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Abstract

Despite intensive efforts devoted to tool learn-
ing, the problem of budget-constrained tool
learning, which focuses on resolving user
queries within a specific budget constraint, has
been widely overlooked. This paper proposes a
novel method for budget-constrained tool learn-
ing. Our approach involves creating a prefer-
able plan under the budget constraint before
utilizing the tools. This plan outlines the fea-
sible tools and the maximum number of times
they can be employed, offering a comprehen-
sive overview of the tool learning process for
large language models. This allows them to
allocate the budget from a broader perspective.
To devise the plan without incurring significant
extra costs, we suggest initially estimating the
usefulness of the candidate tools based on past
experience. Subsequently, we employ dynamic
programming to formulate the plan. Experi-
mental results demonstrate that our method can
be integrated with various tool learning meth-
ods, significantly enhancing their effectiveness
under strict budget constraints.1

1 Introduction

Tool learning (Schick et al., 2023; Yao et al., 2023b;
Qin et al., 2023b), which uses external tools to
extend the capability of large language models
(LLMs), has achieved remarkable results on vari-
ous types of tasks. For example, with the aid of
external tools, LLMs may solve difficult mathemat-
ical problems with higher accuracy (Cobbe et al.,
2021; Gao et al., 2023b), handle multimodal in-
formation (Shen et al., 2023; Lu et al., 2023), or
interact with real-world applications (Song et al.,
2023; Gur et al., 2023). To better resolve more
complex user queries, previous studies have pro-
posed different tool learning methods which allow

∗ Corresponding authors: P.Li (lipeng@air.tsinghua.
edu.cn) and Y.Liu (liuyang2011@tsinghua.edu.cn).

1Code can be found at https://github.com/
THUNLP-MT/BTP.

Method

Budget Constraint

+∞ 20

PR↑ PBC↑ AC↓ PR↑ PBC↑ AC↓
ReAct 44.0 44.0 15.4 44.0 34.1 15.4
+BTP (Ours) 46.3 46.3 9.0 43.7 43.7 6.9

DFSDT 63.8 63.8 78.3 63.8 28.8 78.3
+BTP (Ours) 66.1 66.1 12.5 64.5 64.5 9.2

ToT-DFS 61.6 61.6 51.4 61.6 10.2 51.4
+BTP (Ours) 65.0 65.0 15.8 64.1 64.1 10.8

Table 1: Comparison of Pass Rate (PR), Pass rate un-
der Budget Constraint (PBC) and Average Cost (AC)
on the ToolBench (Qin et al., 2023b) dataset. Our pro-
posed Budget-Constrained Tool Learning with Planning
(BTP) reduces the cost of tool learning and reaches com-
petitive Pass Rate, significantly improving the perfor-
mance under a strict budget constraint.

the LLM to use multiple tools (Chen et al., 2023;
Yao et al., 2023b; Paranjape et al., 2023; Shen et al.,
2023; Qin et al., 2023b).

Despite their effectiveness, existing methods of-
ten overlook a critical aspect: utilizing tools incurs
expenses, such as money and time, and users may
have (implicit) budget constraints in real-world sce-
narios. Without meticulous management, the costs
can rapidly exceed the acceptable threshold of a
user. In scenarios where the expenses overshadow
the benefits, even if the tool successfully addresses
the intended problem, users may still perceive the
solution as unsatisfactory due to the disproportion-
ate incurred costs. Table 1 presents preliminary re-
sults for three strong tool learning approaches, Re-
Act (Yao et al., 2023b), DFSDT (Qin et al., 2023b),
and ToT-DFS (Yao et al., 2023a), evaluated on the
ToolBench (Qin et al., 2023b) dataset, with suc-
cess defined strictly in terms of problem resolu-
tion within budget constraints. It is evident that
all three methods experience significant declines in
performance as the budget constraint tightens from
unlimited to 20. Consequently, we argue that more
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User Query

I need to calculate the eigenvalues and eigenvectors of a 100×100 matrix, and present the solution in an MS Excel 

workbook. The matrix is shown in the text file below:

[Matrix.txt]
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Tool Name

Cost

Mathematica

10

GNU Octave

5

MS Excel

3

Tool Information

Expected Value 0.9 0.7 0.6

×1 ×1

Figure 1: Example of budget-constrained tool learning. In this example, the baseline fails to resolve the user query
within the budget constraint. Our proposed BTP makes a preferable plan of tool usage before using the tools, which
may help resolve the user query under the budget constraint. “Expected Value” measures how valuable the candidate
tool is for resolving the given query, which is estimated based on the past experience of tool learning. The shaded
area in the “Planning” part means that the candidate plans in the area exceed the budget constraint.

efforts are worth devoting to the problem of budget-
constrained tool learning, which aims at resolving
user queries within a given budget constraint.

One fundamental challenge in budget-
constrained tool learning is the allocation of
the budget. However, determining the optimal
budget allocation is not straightforward without
a comprehensive understanding of the entire tool
learning process. Taking Figure 1 as an example,
the user query may be addressed using either
Mathematica and MS Excel, or GNU Octave and
MS Excel. While Mathematica, a commercial
software, may provide a more precise solution than
the open-source GNU Octave, we may incorrectly
choose Mathematica without knowing the addi-
tional requirement for MS Excel. Unfortunately,
acquiring such a comprehensive view is difficult.
A simplistic approach is employing trial-and-error
methods. However, each attempt introduces
additional costs, further complicating adherence to
the budget constraint.

To this end, we propose Budget-Constrained
Tool Learning with Planning (BTP), a novel
method for budget-constrained tool learning, which
finds a preferable plan under the budget constraint
before using the tools (Figure 1). First, for each
candidate tool, we estimate its expected value and
frequency constraint based on the past experience.
The expected value measures how valuable the tool
is for resolving the given query, while the frequency
constraint limits the maximum number of times it
can be used. Then, we try to find a plan that max-

imizes the sum of the expected value under the
budget constraint. A plan specifies the viable tools
and how many times each of them can be used. We
regard this as a knapsack problem and use dynamic
programming to resolve it. Finally, we apply the
plan during the tool learning process. As shown
in Table 1, our proposed method can be combined
with different tool learning methods and improve
their performance under a strict budget constraint.

2 Methodology

In this section, we first introduce a formulation
of budget-constrained tool learning (Section 2.1).
Then, we describe our proposed BTP in detail. Be-
fore using the tools, we try to find a preferable plan
under the budget constraint (Section 2.2). Then,
we apply the plan to the process of tool learning
(Section 2.3). Moreover, we introduce a blacklist
mechanism to further reduce the cost of tool learn-
ing (Section 2.4).

2.1 Budget-Constrained Tool Learning

Existing tool learning methods can be roughly di-
vided into two lines. The first line finetunes the
LLMs to make them capable of using tools with-
out the documentation of the tools (Schick et al.,
2023; Hao et al., 2023), while the second line lets
the LLM select tools according to the documen-
tation of the candidate tools (Shen et al., 2023;
Hsieh et al., 2023; Qin et al., 2023b). In this pa-
per, we mainly focus on the latter line, since it
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can better support closed-source LLMs, includ-
ing those which do not support fine-tuning. Typi-
cally, the tool learning process following this line
is as follows: First, a set of n candidate tools
T = {t1, . . . , ti, . . . , tn} are retrieved according
to the user query using a retrieval model. Then an
LLM is leveraged to select and invoke tools itera-
tively until a stop condition is met. Assume that
this process runs for N times, we denote the tools
invoked as TI = {ta1 , · · · , taj , · · · , taN }. Note
that a tool may be invoked multiple times. Finally,
the LLM produces the final output based on the
user query and the results returned by the executed
tools.

To conduct budget-constrained tool learning, we
first propose a simplified and approximate but use-
ful mathematical formulation for it. Formally, for
any integer i ∈ [1, n], we use ci to represent the
cost of using the tool ti once.2 In reality, this cost
may be the estimated total cost spent on the tool in
different aspects, including the money spent on us-
ing the tool and the LLM, as well as the consumed
time for using the tool and the LLM:

ci = ci,tool + cLLM + Ti, (1)

where ci,tool represents the estimated cost of using
the tool ti itself, cLLM is the estimated cost of using
the API of the LLM once, and Ti is the estimated
consumed time for using the tool and the LLM.
We implicitly assume that all costs involved can
be quantified using the same unit of measurement.
For example, we can apply a conversion function
to translate time costs into monetary terms.

Moreover, we use cs to represent the extra cost
produced by the other factors such as the system
prompt and the user prompt, and B to represent
the budget constraint. Then, the target of budget-
constrained tool learning is to resolve a user query
under the budget constraint:

cs +
∑

j

caj ≤ B. (2)

In practice, cs and ci are influenced by numer-
ous factors, complicating the design of a feasible
algorithm. To simplify the problem and make it
manageable, we introduce an assumption that both
cs and ci can be estimated in advance. The assump-
tion does not significantly limit the generality of
our approach. On the one hand, both of them can

2For simplicity, we also call ci as “the cost of ti” in the
remaining part of this paper.

be estimated using their historical average values.
On the other hand, cs can be more precisely esti-
mated based on the price of the API of the LLM, the
lengths of the system prompt and the user prompt
for the current user query.

Currently, we do not take the cost arising from
the external environments into consideration. For
example, when the LLM uses an online shopping
tool to buy a book for the user, the price of the book
also consumes the overall budget and is difficult to
be estimated in advance. Addressing this aspect is
designated for future research.

2.2 Tool Usage Planning
In this work, we introduce a tool usage plan to offer
an estimated overview of the tools likely to be uti-
lized by the LLM, aiding in more effective budget
allocation. The plan outlines the set of available
tools and the maximum number of times each tool
can be used.

However, it is difficult to precisely calculate how
many times each candidate tool should be used for
resolving a given user query. On the one hand, it is
not trivial to estimate whether a candidate tool can
provide valuable information for resolving the user
query without using the tool. On the other hand,
calculating the costs of every possible plan of tool
usage for a given user query is unacceptable in
terms of time complexity. Thus, we propose an ap-
proximate planning method for budget-constrained
tool learning. In this planning method, we estimate
whether the candidate tools can provide valuable
information based on the past experience, and use
dynamic programming to estimate how many times
each candidate tool should be used.

Specifically, we first estimate the expected value
of each candidate tool, which measures how valu-
able the results returned by the candidate tool are.
In this work, we leverage the past experience of tool
learning to estimate the expected value. Formally,
the past experience E = {U1, . . . , Uk, . . . , Um}
consists of a number of tool usages Uk which
happened in the past. Each tool usage Uk =
⟨q, d(t), p, r⟩ consists of a user query q, the doc-
umentation d(t) of the used tool t, the input pa-
rameters p and the returned result r. We define a
binary score function score(·) to judge the useful-
ness of r for resolving q, where score(Uk) = 0
or 1 means that r is unhelpful or helpful, respec-
tively. In practice, score(·) is implemented as a
LongFormer (Beltagy et al., 2020) based classifier.

Then, for each candidate tool ti, we fetch all tool
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usages Uk related to ti in the past experience E
to construct a set of tool usages Eti . We calculate
the weighted average score of all Uk ∈ Eti as the
expected value of ti for the user query qu:

v(qu, ti) =

∑
Uk∈Eti

exp(sim(qu, q))score(Uk)

∑
Uk∈Eti

exp(sim(qu, q))
,

(3)
where sim(qu, q) is the similarity between qu and q,
which can be calculated using the retrieval model.

We also notice that repeatedly using the same
tool too many times may be suboptimal within
the budget constraint, since we expect that more
diverse information can be obtained if different
tools are used. Thus, we set an estimated fre-
quency constraint F̃ (qu, ti) for each candidate tool
ti and expect that ti should be used no more than
F̃ (qu, ti) times. Specifically, if a tool frequently
returns useless or erroneous messages, we should
prevent the LLM from using it to reduce the cost
of tool learning. Thus, we set a threshold τ and set
F̃ (qu, ti) = 0 if v(qu, ti) < τ to filter out the use-
less tools based on the past experience. Otherwise,
for each query q in the past experience where ti
is used in the process of resolving q, we count the
number of times F (q, ti) for which ti is used, and
then calculate the weighted average of F (q, ti) as
the estimated frequency constraint F̃ (qu, ti):

F̃ (qu, ti) =

∑
q
exp(sim(qu, q))F (q, ti)

∑
q
exp(sim(qu, q))

. (4)

Finally, we regard the planning process of
budget-constrained tool learning as a knapsack
problem and use dynamic programming to find
a preferable plan of tool usage within the budget
constraint. Formally, for each candidate tool ti, the
plan specifies its corresponding frequency f(qu, ti),
which means that we expect the LLM to use ti for
at most f(qu, ti) times during the tool learning pro-
cess. Since we expect that the returned results
should contain valuable information as much as
possible, the plan is determined by maximizing the
sum of the expected value:

V =

n∑

i=1

f(qu, ti)v(qu, ti) (5)

Algorithm 1 Tool Usage Planning
Input: budget constraint B; estimated cost for sys-
tem prompt and user prompt cs; estimated cost ci,
expected value v(qu, ti) and frequency constraint
F̃ (qu, ti) for each tool in T = {t1, . . . , ti, . . . , tn}
Output: frequency f(qu, ti)

1: R← B − cs
2: for j ← 0 to R do
3: V0,j ← 0

4: for i← 1 to n do
5: for j ← 0 to R do
6: Vi,j ← Vi−1,j

7: for k ← 1 to ⌊F̃ (qu, ti)⌋ do
8: if j ≥ kc(ti) then
9: Vi,j ← max(Vi,j , Vi,j−kc(ti) +

kv(qu, ti))

10: Vmax ← 0
11: for j ← 0 to R do
12: Vmax ← max(Vmax, Vn,j)

13: Trace back the dynamic programming process
to obtain the frequency f(qu, ti)

under the budget and frequency constraints:

n∑

i=1

f(qu, ti)ci ≤ R, (6)

f(qu, ti) ≤ F̃ (qu, ti), (7)

where R = B − cs. For simplicity, we assume
that ci and R are positive integers.3 The details are
shown in Algorithm 1.

The process of finding the plan also introduces
extra cost. Fortunately, the cost is a near-constant
value. Thus, we can simply extend cs to include
this extra cost and keep the algorithm untouched.

Moreover, it is worth noting that our proposed
dynamic programming method can be regarded as a
searching algorithm. Searching-based methods are
widely used in previously proposed tool learning
methods such as DFSDT (Qin et al., 2023b) and
ToT-DFS (Yao et al., 2023a). However, these meth-
ods are not feasible for searching tool usage plans
as they need to invoke the tools during searching,
which consume the budget.

3If ci and R are real numbers, we can use their approx-
imate values and change them into integers. Theoretically,
this approximation can achieve any precision. For the detailed
proof, please refer to Appendix A.1.
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Algorithm 2 Budget-Constrained Tool Learning
with Plan
Input: user query qu, set of candidate tools T =
{t1, . . . , ti, . . . , tn}, frequency f(qu, ti) for each
tool ti
Output: returned result y

1: for each ti ∈ T do
2: if f(qu, ti) = 0 then
3: T ← T \ {ti}
4: j ← 0
5: while True do
6: j ← j + 1
7: taj , pj ← UseTool(qu, T , r1, . . . , rj−1)

▷Select a tool and determine its parameter
8: rj ← taj (pj) ▷ Invoke the tool to get result
9: f(qu, taj )← f(qu, taj )− 1

10: if f(qu, taj ) = 0 then
11: T ← T \ {taj}
12: if T = ∅ or IsSufficient(qu, r1, . . . , rj)

then ▷ If there are no available tools in T or
the returned results are sufficient for resolving
the user query

13: y ← Summarize(qu, r1, . . . , rj)
▷ Summarize to get the returned result

14: return y

2.3 Applying Plan to Tool Learning

After we obtain the frequency f(qu, ti) for each
candidate tool ti, we apply the plan to the tool
learning process. Specifically, before the LLM
uses tools, we remove all the tools ti which satisfy
f(qu, ti) = 0 from T since they should not be used
in the process. Then, after each step j when the
LLM uses the tool taj , we reduce the frequency
f(qu, taj ) by 1. Once this frequency reaches zero,
we remove taj from T , which indicates that taj
should be no more used. We add extra information
in the input context to inform the LLM that the tool
taj is forbidden to use. If the LLM occasionally
uses the forbidden tools, we prevent the LLM from
the actual action of the tool usage and return an
error message. Finally, if T becomes empty or
the returned results are sufficient to draw a conclu-
sion, we make a summary about all the returned
results. The aforementioned process is shown in
Algorithm 2.

2.4 Blacklist Mechanism

To further reduce the cost of tool learning, we in-
troduce a blacklist mechanism to reduce the cost of

repeatedly using unhelpful tools. During the tool
learning process, we temporarily build the black-
list according to the judgment about the returned
results. Specifically, after the LLM uses a tool and
receives the returned result, we use the classifier
introduced in Section 2.2 to judge whether the re-
turned result is helpful in resolving the user query.4

If a tool returns unhelpful results, we list it into the
blacklist and forbid the LLM from using it. Specifi-
cally, we inform the LLM that the blacklisted tools
are forbidden to use by giving the blacklisted tools
in the input context during the tool learning process.
If the LLM occasionally uses a blacklisted tool, we
prevent the LLM from the actual action of the tool
usage and return an error message.

3 Experiments

3.1 Setup

Data Preparation. Our experiments are mainly
conducted on the ToolBench (Qin et al., 2023b)
dataset, which is a tool learning dataset in English.
We follow Qin et al. (2023b) and use 6 different
subsets (I1-Inst, I1-Tool, I1-Cat, I2-Inst, I2-Cat
and I3-Inst) in ToolBench as the test datasets. The
subset I3-Inst includes 100 user queries, while each
of the other subsets contains 200 user queries.

For the past experience used for planning the
tool usage, we construct a dataset using the training
dataset of ToolBench. First, we use ChatGPT (Ope-
nAI, 2022) to judge whether the returned result
is helpful for approximately 30k instances of tool
usages in the training dataset. Then, we use these
instances to train the LongFormer-based classifier
proposed in Section 2.2 and use the classifier to
classify the remaining instances in the training
dataset. The total number of these two parts of
instances is about 2.5M. During our experiments,
all the past experience is obtained from this dataset.

Baselines. We combine our proposed method
with the following baseline methods and compare
the combined methods with the baseline methods
without such combination:

1. ReAct (Yao et al., 2023b): Tool learning
is performed using a chain-of-thought pro-
cess (Wei et al., 2022).

2. DFSDT (Qin et al., 2023b): Tool learning
is performed using a tree-based depth-first

4The cost of the classifier can also be added to ci.
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Method
I1-Inst I1-Tool I1-Cat I2-Inst I2-Cat I3-Inst Average

PBC↑ AC↓ PBC↑ AC↓ PBC↑ AC↓ PBC↑ AC↓ PBC↑ AC↓ PBC↑ AC↓ PBC↑ AC↓
ReAct 38.5 15.8 37.0 16.3 38.5 15.0 33.5 15.8 35.0 17.0 22.0 12.6 34.1 15.4
+BTP (Ours) 43.5 7.6 48.0 7.8 49.5 7.2 41.5 7.0 49.5 7.1 30.0 4.7 43.7 6.9

ReAct+Prompt 35.5 16.7 39.5 17.1 43.0 14.4 37.5 14.9 39.5 16.3 24.0 14.9 36.5 15.7
+BTP (Ours) 47.0 8.7 44.0 8.3 50.5 7.8 47.0 7.7 54.0 8.0 32.0 5.2 45.8 7.6

DFSDT 34.0 77.5 29.5 75.1 34.5 70.1 28.0 81.6 28.5 79.4 18.0 85.8 28.8 78.3
+BTP (Ours) 58.0 9.6 58.0 10.3 63.5 9.5 77.0 9.5 66.5 9.8 64.0 6.4 64.5 9.2

DFSDT+Prompt 31.0 69.5 29.5 84.8 36.5 61.2 28.5 68.4 31.0 74.4 17.0 81.3 29.0 73.3
+BTP (Ours) 55.0 10.0 58.0 10.1 63.0 9.2 77.5 9.5 65.5 10.0 64.0 6.1 63.8 9.2

ToT-DFS 11.5 52.4 10.5 52.4 11.0 48.8 7.0 52.4 11.0 53.3 10.0 48.9 10.2 51.4
+BTP (Ours) 55.5 11.7 59.0 12.0 60.0 11.6 76.0 11.3 70.0 11.6 64.0 6.7 64.1 10.8

ToT-DFS+Prompt 10.0 48.2 10.5 50.8 14.5 45.9 6.0 49.0 10.0 51.2 8.0 53.3 9.8 49.7
+BTP (Ours) 54.5 11.9 59.5 12.1 56.5 11.5 74.5 11.8 64.0 11.7 64.0 6.7 62.2 11.0

Table 2: Comparison of Pass rate under Budget Constraint (PBC) and Average Cost (AC) between the baseline
methods and our proposed BTP on the ToolBench (Qin et al., 2023b) dataset. The experiments are conducted with
the budget constraint R = 20.

searching algorithm. This allows the LLM
to traverse back when encountering a failure.

3. ToT-DFS (Yao et al., 2023a): Tool learning is
also performed using a depth-first searching
algorithm. Different from DFSDT, ToT-DFS
makes a vote across the candidate states and
expands the best state at each step.

4. ReAct+Prompt, DFSDT+Prompt and ToT-
DFS+Prompt: The cost of the candidate tools
and the remaining budget are added to the
system prompt of the corresponding method.

Evaluation. We mainly use the following evalu-
ation metrics to evaluate the effect of budget con-
straint on different methods:

1. Pass rate under Budget Constraint (PBC):
The percentage of user queries which can be
resolved by the LLM under the given budget
constraint. When the solution given by the
LLM exceeds the budget constraint, we count
it as a failure.

2. Average Cost (AC): The average cost used
for all user queries in the test dataset.

To better compare the quality of the generated
solutions of our method with the baselines, we also
evaluate the Pass Rate (PR) (Qin et al., 2023b),
which measures the percentage of successfully re-
solved user queries, ignoring the budget constraint.
Moreover, we also report the Rate of Failure due

to Budget Constraint (RFBC) to measure the per-
centage of user queries which the LLM fails to
resolve because of the budget constraint.

Implementation Details. We use ChatGPT (Ope-
nAI, 2022) as the backbone model for tool learning.
For each user query, we retrieve 5 candidate tools
using the semantic retrieval model provided by Qin
et al. (2023b). Since the ToolBench dataset does
not explicitly provide the cost of the tools, we ran-
domly set an integer in [1, 10] as the cost ci for
each tool in the tool library. For the budget con-
straint, we set the value of R to 20 unless explicitly
specified. We set the threshold τ = 0.15 to filter
out the useless tools. For further implementation
details, please refer to Appendix A.2.

One might suggest that for a more accurate eval-
uation, a real system capable of calculating costs
on the fly should be implemented. However, cre-
ating such a system involves navigating numerous
real-world challenges, including the unpredictabil-
ity associated with LLM behavior and network dy-
namics. Given that this work represents an initial
exploration into budget-constrained tool learning,
postponing the development of this system to fu-
ture research seems reasonable. Additionally, it
is crucial to clarify that the cost values ci used in
the test set above are considered to be aggregate
values encompassing all relevant costs, such as
monetary expenses, time, and LLM usage, etc. The
rationale behind this assumption and its validity is
thoroughly discussed at the end of Section 2.1.
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3.2 Main Results

The experimental results are shown in Table 2 and 3.
When combining our proposed BTP with the base-
line methods, the LLM can better resolve the user
query within the budget constraint, regardless of
which baseline method we use. Specifically, when
combining BTP with the baseline methods, the av-
erage value of Pass rate under Budget Constraint
(PBC) over six subsets of the ToolBench dataset
increases by 9.3-53.9 points, and the Average Cost
(AC) also decreases by 8.1-69.1 points. This is
mainly attributed to two major aspects: First, com-
bining BTP with the baseline methods does not
significantly harm the Pass Rate (PR) even if we
ignore the budget constraint. Second, the tool learn-
ing process cannot be terminated within the budget
constraint for a substantial part of the user queries
if we do not combine BTP with the baseline meth-
ods, while utilizing BTP can guarantee that the
tool learning process can be terminated within the
budget constraint.

Moreover, adding extra information to the sys-
tem prompt to remind the LLM about the budget
constraint is not effective for budget-constrained
tool learning. For example, DFSDT+Prompt only
outperforms DFSDT by 0.2 points on PBC. The
average cost of DFSDT+Prompt is 73.3, which is
much higher than the budget constraint R = 20.

3.3 Planned v.s. Actual Tool Usage

In this section, we compare the plan given by the
dynamic programming algorithm and the actual
tool usage performed by the LLM. As shown in
Table 4, the average cost of the plan is 13.9 and we
expect that the LLM uses the tools for 2.9 times on
average on the I1-Inst subset. When BTP is com-
bined with the baseline methods, both the actual
average cost and the average number of times the
LLM uses the tools are less than those given in the
plan. The gap between the planned and the actual
tool usage is within our expectation, since we do
not actually use the tools when making the plan.
Moreover, the size of the gap is reasonable, espe-
cially when we use a searching based algorithm
(DFSDT or ToT-DFS) for tool learning.

3.4 Effect of Budget Constraint R

To investigate how the budget constraint R affects
the performance of budget-constrained tool learn-
ing, we also conduct experiments on the I1-Inst
subset under different budget constraints. The re-

Method PR↑ RFBC↓
ReAct 44.0 26.4
+BTP (Ours) 43.7 0.0

ReAct+Prompt 44.5 23.9
+BTP (Ours) 45.8 0.0

DFSDT 63.8 60.3
+BTP (Ours) 64.5 0.0

DFSDT+Prompt 63.8 59.2
+BTP (Ours) 63.8 0.0

ToT-DFS 61.6 86.3
+BTP (Ours) 64.1 0.0

ToT-DFS+Prompt 63.1 86.7
+BTP (Ours) 62.2 0.0

Table 3: Comparison of Pass Rate (PR) and Rate
of Failure due to Budget Constraint (RFBC) be-
tween the baseline methods and our proposed BTP.
The experiments are conducted with the budget con-
straint R = 20. The detailed results are shown in
Appendix A.3.

Method AC #Use

Plan 13.9 2.9

ReAct+BTP 7.6 1.5
ReAct+Prompt+BTP 8.7 1.7
DFSDT+BTP 9.6 1.8
DFSDT+Prompt+BTP 10.0 1.9
ToT-DFS+BTP 11.7 2.3
ToT-DFS+Prompt+BTP 11.9 2.4

Table 4: Comparison of the planned and the actual tool
usage on the I1-Inst subset. “#Use” represents the av-
erage number of times the LLM uses the tools for each
user query.

sults are shown in Figure 2. On the one hand, the
value of PBC increases as the budget constraint
does, since a higher budget constraint gives more
chances to the LLM for using the tools to resolve
the user query. On the other hand, the average
cost will reduce if we set a lower budget constraint,
which indicates that we can adjust the cost of tool
learning by modifying the budget constraint.

3.5 Effect of Threshold τ

We introduce a threshold τ in Section 2.2 to filter
out useless tools. The effect of τ on the I1-Inst
subset is shown in Figure 3. First, if we set a higher
threshold, the average cost decreases since fewer
tools are available for the LLM to use. Second,
the value of PBC increases when τ < 0.15, which
indicates that setting a proper threshold can filter
out the useless tools and improve the quality of the
generated solutions. However, the value of PBC
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Figure 2: Effect of budget constraint R on Pass rate
under Budget Constraint (PBC) and Average Cost (AC).
The results are evaluated on the I1-Inst subset.

decreases when τ > 0.15, which indicates that
a high threshold may incorrectly filter out some
useful tools and worsen the quality of the solutions.
Therefore, we set τ = 0.15 in our experiments.

3.6 Effect of Blacklist Mechanism
To validate the effectivenss of the blacklist mecha-
nism, we conduct an extra experiment on the I1-Inst
subset where the blacklist mechanism is removed.
As shown in Table 5, removing the blacklist does
not significantly affect the value of PBC. However,
the average cost increases, which indicates that the
blacklist mechanism can reduce the cost of repeat-
edly using unhelpful tools.

Moreover, to investigate how the LongFormer-
based classifier affects the performance of budget-
constrained tool learning, we conduct an extra ex-
periment on the I1-Inst subset where we directly
use the LLM to judge whether the returned result is
helpful in the blacklist mechanism. Experimental
results show that the value of PBC and the aver-
age cost do not significantly change if we use the
LLM to judge the helpfulness of the returned re-
sults, even if the LLM can give the judgments more
accurately than the classifier.5 However, using the
LongFormer-based classifier can reduce the num-
ber of times of using the LLM in practice, and
thus we use the LongFormer-based classifier for
our proposed BTP.

4 Related Work

Tool learning aims to extend the capability of
LLMs using external tools (Schick et al., 2023; Yao
et al., 2023b; Qin et al., 2023a,b). With the aid of
external tools, LLMs may be capable of obtaining

5We randomly sample 100 returned results and use the
classifier and the LLM to give the judgments, and we find
the accuracy of the classifier and the LLM is 91% and 94%,
respectively.
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Figure 3: Effect of threshold τ on Pass rate under Bud-
get Constraint (PBC) and Average Cost (AC). The re-
sults are evaluated on the I1-Inst subset.

Blacklist PBC↑ AC↓
None 57.5 10.2
ChatGPT 58.0 9.7

LongFormer 58.0 9.6

Table 5: Effect of blacklist mechanism on I1-Inst.

recent information (Liu et al., 2023), solving diffi-
cult math problems (Cobbe et al., 2021; Gao et al.,
2023b), handling multimodal information (Huang
et al., 2023; Lu et al., 2023) or solving domain-
specific problems (Jin et al., 2023).

The basic approach of tool learning is to add the
documentation of the tool to the input context of
the LLM and then let the LLM use the tool to re-
solve the user query (Shen et al., 2023; Hsieh et al.,
2023; Qin et al., 2023b). To handle complex user
queries which require multiple steps to resolve, Yao
et al. (2023b) propose ReAct, which performs tool
learning in a chain-of-thought (Wei et al., 2022)
process. To increase the probability of successfully
resolving the user query, Qin et al. (2023b) propose
DFSDT, a tool learning algorithm which is based
on a tree-based depth-first searching algorithm and
allows the LLM to traverse back after a failure.
Similarly, Zhuang et al. (2023) also propose a tree-
based algorithm for tool learning, which is based
on the A* searching algorithm. Moreover, Gao
et al. (2023a) and Gao et al. (2023c) add a reflec-
tion mechanism to tool learning, which allows the
LLM to retry after a failure.

However, the aforementioned studies focus on
how to better resolve complex user queries, but do
not take the budget constraint into consideration.
In contrast, our proposed method aims to improve
the performance of tool learning within the budget
constraint of tool usage.

This work is also highly related to Kim et al.
(2023), who use different tools in parallel to im-
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prove the efficiency of tool learning. However, their
work mainly focuses on time efficiency rather than
budget constraint.

5 Conclusion

In this work, we propose BTP, a novel method for
budget-constrained tool learning. The core idea of
BTP is to find a preferable plan under the budget
constraint before using the tools. We also introduce
a blacklist mechanism to further reduce the cost
of tool learning. Experimental results show that
BTP can be combined with different tool learning
methods and improve the performance of budget-
constrained tool learning.

Limitations

In this work, we propose a simplified yet effective
approximation to model budget-constrained tool
learning. As discussed in Section 2.1, our approach
does not account for costs incurred by external
factors, which are challenging to estimate based
on previous experience of tool learning. Exploring
a more comprehensive mathematical model that
includes these costs is an avenue for future research.
Furthermore, our experiments are carried out in a
simulated setting, where the costs associated with
the tools are not based on real-world data but are
simulated instead. Creating similar conditions in a
real-world context to accurately estimate tool costs
poses numerous challenges. Therefore, developing
techniques to estimate real-world tool costs is an
objective for future research.
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A Appendix

A.1 Proof of Approximation of ci and R

In this proof, we suppose that the tool learning
process consists of a reasonable number of steps,
and we use N to represent the number of steps. For
any ε > 0, we set λ as:

λ =
N + 1

ε
(8)

Then, we use c̃i and R̃ to denote the approximate
value of ci and R. c̃i and R̃ are defined as below:

c̃i =
⌈λci⌉
λ

, (9)

R̃ =
⌊λR⌋
λ

. (10)

Based on the equations above, c̃i and R̃ satisfy
λc̃i ∈ Z and λR̃ ∈ Z.

Besides, c̃i and R̃ satisfy

R− R̃ =
λR− ⌊λR⌋

λ

<
1

λ

=
ε

N + 1
,

(11)

c̃i − ci =
⌈λci⌉ − λci

λ

<
1

λ

=
ε

N + 1
.

(12)

Thus, the approximate remaining budget R̃ −
N∑
j=1

c̃aj satisfies

R̃−
N∑

j=1

c̃aj

> R− ε

N + 1
−

N∑

j=1

(
caj +

ε

N + 1

)

= R−
N∑

j=1

caj − ε.

(13)

Moreover, since R̃ = ⌊λR⌋
λ ≤ R and c̃i =

⌈λci⌉
λ ≥ ci, R̃−

N∑
j=1

c̃aj also satisfies

R̃−
N∑

j=1

c̃aj ≤ R−
N∑

j=1

caj . (14)

Thus, we conclude that
∣∣∣∣∣∣


R̃−

N∑

j=1

c̃aj


−


R−

N∑

j=1

caj



∣∣∣∣∣∣
< ε. (15)

This indicates that if ci and R are real numbers,
we can use λc̃i and λR̃ as their integral approxi-
mation. If the number of the total steps taken for
tool learning N is reasonable, such approximation
can achieve sufficiently high accuracy if ε is small
enough.

A.2 Further Implementation Details

The training process of the LongFormer-based clas-
sification model is implemented on top of the Trans-
formers (Wolf et al., 2020) library. The model is
initialized with longformer-base-40966, which
has approximately 149M parameters. The model is
trained for 10 epochs with the learning rate of 10−5.
The batch size is set to 8. The model is trained on
a single NVIDIA GeForce RTX 3090 GPU for 5.5
hours.

Moreover, the system prompt used during in
the tool learning process is constructed based on
the prompt for solution path annotation introduced
in Qin et al. (2023b). We add extra content pre-
sented in Figure 4 in the system prompt if some
of the tools are forbidden to use. Specifically, we
append the prompt Part I to the system prompt if
at least one candidate tool is removed from T . We
append the prompt Part II to the system prompt
if at least one candidate tool is blacklisted. We
append the prompt Part III to the system prompt
if all the candidate tools are forbidden to use (i.e.
removed from T or blacklisted).

A.3 Detailed Experimental Results of Table 3

In this section, we report the detailed experimental
results of Table 3 in Table 6 and 7.

A.4 Case Study

In this section, we conduct a case study on the I1-
Inst subset. As shown in Figure 5, the baseline
method DFSDT repeatedly uses the tool 2 which
always returns error messages. DFSDT also uses
the tools 3 and 4 which return repetitive or irrele-
vant results. As the result, DFSDT finishes the tool
learning process with the total cost of 31. It only
finds the list of supported regions but fails to find
the trending keywords in the United Kingdom.

6https://huggingface.co/allenai/longformer-base-4096
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When combining our proposed BTP with
DFSDT, the LLM uses the tool 5 within the plan
and successfully finds the trending keywords in the
United Kingdom. Thus, DFSDT+BTP successfully
resolves the user query with the total cost of 8. This
indicates that our proposed BTP can help the LLM
resolve the user query within the budget constraint.

A.5 Licenses of Tools, Models and Datasets
The licenses of the Transformers (Wolf et al.,
2020) library, the LongFormer (Beltagy et al.,
2020) model and the ToolBench (Qin et al., 2023b)
dataset are Apache-2.0.

9050



Part I
Now some subfunctions of the available tools are forbidden since using them will 

exceed the budget limitation. The forbidden subfunctions are listed as below:

<List of tools removed from 𝒯>

Part II
Now some subfunctions of the available tools are forbidden since they cannot 

provide valuable information or usually return error messages. The forbidden 

subfunctions are listed as below:

<List of blacklisted tools>

Part III
Now all subfunctions of the available tools are forbidden, and you should call 

the "Finish" function to end the task.

Figure 4: The extra content which may be appended to the system prompt during the tool learning process.

Method I1-Inst I1-Tool I1-Cat I2-Inst I2-Cat I3-Inst Average

ReAct 47.0 51.5 45.0 45.0 47.5 28.0 44.0
+BTP (Ours) 43.5 48.0 49.5 41.5 49.5 30.0 43.7

ReAct+Prompt 43.5 52.5 48.0 44.5 49.5 29.0 44.5
+BTP (Ours) 47.0 44.0 50.5 47.0 54.0 32.0 45.8

DFSDT 56.0 62.0 56.5 76.0 68.5 64.0 63.8
+BTP (Ours) 58.0 58.0 63.5 77.0 66.5 64.0 64.5

DFSDT+Prompt 54.0 63.5 60.0 76.0 65.5 64.0 63.8
+BTP (Ours) 55.0 58.0 63.0 77.5 65.5 64.0 63.8

ToT-DFS 53.5 60.0 54.5 73.5 65.0 63.0 61.6
+BTP (Ours) 55.5 59.0 60.0 76.0 70.0 64.0 64.1

ToT-DFS+Prompt 54.5 61.5 58.5 74.5 66.5 63.0 63.1
+BTP (Ours) 54.5 59.5 56.5 74.5 64.0 64.0 62.2

Table 6: Comparison of Pass Rate (PR) between the baseline methods and our proposed BTP on the ToolBench (Qin
et al., 2023b) dataset. The experiments are conducted with the budget constraint R = 20.

Method I1-Inst I1-Tool I1-Cat I2-Inst I2-Cat I3-Inst Average

ReAct 27.0 30.0 22.5 28.5 31.5 19.0 26.4
ReAct+Prompt 27.0 30.0 17.5 20.5 24.5 24.0 23.9
DFSDT 56.0 61.0 53.5 62.0 63.5 66.0 60.3
DFSDT+Prompt 54.5 62.5 53.0 57.0 57.0 71.0 59.2
ToT-DFS 85.5 84.5 87.0 92.5 87.0 81.0 86.3
ToT-DFS+Prompt 85.0 86.5 81.0 91.0 86.5 90.0 86.7

Table 7: Rate of Failure due to Budget Constraint (RFBC) of the baseline methods on the ToolBench (Qin et al.,
2023b) dataset. The experiments are conducted with the budget constraint R = 20. For our proposed BTP,
the value of RFBC is consistently equal to 0 since the plan made in Algorithm 1 guarantees that the tool learning
process can be finished within the budget constraint.
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User Query:

I'm curious about the trending search keywords on Google for today in the United Kingdom. Can you please fetch the list of trending 

keywords? Additionally, I would like to know if a specific region is supported. Can you provide me with the list of supported regions?

Candidate Tools (Cost): 

1. regions_for_google_trends (2)

2. trendings_for_google_trends (9)

3. get_geo_map_for_regions_for_trends_keywords_in_different_regions (3)

4. get_trend_keyword_for_trends_keywords_in_different_regions (8)

5. keywordsearch_for_google_keyword_scraper (6)

Start

√

× ×

√

√

Tool: regions_for_google_trends

Result: {'status': 'success', 'regions': [{'code': 'AR', 'name': 'Argentina’}…

Tool: trendings_for_google_trends

Result: Rate limit error

Tool: trendings_for_google_trends

Result: Rate limit error

Tool: get_geo_map_for_regions_for_trends_keywords_in_different_regions

Result: {'NL': 'Netherlands', 'SE': 'Sweden', 'CO': 'Colombia’…

Tool: get_trend_keyword_for_trends_keywords_in_different_regions

Result: [{"geo": "US", "date": "20230518", "index":0…

Execution result of DFSDT (Total cost: 31):

Summary:

The list of supported regions for trending keywords includes Argentina, Australia … and Vietnam. Regarding the trending search 

keywords for the United Kingdom, the rate limit was exceeded for the specified date (2023-09-18 and 2023-09-20), so the trending 

keywords could not be retrieved at this time.

Start

√

√

Tool: regions_for_google_trends

Result: {'status': 'success', 'regions': [{'code': 'AR', 'name': 'Argentina’}, …

Tool: trendings_for_google_trends

Forbidden to use

Tool: keywordsearch_for_google_keyword_scraper

Result: {'searchWord': 'trending', 'country': 'gb', 'language': ‘en’, 'keywords': [{'keyword': 'trending', 'score': 100…

Execution result of DFSDT+BTP (Total cost: 8):

Summary: The trending search keyword for today in the United Kingdom is 'trending', with a score of 100. Other related trending 

keywords include 'trending 2023', 'trending travel', 'trending gifts', and more. The supported regions for trending search data include 

Argentina, Australia … and more.

Plan:

regions_for_google_trends ×1      keywordsearch_for_google_keyword_scraper ×3

Figure 5: Case study on the I1-Inst subset.
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