned model: training dataset size
10% and 15% from randomly sampled from Google
dataset with #3 instruction based on the 13B model

Llama2-13B-chat. We observed comparable per-
formances of InstructCMP to SCRL.

We also compare InstructCMP, based on Llama-
13B-chat, with SLAHAN. Following the previous
work, we fine-tuned InstructCMP without a length
constraint and achieved significant improvement,
even after using 5% of the training dataset.

5.5 Increasing Training Dataset Size

We provide additional experimental results using
larger datasets for QLoRA fine-tuning with 10%
and 15% google training datasets. Table 10 shows
the results. Three different benchmark results on
Google, Broad, and BNC support that length prim-
ing is necessary, except for DUC due to its abstract
summary nature, and indicate the generalization of
the length priming instruction.

6 Related Work

Sentence Compression. Early studies on sen-
tence compression in both supervised and unsuper-
vised learning frameworks have used linguistic con-
straints, such as tree trimming methods (Jing, 2000;
Knight and Marcu, 2000; Hori and Furui, 2004;
Clarke and Lapata, 2006; Berg-Kirkpatrick et al.,
2011; Filippova and Altun, 2013). To avoid po-
tential parsing errors in the tree trimming, LSTM-
based models have been introduced for deletion-
based compression (Filippova et al., 2015) by
jointly considering eye-tracking data (Klerke et al.,
2016) and incorporating a score function of an ILP-
based tree trimming method (Wang et al., 2017).
Zhao et al. (2018) explored reinforcement learning
for a syntax-based language model, that does not
use explicit parsed trees. Kamigaito et al. (2018);
Kamigaito and Okumura (2020) proposed Seq2Seq
approaches that jointly learn sentence compres-
sion and dependency trees within their attention
networks inspired by supervised head attention
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(Kamigaito et al., 2017), an extensible approach
to document-level summarization (Ishigaki et al.,
2019) similar to the case of graph neural networks
(Xu et al., 2020; Kwon et al., 2021). Alterna-
tively, some recent work has utilized LLMs, such
as BERT, for sentence compression to optimize flu-
ency in unsupervised frameworks (Zhou and Rush,
2019; Niu et al., 2019; Schumann et al., 2020).
Because a high-quality compressed sentence can
infer from the original sentence, encoder-decoder-
based autoencoder approaches have been also ex-
plored (Miao and Blunsom, 2016; Févry and Phang,
2018; Malireddy et al., 2020). For better optimiza-
tion, reinforcement learning has been used (Wang
et al., 2018; Ghalandari et al., 2022).
Length Control. Despite the success of previ-
ous studies, practical summarization requires ad-
ditional constraints such as a summary length for
compressing sentences (Liu et al., 2018; Takase
and Okazaki, 2019; Li et al., 2020; He et al., 2022).
The approach for controlling the output to a de-
sired length required modifying model parame-
ters (Kikuchi et al., 2016), applying direct con-
straints (Takase and Okazaki, 2019; Makino et al.,
2019; Kwon et al., 2023a), or splitting the training
dataset into specific length ranges (He et al., 2022)
due to the limited model abilities. Traditionally,
sentence compression heavily relies on the model
modifications for constraints such as lengths (Schu-
mann et al., 2020; Ghalandari et al., 2022).
Instruction-based LLMs. LLMs can perform var-
ious tasks in a zero-shot setting, using instruction-
formatted inputs (Brown et al., 2020; Radford et al.,
2019). The emergence of instruction-based LLMs,
such as ChatGPT and GEMINI,14 has demon-
strated a significant improvement in performance,
particularly in their zero-shot problem-solving abil-
ities (Feng et al., 2023; Fang et al., 2023). Because
performance varies greatly with various instruc-
tions, previous studies focused on finding better in-
structions (Zhu et al., 2023; Wang et al., 2023; Yao
et al., 2023). Various prompting methods have been
investigated, such as few-shot, directional stimulus,
generated knowledge, chain-of-thought, and tree-
of thought (Min et al., 2022; Li et al., 2023; Liu
et al., 2022; Wei et al., 2022b; Yao et al., 2023).
These new types of LLMs mark the beginning of a
new era in the field of natural language processing.

While the capabilities of these LLMs continue
to grow with an increasing number of parameters,

14https://gemini.google.com/

challenges are introduced for these models in train-
ing and testing steps to provide robust and general-
ized outputs (Rae et al., 2022; Smith et al., 2022;
Chowdhery et al., 2022; Chung et al., 2022; Brown
et al., 2020; Tay et al., 2023). To address this is-
sue, PEFT methods such as LoRA have been in-
troduced. These methods combine low-rank and
trainable matrices with frozen weights in each layer
of Transformer and even consider quantization (Hu
et al., 2022; Dettmers et al., 2023).

As a related approach to priming, label em-
bedding (Xiong et al., 2021; Zhang et al., 2021)
can also incorporate label-related information into
the input to enhance generation, as mentioned by
Kwon et al. (2023b). However, in contrast to prim-
ing, label embedding cannot precisely control the
generation itself and requires additional training.

To conduct the sentence compression task with
instructions, we focus on priming that incorpo-
rates additional constraint-specific information to
enhance performance, particularly for the length
constraint, rather than just paraphrasing instruc-
tions to direct the task.

7 Conclusion

We proposed InstructCMP to conduct sentence
compression by incorporating length constraints
without model modifications. For this new ap-
proach, we constructed new evaluation datasets
by transforming traditional sentence compression
datasets into an instruction format, while we also
created new training datasets. Additionally, we
introduced “length priming” into the instructions
and demonstrated its effectiveness in zero-shot
and instruction-based fine-tuning settings on four
benchmark datasets. We also conducted an in-
depth analysis, including the model size and type.

Limitations

Although our length priming successfully com-
presses sentences, it might be challenging to con-
sider it in document summarization, which requires
considering multiple sentences. Therefore, it re-
mains a topic for future studies. In the future, we
will consider sentence relationships for prompting
to summarize documents. Furthermore, there can
be cases where keyword constraints are required
for controllable summarization to take into account
the content of summaries, which also remains a
potential area for future investigation.
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A Performance in Instruction Selection

To determine task-specific instructions, we man-
ually composed several candidates and evaluated
their performances on the validation dataset from

Google. Table 11 shows the results. Based on their
performances, we selected the 5th instruction as
our base instruction for the setting without a length
constraint.

B Performance in Varying Training
Dataset Size

To investigate the impact of the training dataset
size on performance, we also prepared 0.5% and
1% training datasets randomly sampled from the
Google dataset. Table 12 shows the results of
QLoRa fine-tuning for constraints in supervised
settings. As observed, increasing the dataset size
correlates with improved performance. Table 13
shows the results of an ablation study on “length
priming”. Similarly, our “length priming” proves
to be essential for performance improvements even
in small datasets.

C Performance of the FLAN Models and
Modified Instruction Templates

Table 14 shows the results for the FLAN models
using instruction templates in Table 2. They did
not effectively compress sentences, as denoted by
∆CR.

Table 15 shows the modified templates for the
FLAN models.
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# Instruction R-1 R-2 R-L F1 ∆ CR novel

1 Sentence:\n{input}\nThe sentence without the non-essential words would be:\n 64.73 54.59 64.23 0.65 +35.76 0.36
2 Sentence:\n{input}\nThe compressed version of the original sentence without 60.53 48.10 59.43 0.61 +38.09 1.12

generating new words:\n
3 Sentence:\n{input}\nCompress the sentence by removing the non-essential words:\n 62.37 50.95 61.61 0.62 +36.84 0.80
4 Sentence:\n{input}\nDelte the non-essential words by keeping the original meaning:\n 61.50 51.87 61.18 0.62 +43.23 0.35
5 Sentence:\n{input}\nThe sentence without the less important words would be:\n 66.99 56.79 66.54 0.68 +30.21 0.25
6 Original Sentence:\n{input}\nMake a new sentence without the non-essential words.

New sentence would be:\n 64.23 52.26 62.79 0.65 +31.62 0.92
7 Sentence:\n{input}\nThe sentence without the unnecessary words would be:\n 63.85 53.33 63.29 0.64 +36.48 0.51

Table 11: Performances of different instructions using zero-shot InstructCMP based on the Llama2-chat-13B model
on the validation dataset of Google.

Data Size Instruction R-1 R-2 R-L F1 ∆ CR

Google #1 80.50 72.22 80.22 0.81 +1.49
#3 83.56 75.33 82.97 0.84 -0.21

Broad #1 71.46 59.30 70.88 0.70 -14.37

0.5% #3 80.62 68.34 79.31 0.79 -5.68

BNC #1 64.28 52.43 63.42 0.63 -19.59
#3 73.49 60.88 72.07 0.72 –10.89

DUC #1 26.91 8.61 23.59 0.23 +3.06
#3 26.15 8.07 23.25 0.22 +0.9

Google #1 81.68 73.55 81.40 0.83 +2.05
#3 85.45 77.55 84.83 0.86 +0.46

Broad #1 72.54 60.57 72.04 0.71 -13.04

1% #3 82.25 69.63 80.62 0.80 -3.38

BNC #1 64.63 52.80 63.74 0.64 -18.93
#3 76.49 63.46 74.73 0.75 -6.64

DUC #1 27.69 8.95 24.24 0.24 +3.77
#3 26.63 8.57 23.93 0.23 +1.73

Google #1 82.85 75.15 82.58 0.84 -1.28
#3 86.88 79.55 86.26 0.88 -0.16

Broad #1 70.14 58.15 69.70 0.68 -15.88

5% #3 82.63 69.76 81.16 0.81 -1.38

BNC #1 61.28 49.61 60.51 0.60 -24.21
#3 77.54 64.38 76.00 0.76 -4.13

DUC #1 27.31 9.21 24.34 0.24 +0.28
#3 26.83 8.57 23.96 0.23 +0.78

Table 12: Experimental results of InstructCMP using
Llama2-13B-chat for different training dataset sizes on
Google, Broad, BNC, and DUC.

Data Size Instruction R-1 R-2 R-L F1 ∆ CR

#2 80.35 72.20 80.08 0.81 +1.79

Google #3 83.56 75.33 82.97 0.84 -0.21
#3-1 81.38 72.68 81.00 0.82 0.00
#3-2 83.23 74.67 82.73 0.84 -0.64

#2 72.09 59.95 71.59 0.71 -12.55

Broad #3 80.62 68.34 79.31 0.79 -5.68
#3-1 76.87 64.49 76.32 0.76 -7.51

0.5% #3-2 80.31 68.12 79.51 0.79 -4.98

#2 64.89 52.96 63.95 0.64 -10.53

BNC #3 73.49 60.88 72.07 0.72 -10.89
#3-1 70.81 58.33 69.81 0.70 -12.57
#3-2 72.76 60.32 71.48 0.72 -0.85

#2 27.16 9.02 23.95 0.23 +3.04

DUC #3 26.15 8.07 23.25 0.22 +0.90
#3-1 25.51 8.16 22.68 0.22 -0.43
#3-2 26.33 8.29 23.65 0.23 +0.15

#2 81.93 73.86 81.61 0.83 +0.07

Google #3 85.45 77.55 84.83 0.86 +0.46
#3-1 83.91 75.56 83.51 0.85 +0.82
#3-2 85.18 77.07 84.55 0.86 -0.65

#2 72.37 60.34 71.94 0.71 -12.90

Broad #3 82.25 69.63 80.62 0.80 -3.38
#3-1 81.85 69.38 81.25 0.80 -0.67

1% #3-2 81.17 68.81 79.91 0.79 -5.12

#2 64.15 52.32 63.34 0.63 -19.47

BNC #3 76.49 63.46 74.73 0.75 -6.64
#3-1 77.50 64.64 76.65 0.77 -1.77
#3-2 74.27 61.72 72.73 0.73 -8.34

#2 27.34 9.05 24.36 0.24 -0.22

DUC #3 26.63 8.57 23.93 0.23 +1.73
#3-1 25.84 8.54 23.14 0.22 -1.32
#3-2 26.14 8.16 23.38 0.23 -0.48

#2 84.99 77.43 84.69 0.86 +1.45

Google #3 86.88 79.55 86.26 0.87 -0.16
#3-1 85.20 77.46 84.72 0.86 +0.76
#3-2 86.80 79.58 86.29 0.87 +0.12

#2 80.34 67.77 79.81 0.78 -1.02

Broad #3 82.63 69.76 81.16 0.81 -1.38
#3-1 82.80 70.39 82.05 0.81 +0.90

5% #3-2 82.66 69.81 81.16 0.81 -1.08

#2 73.74 61.52 72.92 0.72 -5.50

BNC #3 77.54 64.38 76.00 0.76 -4.13
#3-1 77.62 64.58 76.45 0.77 -1.49
#3-2 77.40 64.20 75.81 0.76 -4.03

#2 27.20 8.98 24.27 0.24 +0.47

DUC #3 26.83 8.57 23.96 0.23 +0.78
#3-1 26.25 8.27 23.49 0.23 -1.22
#3-2 26.46 8.31 23.62 0.23 +1.32

Table 13: Ablation study of “length priming” for differ-
ent training dataset sizes on Google, Broad, BNC, and
DUC.
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Data Model Instruction R-1 R-2 R-L F1 ∆ CR

T5-XXL
#1 58.43 49.61 58.42 0.59 +55.16
#2 58.33 49.50 58.31 0.59 +54.70

Google
#3 58.51 49.69 58.49 0.59 +54.67

UL2
#1 59.17 50.33 59.03 0.60 +51.05
#2 58.59 49.68 58.52 0.59 +53.35
#3 60.59 51.66 60.53 0.61 +49.27

T5-XXL
#1 85.11 72.65 85.11 0.85 +23.35
#2 85.08 72.56 85.08 0.85 +22.85

Broad
#3 85.22 72.77 85.21 0.85 +22.94

UL2
#1 84.27 70.97 83.56 0.84 +17.59
#2 83.84 70.78 83.76 0.84 +21.16
#3 83.99 70.92 83.84 0.84 +19.95

T5-XXL
#1 81.43 68.46 81.43 0.82 +27.06
#2 81.39 68.49 81.39 0.82 +27.18

BNC
#3 81.42 68.51 81.40 0.81 +26.97

UL2
#1 80.20 67.07 79.00 0.80 +19.77
#2 80.29 67.01 80.03 0.80 +24.12
#3 79.81 66.61 79.32 0.80 +21.92

Table 14: Experimental results for the zero-shot
instruction-based FLAN models using instruction tem-
plates in Table 2.
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# Constraint Instruction

1 ✗ Sentence:\n{src}\nSummarize without the less important words would be:\n

2 Length w/o priming Sentence:\n{src}\nSummarize without the less important {del} words would be:\n

3 Length
Sentence with {src len} words:\n{src}\nSummarize in {keep} words without the
less important {del} words would be:\n

Table 15: Modified instruction templates for the FLAN models.
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