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Abstract

Structured entailment tree can exhibit the rea-
soning chains from knowledge facts to pre-
dicted answers, which is important for con-
structing an explainable question answering
system. Existing works mainly include directly
generating the entire tree and stepwise gener-
ating the proof steps. The stepwise methods
can exploit combinatoriality and generalize to
longer steps, but they have large fact search
spaces and error accumulation problems re-
sulting in the generation of invalid steps. In
this paper, inspired by the Dual Process The-
ory in cognitive science, we propose FRVA,
a Fact-Retrieval and Verification Augmented
bidirectional entailment tree generation method
that contains two systems. Specifically, Sys-
tem 1 makes intuitive judgments through the
fact retrieval module and filters irrelevant facts
to reduce the search space. System 2 designs
a deductive-abductive bidirectional reasoning
module, and we construct cross-verification
and multi-view contrastive learning to make
the generated proof steps closer to the target
hypothesis. We enhance the reliability of the
stepwise proofs to mitigate error propagation.
Experiment results on EntailmentBank show
that FRVA outperforms previous models and
achieves state-of-the-art performance in fact
selection and structural correctness.

1 Introduction

Automated reasoning, the process of reasoning
from given explicit knowledge to generate valid
conclusions, has always been a goal pursued in Ar-
tificial Intelligence (Wos, 1985; Mercier and Sper-
ber, 2011; Xu et al., 2023). Interpreting the reason-
ing process from question to answer can provide a
human-understandable inspection for the QA sys-
tem, which can help improve the debuggability and
trustworthiness of the model.

*Corresponding author.

Input:

Question: After fossils are formed, which 
process is most likely to destroy them?

Answer: the rock cycle

Hypothesis: fossils are likely to be 
destroyed in the rock cycle

Supporting facts:
sent1: destruction means loss 
sent2: the formation of metamorphic rock is a sequential process, with stages 
of rock being compacted, heated, recrystallized 
sent3: decay has a negative impact on a thing 

……
sent24: a cause of something is a reason for that something 
sent25: sedimentary is a class of rock

Stepwise Proof Generation:
Reasoning steps

S14 S25+ int1: sedimentary and metamorphic are classes of rock Step1

S22 + int2: formation in the rock cycle can mean 
sedimentary rock becomes metamorphic rock

int1 Step2

S7 + int3: in the rock cycle, sedimentary rocks can contain 
fossils and metamorphic rocks do not contain fossils

int2 Step3

S17 + int3 Step4
Hypothesis: fossils are likely to be destroyed in the 

rock cycle
S14 S25

int1 S22

int2 S7

int3

h

S17

Output Entailment Tree:

Figure 1: The task of entailment tree generation. Given
question-answer pairs, hypotheses (green boxes), and
supporting fact sentences, the model needs to generate
tree-structured reasoning chains and natural language
intermediate conclusions (blue boxes).

Explainable Question Answering (XQA) aims
to answer a question and give a corresponding ex-
planation (Schuff et al., 2020), and current related
works focus on three aspects: extracting keywords
or sentences that contain the answer (Yang et al.,
2018; Serrano and Smith, 2019), constructing the
multi-hop explanation chain (Xu et al., 2021), and
generating free-form explanations (Wei et al., 2022;
Yoran et al., 2023). Among the various explanation
methods, Dalvi et al. (2021) proposes to construct
multi-step reasoning chains in the form of entail-
ment tree, which shows how hypotheses (question
+ answer) can be explained from simple textual
evidence. As shown in Figure 1, given a hypoth-
esis and a set of supporting facts, the goal is to
generate an entailment tree consisting of multiple
premise proof steps, which has better expressive
compared to other methods. For example, for the
question “After fossils are formed, which process
is most likely to destroy them?”, the reasoning pro-
cess can explain why the answer “the rock cycle” is
predicted.

One line of previous work converts a multi-step
entailment tree into a linearized sequence (Dalvi
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et al., 2021; Tafjord et al., 2021; Bostrom et al.,
2021), which directly outputs the entire reason-
ing chain using the sequence-to-sequence model
(seq2seq). Although this method simplifies the gen-
eration task, it is challenging to guarantee structural
correctness when the steps are longer. Therefore,
subsequent works propose to use stepwise gener-
ation by splitting the tree into multiple steps and
training the model to perform single-step reasoning
(Liu et al., 2022; Yang et al., 2022; Hong et al.,
2022; Morishita et al., 2023; Su et al., 2023; Yuan
et al., 2024). Compared to generating the entire
reasoning chain directly, the stepwise generation
can more fully exploit the combinability of proofs,
which makes the model easier to learn and general-
ize to longer proof steps.

However, existing stepwise methods still face
two challenges: (1) combination failure due to the
large fact search space and (2) generation invalid
steps due to error accumulation. The current works
perform single-step reasoning mainly using deduc-
tive reasoning, which is a bottom-up process that
requires iterative search and generation of inter-
mediate conclusions from known facts until the
hypothesis is proved. The search space grows with
new conclusions to join the known facts, easily
leading to combinatorial failure. Moreover, the
stepwise methods have the problem of error accu-
mulation, e.g., the third step “sent7 & int2 ->
int3” in Figure 1 is not correct, which affects the
next step generation. The model may quickly gen-
erate invalid proofs with the increase of proof steps,
which leads to incorrectness of the tree structure.

To tackle the above problems, we propose FRVA,
a bidirectional stepwise proofs generation method.
We simulate the cognitive process of human rea-
soning and divide the entailment tree generation
into two systems. In System 1, we design a fact
retrieval module, which scores all candidate facts
from a global perspective and initially eliminates
knowledge facts with low relevance to the hypothe-
sis. In System 2, we propose a deductive-abductive
bidirectional proof generator. In this process, for-
ward deductive and backward abductive reasoning
generate candidate steps and verify each other to
satisfy bidirectional consistency. Meanwhile, we
design a multi-view contrastive loss integrating the
local level and global level information to pull the
semantic distance between the golden facts and hy-
potheses, which can help the model generate proof
steps closer to the hypotheses.

We improve the reliability of the stepwise

proof step in terms of both supportiveness (cross-
verification) and similarity (contrastive learning).
Finally, we align and fuse the bidirectionally gen-
erated structure trees and select the best proof tree.
Experiments on EntailmentBank show that FRVA
can obtain more reliable and valid reasoning paths
and outperform existing baselines regarding fact se-
lection and structural correctness. We also demon-
strate that the backward reasoning remains valid in
proof discovery. In summary, our contributions are
threefold:

• We design the fact retrieval module which
dynamically filters irrelevant knowledge facts
to the target hypothesis to reduce the search
space.

• We propose a bidirectional proof generation
method based on deductive-abductive reason-
ing, which mitigates error propagation from
both supportability and similarity perspectives
through cross-verification and multi-view con-
trastive learning.

• Through extensive experiments and analysis,
we shed light that FRVA can generate more
correct and reliable reasoning paths and im-
prove performance.

2 Related Work

Explainability in Question Answering. Recent
works explore different forms of QA explanation,
including retrieval to obtain multiple supporting
facts related to the question or answer (Yang et al.,
2018; Serrano and Smith, 2019; Niu et al., 2020;
Schuff et al., 2020; DeYoung et al., 2020; Valentino
et al., 2021). However, this method does not show
how the evidence reasoning leads to the question
hypothesis. In addition, some researchers use multi-
hop reasoning chains to combine model outputs
with human-understandable explanations (Yang
et al., 2018; Jhamtani and Clark, 2020; Xu et al.,
2021), where the explanation consists of a series
of inferences rather than a simple textual explana-
tion. Some works explain QA systems in a gener-
ative manner, which connects question to answer
as explanations in the free-form text (Wei et al.,
2022; Yoran et al., 2023; Wang et al., 2023), but
this explanation is not always reasonable and faith-
ful. Our work generates explanation in the form
of multi-step entailment trees proposed by Dalvi
et al. (2021). This form can show which facts and
how to combine them to produce new intermediate
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conclusions and ultimately prove the target hypoth-
esis, which makes it easier to check the reasoning
behind the model.
Structured entailment tree generation. Existing
methods can be categorized into two types: single-
step direct generation (Tafjord et al., 2021; Dalvi
et al., 2021) and stepwise generation (Liu et al.,
2022; Hong et al., 2022; Qu et al., 2022; Fei et al.,
2022; Bostrom et al., 2022; Morishita et al., 2023;
Kazemi et al., 2023; Creswell et al., 2023; Zhao
et al., 2023; Hong et al., 2023; Yuan et al., 2024;
Chen et al., 2024). In direct generation methods,
the entailment tree is modeled as a linearized se-
quence, and the entire reasoning chain is directly
generated in one shot using a seq2seq model. Such
methods simplify the task but make generating en-
tailment trees with longer steps difficult.

A series of recent works exploring stepwise gen-
eration methods include two main core compo-
nents: fact sentence selection and intermediate
conclusion generation. RLET (Liu et al., 2022)
introduces reinforcement learning to entailment
tree generation for the first time. NLProofs (Yang
et al., 2022) introduces an independent verifica-
tion mechanism to check the validity of the proof
step and prevent the generation of hallucinatory
invalid steps. IRGR (Ribeiro et al., 2022) proposes
an iterative retrieval-generation architecture, which
combines the generated intermediate conclusions
and premises for retrieval to generate entailment
trees better. FLD (Morishita et al., 2023) proposes
a deductive rule generation method based on formal
logic theory, which further enhances the deductive
reasoning ability of the model. FAME (Hong et al.,
2023) uses Monte Carlo planning to implement
faithful question answering, but they focus on QA
while we focus on explainability.

Prior works focus on forward reasoning, and
MetGen (Hong et al., 2022) further reveals the
effectiveness of backward reasoning. However,
they discretely perform single-step proof gener-
ation (i.e., it needs to enumerate different combi-
nations of facts to select the best single step). Our
method is also a bidirectional proof generation that
enhances the reliability of stepwise proof steps by
cross-verification and multi-view contrastive learn-
ing during the generation process.

3 Task Formulation

As shown in Figure 1, the input of the entail-
ment tree generation task consists of the hy-

pothesis H and a set of supporting facts S =
{sent1, sent2, . . . , sentn}. H is a declarative sen-
tence consisting of question-answer pairs (QA),
which can be proved by constructing one or more
reasoning steps with the knowledge from S. The
output is an entailment tree T where root nodes are
the target hypotheses H , leaf nodes are the facts
chosen from S, and intermediate nodes are the con-
clusions inti generated by the model. The tree T
is considered valid if all non-leaf nodes can be ef-
fectively entailed by their children. The entailment
tree can be formalized as T = {H,J ,M,V},
where the leaf node li ∈ J ∈ S, the intermedi-
ate conclusion inti ∈ M /∈ S, and the proof step
stepi ∈ V (a step consists of an intermediate con-
clusion and its premise, e.g., “sent1 & sent2 ->
int1”). We denote the gold entailment tree as Tgold
and all the leaf nodes it contains as the gold fact
Sgold. According to the different composition of
the input supporting facts S, it is divided into three
increasingly difficult tasks:

Task1 (no-distractor): Inputs = H + QA + leaf
sentences Sgold

Task2 (distractor): Inputs = H + QA + leaf
sentences Sgold + 15-20 distractor sentences

Task3 (full-corpus): Inputs = H + QA + a cor-
pus C

4 Method

The reasoning process of FRVA is shown in Fig-
ure 2, which consists of two systems. System 1
retrieves relevant facts, and System 2 contains the
bidirectional proof generator and the proof align-
ment and fusion module. We introduce the above
modules in section 4.1, 4.2 and 4.3.

4.1 Fact Retrieval

In the tree generation process, the search space of
reasoning grows with the increase of input facts,
and it is easy to generate complex tree branches.
Therefore, we first filter irrelevant facts from S to
reduce the search space and help efficiently and
accurately generate the proof steps.

Specifically, we aim to score all candidate facts
based on their relevance to hypotheses. Firstly, we
splice hypothesis H and fact senti and input them
into the pre-training model for encoding. The sen-
tence embedding h of hypothesis H and fi of each
fact are obtained by average pooling. Then, we use
a multi-layer perceptron to obtain the correlation
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Figure 2: The reasoning process of FRVA. The goal is to obtain one or more proofs steps based on given facts to
prove the hypothesis and generate a valid structured tree.

score of each fact:

Rfact(senti) = σ(MLPfact([h,fi])) (1)

where σ is the sigmoid activation function, [·] rep-
resents the splicing operation, and MLPfact is a
multi-layer perceptron composed of two-layer feed-
forward neural networks. In the tree structure, a
fact with a smaller depth should be closer to the
target hypothesis than a larger one (Hong et al.,
2022). Therefore, we use a marginal ranking as the
loss of the retriever during training:

Lfact =
1

N1

∑

s+1 ,s+2 ∈Sgold

ψ(Rfact(s
+
1 ),Rfact(s

+
2 ),Wfact)

+
1

N2

∑

s−∈Sgold

− log
(
1−Rfact(s

−)
)

(2)

where si denotes senti, s+1 is the fact with depth
less than s+2 in the golden tree, s− is the rest
of irrelevant facts in S, N1 is the number of
(s+1 , s

+
2 ) pairs, N2 is the number of disturbing

facts,Wfact is the margin of fact, ψ(x1, x2,W) =
max (0, x2 − x1 +W) is the marginal loss. Based
on the above fact scores, we design a threshold γ to
dynamically screen each candidate fact and obtain
a new set S′ containing m(m < n) facts.

4.2 Proof Generation
We build a bidirectional proof generator and design
cross-verification and multi-view contrastive loss
to enhance the reliability of proof steps from the
perspective of supportability and similarity.

Deductive-Abductive Generation (support-
ive): The backward reasoning is a top-down pro-
cess, which starts with a question and iteratively
decomposes the sub-questions until all of them can
be solved with the existing knowledge. We use a

pre-trained T5 model (Raffel et al., 2020) as the
stepwise deductive and abductive proofs generator.
We construct deductive and abductive training data
from the proof step of the golden tree. For deduc-
tive, we construct it in a bottom-up manner, where
the inputs of each step include the outputs of the
previous steps in addition to the hypothesis H and
the fact set S′. As shown in Figure 1, the output
of the first step model is: “$proof$ = sent14 &
sent25 -> int1”. We then use that step as part
of the model input for the next step and iteratively
generate proof steps until the output “hypothesis”
terminates.

For abductive, we construct training data from
the golden tree in a top-down manner. Taking the
deductive step “sent7 & int2 -> int3” in the
golden tree in Figure 1 as an example, the abduc-
tion model should output: “$proof$ = int3 &
sent7 -> int2”. In this case, int3 is the in-
termediate conclusion generated by the previous
abductive model. Then, we use this step as input
to the next step of the abductive model and itera-
tively generate the step, terminating when no more
intermediate conclusions are generated.

In the above way, we construct training data and
train the deductive and abductive generators:

Gt
ded = Encoder−Decoder(H,S′, G1:t−1

ded )

Gt
abd = Encoder−Decoder(H,S′, G1:t−1

abd )
(3)

where t represents the number of steps in itera-
tive generation, and Gt represents the proof step
generated at time t. We maximize the conditional
probability likelihood loss during training. It is
worth noting that joint training of deductive and ab-
ductive generators may get better gains, and limited
by resources, we train the two individually.

In reasoning, we use the trained proofs gen-
erators Gt

ded and Gt
abd to generate u candidate
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Figure 3: Multi-view contrastive learning method.

steps by beam search respectively, and then de-
sign a cross-verification mechanism to select the
most appropriate candidate step. Specifically, the
candidate deductive step steptded is checked with
the abductive verifier Vabd, and vice versa. Be-
cause we think deductive and abductive reasoning
should work together, the proof steps with bidi-
rectional consistency are more reliable. For the
training of the verifier, we convert the step (sent1
& sent2 -> inti) in the golden tree into abduc-
tive steps (inti & sent2 -> sent1, inti &
sent1 -> sent2), and construct deductive pairs
(sent1, sent2, inti) and abductive pairs (inti,
sent2, sent1), (inti, sent1, sent2), respec-
tively. Then, we jointly learn the deductive and
abductive verifier Vded−abd by fine-tuning the pre-
trained albert-xxlarge-v2 (Lan et al., 2020) model.
We denote both the above deductive and abductive
pairs as (x1, x2, y) and use a multilayer perceptron
to score the candidate step:

Vded(stepded) = σ(MLPded([x1;x2]))

Vabd(stepabd) = σ(MLPabd([y;x2]))
(4)

The golden proof step is used as the positive
example, and the negative example is constructed
by randomly replacing one of the premises with a
non-golden fact in S, and the positive-to-negative
proportion is set to 1:1. The loss function for train-
ing the verifier is the binary cross-entropy loss.

Multi-view Contrastive Learning (similarity):
In the stepwise generator of deductive and abduc-
tive, we design a multi-view contrastive loss in-
tegrating local and global information to pull the
distance between the golden facts and target hy-
pothesis, which makes the generation of proof steps
closer to the hypothesis, as shown in Figure 3.

Specifically, we first design the local contrastive
information at the Encoder stage. We encode the
hypothesis H and fact S′ to obtain the sentence
representation h′ for the hypothesis and f ′ for
each fact. Then, we take the leaf node Sgold of the

golden tree as positive examples and calculate the
cosine similarity between non-golden facts in S′

and the hypothesis. The facts with scores greater
than µ are also taken as positive examples, and
other facts in S′ are taken as negative examples:

senti =

{
positive, if senti ∈ J or scorecos > µ

negative, otherwise
(5)

where scorecos is the cosine similarity calculation.
We construct the local contrastive loss based on the
above positive and negative samples:

LLocal = − log
∑

fi
′+∈S′

gold

exp
(
sim(h′,f ′+

i )/τ
)

∑
fi

′∈S′ exp (sim(h′,f ′
i)/τ)

(6)
where fi

′+ denotes the embedding of the gold
fact sentence, S′

gold is the set of gold facts from
S′, τ is a configurable temperature coefficient hy-
perparameter, and sim(·) is the similarity measure
function:

sim(x, y) =
xT y

∥x∥∥y∥ (7)

In the Decoder stage, we design the contrastive
loss of global information. For the output of the
generation model, the difference in semantic infor-
mation between sentences cannot be completely
separated by positive and negative sample labels.
In other words, even negative samples are not nec-
essarily irrelevant to the target output.

Therefore, we obtain z candidate steps and
their embedding representations {c1, c2, . . . , cz}
through beam search, and then we construct
the global contrastive loss by combining
{c1, c2, . . . , cz} and the embedding representation
co of the golden step and the embedding repre-
sentation co′ of the golden step for the rest of the
samples within the batch. In this way, we can
construct the sample set W = {k1, k2, . . . , kr}
and sample pair (k+, k−) ∈ W , where + and −
are determined by the ranking of the samples,
which is obtained by calculating sequence-level
scores (e.g., BLEU) with the target output, and
this can reflect the relative differences between
the comparison samples. The global contrastive
learning loss is:

LGlobal =
∑

(k+,k−)∈W
max(0, cos(Ex, Ek+)

− cos(Ex, Ek−) +Wpair)

(8)

where Ex is the embedding of the target output
co, Ek+ , Ek− is the embedding of the sample, and
Wpair is the margin.
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Loss Function. In the training stage, we jointly
learn the local and global contrastive loss with the
stepwise proof generator. For example, the loss of
the deductive generator is computed as:

Lded = LLocal + LGlobal + Ldedgenerator (9)

where Ldedgenerator is the conditional probability like-
lihood loss of the seq2seq generative model:

Ldedgenerator =
Z∑

i=1

log pθ(G
t
i|H,S′, G1:t−1

i ) (10)

pθ(G
t
i|H,S′, G1:t−1

i ) = pθ(s
t
1, s

t
2, . . . , s

t
L|X)

=
L∏

l=1

pθ(s
t
l |st<l, X)

(11)
where X = (H,S′, G1:t−1

i ), each token in step
Gt

i is denoted as {st1, st2, . . . , stL}, Z denotes the
total number of training data and L denotes the
total number of tokens. The loss of the abductive
generator Labd is calculated in the same way as
above.

4.3 Alignment and Fusion
We further align the trees Tded and Tabd obtained
by Gt

ded and Gt
abd into a proof graph and search

for the best structure tree according to the score of
each node, where the node of the graph is node ∈
{J ∪M}, and the edge is the premise node of the
proof step stepi ∈ V points to the conclusion node.

Specifically, we first construct the initial graph
Ginit according to Tded, and then integrate the ab-
duction tree Tabd whose confidence is greater than
the threshold β into Ginit, expanding the nodes and
edges of the proof graph while assigning scores to
each node:

nodei =

{
1.0, if nodei ∈ J
logs+vers, otherwise

(12)

where logs is the likelihood score when the autore-
gressive model generates an intermediate conclu-
sion, and vers is the step score of the verifier for the
intermediate conclusion. As described in section
4.2, we use the abductive score for the deductive
step, and vice versa. For searching, we follow the
work of Yang et al. (2022) explore the proof of dif-
ferent paths on the graph and extract the best proof
tree based on node and step scores. The overall
flow of FRVA is shown in Algorithm 1 in Appendix
A.

Train Dev Test All
Question / Tree 1,131 187 340 1,840
Reasoning steps 4,175 597 1,109 5,881

Table 1: Summary statistics for EntailmentBank dataset
splits.

5 Experiments

5.1 Dataset

We evaluate our method on EntailmentBank (Dalvi
et al., 2021), an expert-annotated benchmark for
QA explanation in the form of entailment trees. It
contains a total of 1,840 entailment trees and 5,881
reasoning steps, each showing how QA pairs are
entailed by a small number of related sentences.
On average, each entailment tree has 7.6 nodes
(including leaf nodes, intermediate nodes, and root
nodes) and about 3.2 entailment steps. The detailed
statistics of the data are shown in Table 1.

5.2 Baselines and Evaluation Metrics

We use the direct generation method Entailmen-
tWriter (Dalvi et al., 2021) and the recent stepwise
generation methods IRGR (Ribeiro et al., 2022),
RLET (Liu et al., 2022), MetGen (Hong et al.,
2022), NLProofs (Yang et al., 2022) and FLD (Mor-
ishita et al., 2023) as comparison baselines. We
evaluate the structured tree using the metrics pro-
posed by Dalvi et al. (2021), which includes the F1
and accuracy of the Leaves, Steps and Intermediate
conclusions, in addition to the overall accuracy of
the tree structure. The baselines, evaluation met-
rics, and implementation details can be found in
Appendix B.

5.3 Main Results

The results of the experiments on EntailmentBank
are shown in Table 2. We can find the following
conclusions from the experimental results.

First, FRVA generates more correct proofs. In
task1, we improve the overall accuracy of the tree
by 1.4% with the same settings (the FLD method
uses a lot of extra data for training, nevertheless,
our method is also 1.1% better than theirs). Mean-
while, FRVA achieves SOTA performance on the
proof step and intermediate metrics, and the ac-
curacy improves by 2.1% and 1.8%, respectively.
In Task2, FRVA improves the overall accuracy of
the tree from 33.3% to 34.4%. It also achieves the
best performance on the proof step and interme-
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Leaves Steps Intermediates OverallTask Method
F1 AllCorrect F1 AllCorrect F1 AllCorrect AllCorrect

EntailmentWriter (T5-11B) 99.0 89.4 51.5 39.2 71.2 38.5 35.3
EntailmentWriter 98.7 86.2 50.5 37.7 67.6 36.2 33.5
IRGR* 97.6 89.4 50.2 36.8 62.1 31.8 32.4
RLET 100.0 100.0 54.6 40.7 66.9 36.3 34.8
MetGen 100.0 100.0 57.7 41.9 70.8 39.2 36.5
FLD† 99.0 92.7 55.5 42.2 73.4 41.3 39.2
NLProofs 97.8 ± 0.2 90.1 ± 1.2 55.6 ± 0.6 42.3 ± 0.4 72.4 ± 0.5 40.6 ± 0.7 38.9 ± 0.7

Task1

FRVA (ours) 98.2 ± 0.3 94.0 ± 1.0 57.8 ± 0.4 44.4 ± 0.6 73.5 ± 0.4 42.4 ± 0.3 40.3 ± 0.7
EntailmentWriter (T5-11B) 89.1 48.8 41.4 27.7 66.2 31.5 25.6
EntailmentWriter 84.3 35.6 35.5 22.9 61.8 28.5 20.9
IRGR* 69.9 23.8 30.5 22.4 47.7 26.5 21.8
RLET 81.0 39.0 38.5 28.4 56.3 28.6 25.7
MetGen 82.7 46.1 41.3 29.6 61.4 32.4 27.7
FLD† 88.4 53.6 45.6 33.8 67.9 36.1 32.6
NLProofs 90.3 ± 0.4 58.8 ± 1.8 47.2 ± 1.7 34.4 ± 1.7 70.2 ± 0.5 37.8 ± 1.6 33.3 ± 1.5

Task2

FRVA (ours) 91.3 ± 0.3 60.5 ± 0.8 48.0 ± 0.6 35.8 ± 0.5 71.1 ± 0.4 39.1 ± 0.9 34.4 ± 0.8
EntailmentWriter (T5-11B) 39.9 3.8 7.4 2.9 35.9 7.1 2.9
EntailmentWriter 35.7 2.9 6.1 2.4 33.4 7.7 2.4
IRGR* 45.6 11.8 16.1 11.5 38.8 20.9 11.5
RLET 38.3 9.1 11.5 7.1 34.2 12.1 6.9
MetGen 34.8 8.7 9.8 8.6 36.6 20.4 8.6
FLD† 43.6 9.7 12.1 8.3 43.0 20.1 8.3
NLProofs 43.2 ± 0.6 8.2 ± 0.7 11.2 ± 0.6 6.9 ± 0.7 42.9 ± 1.0 17.3 ± 0.5 6.9 ± 0.7

Task3

FRVA (ours) 44.0 ± 0.2 8.9 ± 0.3 11.6 ± 0.2 7.53 ± 0.2 43.2 ± 0.4 17.9 ± 0.3 7.5 ± 0.2

Table 2: Results of proof generation on EntailmenBank. All baselines using the T5-large model, except for those
marked in parentheses. *: IRGR in task3 retrieves facts from the entire corpus, while the rest of the methods use the
retrieved 25 fact sentences provided in the original dataset. †: FLD uses additional data to generate deductive steps
for training. Bold and underlined texts highlight the best method and the runner-up.

diate metrics. This shows that our bidirectional
generation method can improve the reliability of
the proofs step, thus mitigating the error propaga-
tion during stepwise generation and enabling the
model to generate better intermediate conclusions.

Second, FRVA can identify relevant support-
ing facts more effectively. In task1, FRVA im-
proves the F1 and accuracy of leaf nodes by 0.4%
and 3.9% compared to NLProofs and achieves a
large improvement compared to all baselines ex-
cept RLET and MetGen. Among them, MetGen
manually annotates templates for different reason-
ing types and augments proof generation with ad-
ditional Wikipedia training data. In task2, FRVA
improves the F1 and accuracy of leaf nodes by
1.0% and 1.7%, respectively, compared to the best
baseline, and it achieves a more significant im-
provement compared to the other baseline meth-
ods, which can be improved by 8.7% and 19.3%
on average. This indicates that fact retrieval can
filter irrelevant facts and reduce the search space in
the subsequent reasoning process. Moreover, we
design cross-verification and contrastive learning
that can help the model more accurately select facts
needed to prove the hypotheses. For task3, we use

the same retrieval results generated by Dalvi et al.
(2021). We can see that our methods achieve com-
petitive performance with the baseline except for
the IRGR and MetGen.

We also use a larger pre-trained model (e.g.,
Flan-T5-Large (Chung et al., 2022)) as the proof
step generator, and the experiment results are
shown in Appendix C. We also prompt large lan-
guage models (LLMs) with in-context samples to
test their ability of generating proof steps. Ap-
pendix G shows that our method is significantly
beyond the LLMs.

6 Analysis

6.1 Ablation Study

To evaluate the effectiveness of each module, we
conduct an ablation study on Task2 as shown in
Table 3. We can see that all the metrics exhibit
an increasing trend when we introduce each com-
ponent sequentially. For example, we introduce
contrastive learning in deductive generation, which
can significantly improve the structural correctness
of the tree, which benefits from the contrastive loss
pulling the distance between proof and target hy-
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Leaves Steps Intermediates OverallMethod
F1 AllCorrect F1 AllCorrect F1 AllCorrect AllCorrect

Only Deductive generate 89.9 56.5 45.7 32.9 69.1 36.5 31.5
+ Multi-view CL 90.1 56.8 46.4 33.8 69.0 37.4 33.3
+ Abductive generate 89.8 57.1 47.3 34.4 69.6 36.5 33.5
+ Fact Retrieval 90.9 61.2 47.4 35.3 71.1 38.2 33.5
+ Cross Verifier (FRVA) 91.2 60.3 48.8 36.2 71.6 38.5 34.7

Table 3: Results of the ablation experiments on the Task2 test set, where we sequentially add each of the components
proposed on the stepwise deductive generation baseline.

Figure 4: Results of test sets for Leaves F1 with different
proof step lengths in Task2.

Method Task1 Task2
SI+Halter 72.4 55.9
SI+Halter+Search 83.2 72.9
FAME 91.5 78.2
FRVA (Ours) 92.2 85.8

Table 4: Experiment results on the EntailmentBankQA.
The results for SI are from Creswell et al. (2023), and
the results for FAME are from Hong et al. (2023).

pothesis. Moreover, when we introduce the fact
retrieval module, Leaves F1 and AllCorrect met-
rics improve by 1.1 and 4.1, respectively, which
shows that irrelevant facts can be effectively re-
duced. When we introduce the cross-verification, it
can be seen that all metrics have made significant
improvements, which indicates that more reliable
steps can be selected through bidirectional consis-
tency verification to better generate a proof tree.

6.2 Effect of different Proof Length
Multi-step proof trees are difficult to generate ac-
curately due to their complex structure. To explore
the effectiveness of FRVA on multi-step generation,
we break down the test performance of Task2 by
the step length of the golden tree. The performance
of the leaf node is shown in Figure 4, and the rest of
the metrics are shown in Appendix D. We observe
that the performance decreases significantly when

Figure 5: Results of test sets for Leaves AllCorrect with
different proof step lengths in Task2.

Method eQASC eOBQA
P@1 NDCG P@1 NDCG

EntailmentWriter 52.48 73.14 69.07 89.05
EntailmentWriter-Iter 52.56 73.28 72.15 90.19
MetGen 55.81 74.19 74.89 90.50
FRVA (Ours) 60.12 89.81 76.68 93.46

Table 5: Experiment results on the eQASC and eOBQA.

proof length increases, which indicates that the gen-
eration of multi-step proof trees remains challeng-
ing. Nevertheless, we can see that improving leaf
node accuracy is more significant for FRVA than
without cross-verification and fact retrieval. In the
multi-step case, the above two modules can elim-
inate the distraction of some irrelevant facts and
provide more reliable knowledge facts for proving
the target hypothesis.

6.3 Cross-dataset Experiments
To further validate the generalization of our method,
we perform cross-dataset experiments on other
datasets. Specifically, we conduct experiments
on the EntailmentBankQA, eQASC, and eOBQA
datasets. Among these, EntailmentBankQA was
constructed by Hong et al. (2023) following
Creswell and Shanahan (2022) conversion of En-
tailmentBank to a more challenging version of QA
by adding 4-way multiple options from the ARC
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Figure 6: Examples of multi-step proofs generated by
different models in Task2.

dataset for each hypothesis. eQASC and eOBQA
were constructed by Jhamtani and Clark (2020)
that collect one-step entailment trees from QASC
(Khot et al., 2020) and OpenBookQA (Mihaylov
et al., 2018) questions, which require the selection
of valid single-step trees from the candidate set and
evaluate the results with P@1 and NDCG metrics
(Jhamtani and Clark, 2020).

Following the previous work, we directly ap-
ply Task2’s model for question answering on the
above three datasets, and the experimental results
are shown in Table 4 and 5. We can see that FRVA
exhibits a great advantage in generalization across
datasets, which validates the effectiveness of our
method.

6.4 Case Study

We further perform a case study on the proof tree
generated by FRVA, as shown in Figure 6. The
golden tree contains six proof steps, whereas the
previous deductive generation method generated
only four proof steps. We can see that the step
“sent6 & sent4 -> int1” is further supplemented
to make the prediction tree closer to the standard
tree in terms of the overall structure by introducing
abductive reasoning. However, we find that it still
has unreliable steps, such as sent20 and sent17.
Therefore, we introduce fact retrieval and bidirec-
tional verification, and we find that they can remove
irrelevant facts and select more reliable steps. Fi-
nally, FRVA can obtain results closer to those of
the golden tree.

6.5 Error Analysis

To understand the shortcomings of our model, we
further analyze the output of FRVA. We select 50
proof trees of generated errors on the test set of
Task2, and we classify the error types into the fol-
lowing two categories:

Reasoning process mistake. The missing or
redundant leaves lead to incorrect proof steps, mak-
ing the model generate incorrect reasoning pro-
cesses (42% of errors). For example, when explain-
ing the hypothesis “forming fossil fuels requires
deposition and burial of decaying plants”, the ab-
sence of the premises “forming fossil fuels requires
deposition and burial of decaying vegetation” and
“plants are a kind of vegetation” makes it impossi-
ble to explain the hypothesis.

Tree structure diversity. For proof trees with
steps greater than 1, there are usually multiple rea-
soning paths from facts to hypotheses, so it is dif-
ficult to capture the validity of different structure
trees by evaluating them directly against the golden
tree (36% of errors). As shown in Figure 12 of Ap-
pendix E, the prediction tree contains three premise
steps, and the Steps and Overall score are 0 under
the automatic evaluation, because the prediction
tree does not match the golden tree. However, the
prediction tree should be valid because each step
can be entailed by the premises. In the future, other
evaluation methods should be introduced to better
evaluate the different structural trees and thereby
present the true logical reasoning ability of the
model. In addition, some of the errors are repeat-
ing premises as conclusions, or re-generating steps
that are already in place (22% of errors).

7 Conclusion

In this paper, we propose FRVA, a bidirectional
entailment tree generation method based on fact
retrieval and verification augmented, which divides
the generation process into two systems. System 1
makes the initial judgment, and System 2 makes the
refined reasoning. We design a deductive-abductive
bidirectional reasoning method and enhance the ef-
fectiveness of the proof step from supportive and
similarity perspectives through cross-verification
and multi-view contrastive learning. Experiments
show that FRVA outperforms the existing baselines
regarding fact selection and structural correctness.
It is worth exploring to design more efficient bidi-
rectional reasoning methods and comprehensive
evaluation systems in the future.
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Limitations

Despite our method to achieving the performance
increase, there is still substantial room for future
improvements. First, we set the termination condi-
tion for the backward abductive reasoning that no
new intermediate conclusions will be generated in
the iterative step generation process. However, this
will ignore the proof steps that contain multiple in-
termediate conclusions as premises. If there are bet-
ter judgment conditions, it will be more helpful to
generate the structure tree. Second, like prior work
(Tafjord et al., 2021; Dalvi et al., 2021), we con-
catenate the filtered facts into a long text sequence
and encode it with the language model, which can
be limited by the input length constraints of the
language model and affect the practical application
of proof generation. Finally, the current automatic
evaluation makes it difficult to accurately capture
different tree structures (as we discussed in Sec-
tion 6.5), which can underestimate the reasoning
ability of the language model. Therefore, we leave
the exploration of better backward reasoning and
accurate evaluation of structural trees for future
work.

Ethics Statement

Explainable QA is an important branch of the ques-
tion answering domain, where the explanations
given by the model must be faithful and reliable.
Therefore, giving the reasoning process from the
known facts to the answer is crucial for the trans-
parency of the model. The data used in our work
come from public datasets. Our proposed bidirec-
tional proof generation method can improve the
reliability of the reasoning process.
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A The overall flow of FRVA

The overall flow of FRVA is shown in Algorithm 1.

B Experiment details

We describe the baselines, evaluation metrics, and
implementation details used in the experiment.

B.1 Baselines

EntailmentWriter (Dalvi et al., 2021) provides a
powerful baseline by linearizing the tree structure
and generates the entire tree as well as intermedi-
ate conclusions in one shot using a sequence-to-
sequence model. It is available in two versions, im-
plemented on T5-11B (11 billion parameters) and
T5-Large (770 million parameters) (Raffel et al.,
2020).
IRGR (Ribeiro et al., 2022) designs an iterative
retrieval generation framework that improves the
retrieval results of Task 3.
RLET (Liu et al., 2022) introduces reinforcement
learning for the first time to entailment tree gen-
eration tasks, where single-step reasoning is per-
formed iteratively through sentence selection and
deductive generation modules.
MetGen (Hong et al., 2022) iteratively generates
entailment trees through multiple modules and rea-
soning controllers.
NLProofs (Yang et al., 2022) guides the generation
of proof steps through an independent verifier.
FLD (Morishita et al., 2023) designs new deductive
data generation methods based on the synthetic
corpora, and uses the new data to train and then
fine-tune the EntailmentBank data.

B.2 Evaluation Metrics

Leaves (F1, AllCorrect): To evaluate the perfor-
mance of the model in recognizing facts related to
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Algorithm 1: FRVA Proof Tree Generation
Input: Hypothesis H , Supporting facts

S = {sent1, sent2, ..., sentn}, Fact
RetrieverRfact, Deductive and
Abductive generator Gded, Gabd,
Cross-verifier Vded−abd

Output: Proof Tree Tpred
1 Fact Retrieval (System 1):
2 S′ = {};
3 for senti in S do
4 fact_score =Rfact(senti);
5 if fact_score > γ then
6 Add senti to S′;

7 Detailed stepwise reasoning (System 2):
8 for t = 1 to max_step do
9 steptded, stded← Gded(H , S′, stept−1

ded );
10 vtded← Vabd(steptded) + stded;
11 if steptded is final then
12 proofpredded = step1:tded,Aggre(v

1:t
ded);

13 break;

14 for t = 1 to max_step do
15 steptabd, stabd← Gabd(H , S′, stept−1

abd );
16 vtabd← Vded(steptabd) + stabd;
17 if steptabd is final then
18 proofpredabd = step1:tabd,Aggre(v1:tabd);
19 break;

20 T pred
ded , sded = proofpredded ;

21 T pred
abd , sabd = proofpredabd ;

22 G ← initialize(T pred
ded , sded);

23 if sabd > β then
24 G ← update(G, T pred

abd , sabd);

25 Tpred← extract_proof(G);
26 return Tpred;

questions and answers. We compute F1 by compar-
ing the leaf node Spred of Tpred with the leaf node
Sgold of Tgold, and AllCorrect is 1 if they match
exactly.
Steps (F1, AllCorrect): To evaluate whether the
predicted steps are structurally correct. We com-
pute F1 by comparing the set of premises (child
nodes) of the intermediate conclusion node intpred
of Tpred and the aligned conclusion node intgold in
Tgold, and AllCorrect is 1 if they match exactly.
Intermediates (F1, Allcorrect): To evaluate
whether the intermediate conclusion of the predic-
tion is correct or not. We compute F1 by comparing

γ Coverage Number Leaves
3.9e-7 96.2% 14 60.3
2.5e-7 98.8% 17 61.5
2.1e-7 99.5% 19 58.9

Table 6: Statistics for different thresholds γ on the task2
test set. “Coverage” is the golden fact coverage, “Num-
ber” is the average number of facts, and “Leaves” is the
accuracy of the leaf nodes on task2.

the intermediate conclusion node intpred of the pre-
diction tree Tpred with the aligned conclusion node
intgold in the gold tree Tgold. Then we compute the
BLEURT* score between them, if it is greater than
0.281 (we following Dalvi et al. (2021)), then the
intermediate conclusion of the prediction intpred
is considered to be correct, and if the intermedi-
ate conclusions of the prediction tree Tpred are all
correct, then AllCorrect is 1.
Overall (AllCorrect): Test the above three metrics
together. If the AllCorrect scores for Leaves, Steps,
and Intermediates of the prediction tree Tpred are
all 1, the overall correctness of the tree is 1. Note
that this is a strict metric, as any error in Tpred
results in a score of 0. For all metrics we report the
results generated by their official evaluation code†.

B.3 Implementation Details
Following previous work, our proofs generators
(deductive and abductive generators) also use a
pre-trained T5-Large (Raffel et al., 2020) model.
The fact retriever and deductive-abductive cross-
validator are implemented with fine-tuned albert-
xxlarge-v2 (Lan et al., 2020). We use AdamW
(Loshchilov and Hutter, 2019) as the optimizer with
a learning rate of 1e-5 and batch size of 4. We set
the maximum length of the input sequence to 1024.
The threshold γ is set to 2.5e-7, and the marginal
Wfact is set to 0.1 in section 4.1. We filter the facts
after the first stage to get a different number of
knowledge facts for each hypothesis (the average
number of facts is reduced from 25 to 17 as shown
in Table 6). The temperature coefficient τ is set
to 0.07, the marginalWpair is set to 0.1, the beam
size u is set to 10, µ is set to 1.0, and z is set to
10 in section 4.2. β is set to 0.85 in section 4.3.
Hyperparameters are tuned to the validation data
separately for each task/method. For the deductive
and abductive proof generators, we set a maximum

*We use the bleurt-large-512 model following Dalvi
et al. (2021)

†https://github.com/allenai/entailment_bank
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Leaves Steps Intermediates OverallMethod
F1 AllCorrect F1 AllCorrect F1 AllCorrect AllCorrect

ConDec (Flan-T5-Large 0.8B)† 90.73 58.82 49.17 36.18 69.56 36.76 33.53
ConDec (Flan-T5-XL 3B)† 91.10 60.59 50.70 37.35 70.74 38.24 34.71
FRVA (T5-Large 0.8B) 91.23 60.29 48.77 36.18 71.55 38.53 34.71
FRVA (Flan-T5-Large 0.8B) 92.04 62.94 49.68 35.88 71.43 37.65 34.41

Table 7: Comparison results with larger models on Task 2 test set of EntailmenrBank. † are results from Su et al.
(2023). Bold and underlined texts highlight the best method and the runner-up.

Leaves Steps Intermediates OverallTask Method
F1 AllCorrect F1 AllCorrect F1 AllCorrect AllCorrect

LMPM (Yuan et al., 2024) 99.8 99.4 57.8 43.8 72.8 42.8 38.5
SEER (Chen et al., 2024) 100.0 100.0 67.6 52.6 70.3 42.6 40.6Task1
FRVA-one (ours) 98.4 95.3 58.0 45.0 74.1 42.8 41.2
LMPM (Yuan et al., 2024) 81.1 47.1 42.6 31.4 61.7 34.3 29.4
SEER (Chen et al., 2024) 86.4 53.5 56.8 39.7 66.3 38.3 34.7Task2
FRVA-one (ours) 91.5 61.4 48.8 36.4 71.5 40.6 35.3

Table 8: Comparison results with the latest related work on Task1 and Task2. We report here the best results of
FRVA on the EntailmentBank test set.

Figure 7: Results of test sets for Steps F1 with different
proof step lengths in Task2.

number of steps of 20 as an additional condition
for termination to prevent the infinite generation of
steps.

We train the model on Task1 and Task2, respec-
tively. For Task3, Dalvi et al. (2021) retrieves 25
supporting facts for each hypothesis, and we use
the same retrieval results. Following their work,
we utilize the model trained on Task2 to test its
zero-shot performance on Task3. All comparative
baseline results report the results in the original
paper. For our method on test set, we report the
average performance and standard deviation over
5 independent runs. All experiments are run on
a machine with one NVIDIA Tesla A100 (40GB)
GPU.

Figure 8: Results of test sets for Steps AllCorrect with
different proof step lengths in Task2.

C Results of other experiments

Su et al. (2023) propose a contrast stepwise decod-
ing method, ConDec, that employs an additional
checker (using the T5-11B model) to construct the
contrast samples. It is worth noting that their exper-
iment uses a larger model Flan-T5-XL (3B) (Chung
et al., 2022) as the backbone and points out that
the model with larger parameters has better logical
reasoning ability. Our work belongs to the contem-
poraneous work with ConDec. Nevertheless, we
also compare with it as shown in Table 7.

It can be seen that FRVA outperforms the Con-
Dec method when using the Flan-T5-Large model,
and at the same time achieves a new state-of-the-art
performance in the Leaves F1 and AllCorrect met-
rics, which are even higher than the larger model
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Figure 9: Results of test sets for Intermediates F1 with
different proof step lengths in Task2.

Figure 10: Results of test sets for Intermediates AllCor-
rect with different proof step lengths in Task2.

ConDec (Flan-T5-XL (3B)) by 0.94 and 2.35. Due
to resource constraints, we have not yet experi-
mented on Flan-T5-XL (3B), but we still achieve
comparable or better results than the larger model.

Furthermore, we compare FRVA with the most
recent related work (Yuan et al., 2024; Chen et al.,
2024), as shown in Table 8. We can see that FRVA
outperforms all baselines except the Steps metric.
It is worth noting that Overall AllCorrect is a strict
metric that is 1 when the leaf nodes and intermedi-
ate conclusions match the golden tree exactly. We
can see that FRVA is achieved the optimization on
this metric, which demonstrates that our method
is able to obtain a more accurate entailment tree
to support the construction of a explainable QA
system.

D Experiment results for different proof
length

The results of the metrics for different proof lengths
on the test set of task2 as shown in Figures 7, 8, 9,
10, 11. It is worth noting that the automatic evalu-
ation metrics underestimate the logical reasoning
power of language models because the entailment
tree containing multiple steps may have multiple

Figure 11: Results of test sets for Overall AllCorrect
with different proof step lengths in Task2.

NLProofs FRVA
Facts Correctness 4.52 4.58
Single-step Validity 3.80 4.14
Conclusion Consistency 3.86 4.22
Overall Correctness 25 30

Table 9: Human evaluation results for 50 randomly
selected samples in the Task 1 test set.

reasoning paths, as we described in Section 6.5.
Therefore, the performance for different lengths
only roughly reflects the multi-step reasoning capa-
bilities of different models.

E Error Analysis Sample

An entailment tree containing multiple proof steps
may have multiple reasoning paths pointing from
premises to hypotheses, as shown in Figure 12.
The current automatic evaluation often struggles to
capture the diversity of tree structures effectively.
Therefore, it remains worth exploring how to evalu-
ate the validity of structured trees more effectively
in the future.

F Human Evaluation

As mentioned above, due to the diversity of tree
structures, automatic evaluation metrics have limi-
tations and do not accurately evaluate the structured
reasoning ability of the model. Therefore, we fur-
ther perform a human evaluation. We randomly
selected 50 instances from EntailmentBank’s Task1
test set and evaluated the model results against four
criteria: (1) Facts Correctness: evaluates whether
the leaf nodes of the prediction tree are correct and
necessary to prove the hypothesis. (2) Single-step
Validity: evaluates whether the generated interme-
diate conclusion can be derived from two or more
premises. (3) Conclusion Consistency: assesses
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Leaves Steps Intermediates OverallMethod
F1 AllCorrect F1 AllCorrect F1 AllCorrect AllCorrect

EntailmentWriter (T5- Large) 86.2 43.9 40.6 28.3 67.1 34.8 27.3
EntailmentWriter (T5-11B) 89.4 52.9 46.6 35.3 69.1 36.9 32.1
GPT-3 (7-shot ICL)† 64.2 ± 2.3 15.3 ± 1.9 17.6 ± 0.6 12.3 ± 1.4 53.6 ± 1.4 22.3 ± 1.1 12.3 ± 1.4
Codex (7-shot ICL)† 68.9 ± 3.7 19.8 ± 3.2 21.4 ± 3.0 14.6 ± 1.7 55.6 ± 2.2 23.2 ± 1.9 14.4 ± 1.4
GPT-3.5-turbo (7-shot ICL) 60.9 3.5 16.5 2.8 41.7 9.6 3.2
GPT-3.5-turbo (SCOT) 62.3 9.6 17.7 6.4 43.4 14.0 5.9
GPT-4 (7-shot ICL) 75.0 24.1 23.0 4.3 60.5 20.9 10.5
GPT-4 (SCOT) 76.1 25.4 23.3 16.1 62.3 27.8 15.5
FRVA (ours T5-Large) 90.1 56.2 50.8 38.0 72.6 40.7 35.8
FRVA (ours Flan-T5-Large) 91.8 60.0 54.6 42.3 74.0 43.3 40.1

Table 10: Results of different models on EntailmentBank’s Task2 validation set. † are results from Yang et al. (2022).
We prompt the large language model using 7-shot ICL and 1-shot COT, respectively.

whether the intermediate conclusions generated
are consistent with facts and common sense and
whether they are simple repetitions of the premises.
(4) Overall Correctness: evaluates whether the
final hypothesis can be deduced from all generated
intermediate conclusions in the prediction tree. For
the overall correctness metric, we count the number
of valid trees. For the remaining metrics, we rate
the generated reasoning steps from 1 (poor) to 5
(very good) and report the average score. We com-
pared the results of FRVA with the baseline method,
NLProofs (Yang et al., 2022), and the results are
shown in Table 9. We can see that our method
exhibits excellent performance on all metrics, es-
pecially on the single-step validity and conclusion
consistency metrics. This demonstrates that our
method is better able to generate intermediate rea-
soning steps.

G Prompting with LLMs

With the help of large-scale pre-training, instruc-
tion fine-tuning, and human feedback reinforce-
ment learning strategies, Large Language Models
(LLMs) have made significant progress in natu-
ral language processing (Ling et al., 2023; Yao
et al., 2023). However, researchers have begun
to doubt the effectiveness of LLMs in complex
logical reasoning tasks and to evaluate the capabil-
ity of LLMs from different reasoning perspectives
(Xu et al., 2023), such as commonsense reason-
ing (Bian et al., 2023), mathematical reasoning
(Imani et al., 2023), and multilingual reasoning
(Bang et al., 2023) and so on. The entailment tree
comprises multiple reasoning steps annotated by
experts, which involves complex reasoning in real-
world scenarios and presents a great challenge to
the reasoning ability of the model. Therefore, we

test the performance of LLMs on this task and de-
tect their logical reasoning ability.

We explore the logical reasoning ability of LLMs
using both in-context-learning (ICL) and thought
of chaining (COT) for LLMs, as shown in Fig-
ures 13 and 14. We use the above instructions to
prompt for ChatGPT‡ and GPT-4 (OpenAI, 2023).
Specifically, we randomly sample 7 context exam-
ples from the training set of EntailmentBank (Task
2) to prompt the LLMs directly. In addition, we
also design a stepwise thought of chaining (SCOT)
method to further stimulate the step-by-step rea-
soning ability of the large model. The experiment
results on the validation set of task 2 are shown in
Table 10.

We set only 1-shot instructions for the input of
COT, limited by the input length and resources of
LLMs. Nevertheless, we can see that GPT-4 gen-
erally outperforms GPT-3.5-turbo in all metrics,
which demonstrates that GPT-4 has stronger logi-
cal reasoning and better instruction following. We
also find that COT outperforms ICL, which indi-
cates that the stepwise guide to the larger model can
obtain a more accurate proof. GPT-4 can choose
more accurate facts and generate more plausible in-
termediate conclusions, but our fine-tuned smaller
models (e.g., T5, Flan-T5) significantly outper-
form LLMs on all metrics, which indicates that
well-trained language models can capture the cor-
relations between the knowledge facts and target
hypotheses. Although large language models have
some logical reasoning capabilities, it remains chal-
lenging to generate complex multi-step proofs ac-
curately.

‡https://openai.com/blog/chatgpt
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Question: Students are learning about the natural resources in Maryland. One group of students researches information about renewable natural resources in the state. The other 
group researches information about nonrenewable natural resources in the state. The resources the students investigate include plants, animals, soil, minerals, water, coal, and oil. 
Which of the following human activities negatively affects a natural resource?
Answer: directing runoff from cropland into a lake
Support Facts:
sent1: absorbing something harmful has a negative impact on a thing
sent2: damming a river can cause a lake to form
sent3: erosion sometimes decreases the amount of nutrients in soil
sent4: decreasing something positive has a negative impact on a thing
sent5: nature is the source of natural resources
sent6: nature means a natural environment
sent7: if something has a negative impact on something else then increasing 
the amount of that something has a negative impact on that something else
sent8: a body of water contains water
sent9: acid rain causes water pollution
sent10: a lake is a kind of body of water
sent11: runoff is when cropland water enters bodies of water
sent12: bodies of water are located on the surface of the earth

sent13: pollution has a negative impact on the environment / air quality / water quality / society
sent14: as the level of water rises , the amount of available land will decrease
sent15: a body of water is a source of water
sent16: loss of resources has a negative impact on the organisms in an area
sent17: runoff is a stage in the water cycle process
sent18: if something causes a process then that something is required for that process
sent19: soil erosion means soil loss through wind / water / animals
sent20: runoff from a cropland causes water pollution
sent21: a natural resource is a kind of environmental factor
sent22: high runoff causes flooding
sent23: as the amount of a source of something decreases , the amount of that something will decrease
sent24: water is a kind of natural resource
sent25: soil erosion is when wind / moving water / gravity moves soil from fields / environments

sent10: a lake is a kind of body 
of water

sent11: runoff is when cropland 
water enters bodies of water

int1: runoff from a cropland has a negative 
impact on water quality

sent13: pollution has a negative 
impact on the environment / air 
quality / water quality / society

int2: runoff from a cropland 
enters a lake

sent20: runoff from a cropland 
causes water pollution

sent24: water is a kind of 
natural resource

hypothesis: runoff from a cropland entering a lake 
has a negative impact on a natural resource by 

having a negative impact on water quality

sent13: pollution has a negative 
impact on the environment / air 
quality / water quality / society

sent20: runoff from a cropland 
causes water pollution

int1: runoff from cropland has a 
negative impact on water quality

sent10: a lake is a kind of body of 
water

sent11: runoff is when cropland 
water enters bodies of water

int2: runoff from a cropland entering a lake has 
a negative impact on water quality in that lake

sent24: water is a kind of natural 
resource

hypothesis: runoff from a cropland entering a lake 
has a negative impact on a natural resource by 

having a negative impact on water quality

Gold Tree:

Predicted Tree:

Figure 12: The case for diversity in tree structures. Although the prediction tree does not exactly match the golden
tree, it is possible to complete the reasoning process with two premise steps.
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ICL examples

Hypothesis: an earthquake can change earth 's surface rapidly
Context:
sent1: colliding means coming into a collision 
sent2: in a short amount of time is similar to rapidly 
sent3: a cause of something is a reason for that something 

……
sent24: an earthquake wave is a kind of wave
sent25: the collision of tectonic plates changes the order of the rock layers by compressing rock layers into faults and folds
Proof: sent10 & sent4 -> int1: an earthquake usually occurs in a short amount of time; sent12 & sent20 -> int2: an earthquake can change earth's 
surface by shaking the ground; int1 & int2 -> int3: an earthquake can change earth's surface in a short amount of time; int3 & sent2 -> hypothesis

Hypothesis: the side of the cliff used to be a shallow sea
Context:
sent1: deep sea animals live deep in the ocean 
sent2: a deep sea animal is a kind of marine organism 
sent3: teeth are part of a shark 

……
sent24: a reptile is cold-blooded
sent25: sharks live in shallow seas
Proof: sent18 & sent3 -> int1: fossils of sharks are discovered on the side of a cliff; sent11 & sent23 -> int2: sharks are a kind of aquatic animal; int1 
& int2 & sent19 -> int3: if fossils of sharks are found on the side of a cliff, then the side of the cliff used to be covered by water in the past; int3 & 
sent25 -> hypothesis

                                                                      ……

Hypothesis: the earth revolving around the sun causes leo to appear in different areas in the sky at different times of year
Context:
sent1: leo is a kind of constellation 
sent2: to be found in means to be contained in 
sent3: move around means revolve

……
sent24: an orbit is a kind of regular path 
sent25: the earth revolving around the sun causes stars to appear in different areas in the sky at different times of year
Proof: sent1 & sent17 -> int1: leo is a constellation containing stars; int1 & sent25 -> hypothesis

Hypothesis: as the distance of the star to earth decreases, the star will appear brighter
Context:
sent1: a star produces light and heat 
sent2: far is the opposite of close 
sent3: as the distance from an object increases  the force of gravity on that object will decrease

……
sent24: the properties of something are used for describing that something 
sent25: moving away from the source increases the distance
Proof: 

Figure 13: In-context-learning prompts (ICL). The blue box shows the sample prompts of the input and the green
box shows the test data for the LLMs.

Hypotheses: an earthquake can change earth 's surface rapidly
Context:
sent1: colliding means coming into a collision 
sent2: in a short amount of time is similar to rapidly 
sent3: a cause of something is a reason for that something 
                                                          ……
sent23: being pushed together is similar to colliding.
sent24: an earthquake wave is a kind of wave 
sent25: the collision of tectonic plates changes the order of the rock layers by compressing rock layers into faults and folds. 
Question:
Which sentences in Context can be reasoned to prove the Hypothesis?

Answer:
First, let's write down all the statements and relationships in the question with labels. 
#1. sent1: colliding means coming into a collision.
#2. sent2: in a short amount of time is similar to rapidly.
#3. sent3: a cause of something is a reason for that something.
#4. sent4: 10 to 30 seconds is a short amount of time.
                                                          ……
#20. sent20: shaking the ground of the earth can change earth's surface.
#21. sent21: to cause means to result in.
#22. sent22: a tectonic plate moves along a fault line.
#23. sent23: being pushed together is similar to colliding.
#24. sent24: an earthquake wave is a kind of wave.
#25. sent25: the collision of tectonic plates changes the order of the rock layers by compressing rock layers into faults and folds.

Next, let's answer the question step by step with reference to the question and reasoning process:

#27. (by #10 #4) Step1: Is the duration of 10 to 30 seconds considered a short amount of time for an earthquake?  int1: an earthquake usually 
occurs in a short amount of time.

#28. (by #12 #20) Step2: How do earthquakes change the earth's surface? int2: an earthquake can change earth's surface by shaking the ground.

#29. (by #27 #28) Step3: How long does an earthquake take to change the earth's surface? int3: an earthquake can change earth's surface in a short 
amount of time.

#30. (by #29 #2) Step4: How soon do earthquakes change the surface of the earth? hypothesis: an earthquake can change earth 's surface rapidly.

#31. Proof: sent10 & sent4 -> int1; sent12 & sent20 -> int2; int1 & int2 -> int3: an earthquake can change earth's surface in a short amount of time; 
int3 & sent2 -> hypothesis.

Please answer the following question by following the above template. 

COT examples

Hypothesis: as the distance of the star to earth decreases, the star will appear brighter
Context:
sent1: a star produces light and heat 
sent2: far is the opposite of close 
sent3: as the distance from an object increases  the force of gravity on that object will decrease

……
sent24: the properties of something are used for describing that something 
sent25: moving away from the source increases the distance
Answer: 

Figure 14: Stepwise Chain-of-thoughts prompts (COT). The blue box shows the sample prompts of the input and
the green box shows the test data for the LLMs.
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