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Abstract

The task of text privatization using Differen-
tial Privacy has recently taken the form of
text rewriting, in which an input text is ob-
fuscated via the use of generative (large) lan-
guage models. While these methods have
shown promising results in the ability to pre-
serve privacy, these methods rely on autore-
gressive models which lack a mechanism to
contextualize the private rewriting process. In
response to this, we propose DP-MLM, a new
method for differentially private text rewriting
based on leveraging masked language mod-
els (MLMs) to rewrite text in a semantically
similar and obfuscated manner. We accom-
plish this with a simple contextualization tech-
nique, whereby we rewrite a text one token
at a time. We find that utilizing encoder-only
MLMs provides better utility preservation at
lower ε levels, as compared to previous meth-
ods relying on larger models with a decoder. In
addition, MLMs allow for greater customiza-
tion of the rewriting mechanism, as opposed
to generative approaches. We make the code
for DP-MLM public and reusable, found at
https://github.com/sjmeis/DPMLM.

1 Introduction

The study of Differential Privacy (DP) in NLP in-
vestigates the integration of the privacy guarantee
offered by DP to the textual domain. This is espe-
cially timely as concerns of privacy vulnerabilities
in NLP models, particularly LLMs, continue to rise
in tandem with recent advances in AI.

Looking to DP for safeguarding privacy in text
processing is a promising avenue of research, bring-
ing about novel techniques in recent years ranging
from DP optimization techniques (Abadi et al.,
2016), DP language models (Igamberdiev and
Habernal, 2023), or DP text privatization methods
(Feyisetan et al., 2020; Mattern et al., 2022; Utpala
et al., 2023). DP in NLP does not come without its

challenges, however (Klymenko et al., 2022; Mat-
tern et al., 2022), among them the balance between
privacy and utility, as well as the general reasoning
of DP in unstructured domains such as text.

State-of-the-art DP text rewriting methods fo-
cus on paraphrasing as a proxy for text privatiza-
tion, either via directly fine-tuning a paraphrase
model (Mattern et al., 2022), or by prompting a
LLM to generate a rephrased version of an input
text (Utpala et al., 2023). By incorporating a DP
mechanism into the generation of output tokens,
the generated text aims to privatize the input while
still maintaining utility and semantic similarity.

The above works do not consider encoder-only
models, such as BERT-based models, and further-
more, the advantages of doing so have not been
studied in juxtaposition to models with decoders.
Therefore, we are motivated to extend DP text
rewriting beyond the usage of autoregressive gen-
erative models, guided by the following question:

How can one leverage Masked Language Models
(MLMs) to achieve contextually relevant, yet

privacy-preserving text rewriting?

To answer this question, we propose DP-MLM,
a differentially private text rewriting mechanism
leveraging masked token prediction in BERT-based
models. We design a rewriting mechanism that in-
corporates the contextual information from an input
sentence to produce a rewritten output that is both
utility- and privacy-preserving. This customization
is enabled by building a rewriting mechanism on
top of an MLM, as opposed to relying on a decoder
to generate privatized outputs. To test utility and
privacy, we conduct empirical experiments that val-
idate the ability of DP-MLM to rewrite texts in
a way that preserves meaning yet still empirically
defends against adversarial privacy attacks.

Our work makes the following contributions to
the study of differentially private text rewriting:

1. To the best of our knowledge, we are the first
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Figure 1: An example of Differentially Private Text Rewriting using Masked Language Models (DP-MLM). The left
side shows a real example without contextualization, and the right shows the same example with contextualization.
As can be seen, providing a concatenated context sentence (the original sentence) guides the private rewriting
process to be more semantically similar than if performed without contextualization.

work to propose the use of BERT-based mod-
els for DP text rewriting.

2. We design a rewriting mechanism, DP-MLM,
which leverages a contextualization technique
not before used for text privatization.

3. With DP-MLM, we surpass previous SOTA
methods for private text rewriting on many
benchmarks in both utility and privacy, partic-
ularly at lower per-token ε budgets.

These contributions support our hypothesis that
MLMs are effective tools for utility-preserving text
privatization, and its observed strengths are ana-
lyzed at the conclusion of this work.

2 Related Work

Natural language contains sensitive information
(Brown et al., 2022; McMahan et al., 2017). DP
enables the training of Machine Learning (ML)
models on sensitive texts with a guarantee that the
model will not leak more sensitive data than a pre-
defined value (Pan et al., 2020; McMahan et al.,
2017; Carlini et al., 2021). In the field of NLP, there
are two primary notions of integrating DP for down-
stream applications. The first approach is to collect
user texts at a central location and train a model
on the texts using a differentially-private optimiza-
tion technique like DP-SGD (Abadi et al., 2016)
(Ponomareva et al., 2022; McMahan et al., 2017;
Kerrigan et al., 2020). This approach is known as
global or central DP. In contrast, the second ap-
proach is to apply a DP mechanism on texts locally,
i.e., on the user side, before sharing the privatized
texts with a central aggregator. This notion is called
Local Differential Privacy (LDP). LDP is a stricter
notion of DP as compared to the formerly defined
central DP (Feyisetan et al., 2020).

The earliest application of LDP to the task of text
privatization considers a sentence as independent
sequences of words (Fernandes et al., 2019; Feyise-
tan et al., 2020). As a result, the privatized sen-
tence is generated by perturbing a sentence word-
by-word, normally by introducing calibrated noise
to word embeddings (Yue et al., 2021; Chen et al.,
2022; Carvalho et al., 2023; Meisenbacher et al.,
2024a). These methods do not consider the gram-
matical and contextual information while generat-
ing a private sentence (Mattern et al., 2022). More-
over, they utilize the generalized notion of metric
DP, which increases the utility of the generated text
but makes comparative evaluations challenging.

Other LDP methods operate at higher levels in
the syntactic hierarchy, such as the sentence-level,
and directly generate a privatized text, either by
adding noise to the latent representations of the
text (Igamberdiev and Habernal, 2023) or using ad-
ditional public information (Meehan et al., 2022).
By construction, these methods take into account
the grammar and context of the input text while
privatizing it. These methods provide stricter pri-
vacy guarantees as compared to the aforementioned
word-level mechanisms but come at a significant
utility cost (Igamberdiev and Habernal, 2023).

Recent works for LDP in NLP take a different
approach and leverage Language Models to gen-
erate privatized text (Mattern et al., 2022; Utpala
et al., 2023). They model the task of text privatiza-
tion as a text paraphrasing task, or more generally,
text rewriting. In leveraging such models to rewrite
text, generation is performed by tokens being sam-
pled in a fashion that satisfies local DP. We build
upon the foundations of these methods, and aim to
improve upon the utility- and privacy-preserving
capabilities of such an approach.
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3 Foundations

3.1 Masked Language Modeling

A Masked Language Model (MLM), such as BERT
(Devlin et al., 2019), includes as one of its two
pre-training objectives the task of masked token
prediction. Here, the model is trained to predict a
randomly masked token in a sentence by condition-
ing its probability not only on the tokens that are to
its left in the sentence but also to its right. Thus, the
masked token is filled by the most suitable word
deemed by the MLM, which is achieved by consid-
ering the complete context of the sentence.

If the lth token of a sentence s containing n to-
kens in sequence w1 · w2 · · ·wn is masked, the
probability of the masked token being a word v
from the vocabulary V , as modeled by an MLM, is

Pr[wl = v] = Pr[v|w1 ·w2 · · ·wl−1 ·wl+1 · · ·wn]

Although the masked token of a MLM is primar-
ily used in its pre-training task, one can also use
the token to replace a given target word in a text.
This fact is leveraged by the related tasks of MLM-
based Lexical Substitution (Zhou et al., 2019) or
Lexical Simplification (Qiang et al., 2020).

3.2 Differential Privacy

Differential Privacy (DP) (Dwork, 2006) is a mathe-
matically grounded notion of privacy that provides
information-theoretic privacy guarantees while per-
forming computation over a dataset. Given ε ≥ 0
and finite sets W and V , a randomized mechanism
M : W → V is an ε-DP mechanism if ∀c, c′ ∈ C
and ∀v ∈ V , the following condition holds:

Pr[M(c) = v]

Pr[M(c′) = v]
≤ eε

Here c and c′ are called neighboring or adjacent
databases. Depending on the notion of adjacency,
the unit which is protected by LDP is defined. In
our case, any two context sentences c and c′ are ad-
jacent. This is expounded upon in the next section.

3.2.1 Temperature Sampling as an
Exponential Mechanism

Suppose there is a dataset D ∈ X n and our aim is
to derive a value for this dataset from a set of fixed
value choices V ∈ Y . Exponential Mechanism
can be used here to select, in a private manner, the
best choice for a dataset from a set of choices V ,
with its goodness being determined by a scoring

function. The scoring (utility) function u : X n ×
Y → R maps database and choice pairs, (D,w)
with D ∈ X n and w ∈ V , to possibility scores.
The l2-sensitivity of such scoring function is given
as

∆u = max
w∈V

max
D,D′∈Xn

|u(D,w)− u(D′, w)|

If the choice for D is selected according to prob-
ability proportional to exp( εu(D,w)

2∆u ), then the selec-
tion algorithm satisfies DP and this DP mechanism
is termed as an Exponential Mechanism (McSherry
and Talwar, 2007).

Mapping it to our use case, suppose we have
a context s = w1 · w2 · w3 · · ·wn or s = w1 ·
w2 · · ·wl−1 · wl+1 · · ·wn, and we want to choose
the best token for the masked word wl from the set
of vocabulary. This selection can be done privately
through an Exponential Mechanism with scoring
function u : V∗ × V → R that takes as input the
whole context s and a word w from the vocabulary
set V and outputs a score for w conditioned on
the context s. This scoring function is precisely a
(Masked) Language Model in our case: it takes the
context as input and outputs logits for every word
in the vocabulary. To bound the sensitivity of the
scoring function, which is necessary for DP, the
logit values can be clipped to a predefined range.

If the logits generated by the MLM are bounded,
then the Exponential Mechanism is realized by de-
fault if we use temperature sampling to predict the
masked token (Mattern et al., 2022). To compare it,
if the logit value produced for a word w ∈ V with a
context s is u and the sampling temperature is set to
T , the predicted token being w has the probability
proportional to exp(u/T ). Comparing it to the ex-
ponential mechanism, we can derive that ε = 2∆u

T .
A detailed DP proof is provided in Section 4.3.

4 Method

In this section, we outline the design of DP-MLM,
particularly its underlying DP mechanism, as well
as the text rewriting mechanism.

4.1 DP Masked Token Prediction

Given an input sentence s with n tokens, our goal is
to privatize each token in the sentence, one token at
a time. To privatize a single token wl, we input the
entire sentence s = w1 · · ·wl−1 · wl · wl+1 · · ·wn

to an MLM, with wl replaced by the model’s mask
token, usually <mask>. Next, we capture the logit
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values for the masked token index l, clip them (de-
scribed in Section 5.1.1), and apply Temperature
Sampling mechanism, that is equivalent to the Ex-
ponential Mechanism as described in Section 3.2.1.
All clipped logit values are first divided by the
temperature T , which is calculated according to
T = 2∆u

ε . The resulting values are fed through a
softmax function and a token is sampled according
to these probabilities. The sampled token wp then
serves as the differentially private token replace-
ment for wl. A proof that this mechanism is DP is
found in Section 4.3.

4.2 Rewriting Mechanism

To rewrite an entire text with the underlying mecha-
nism described above, we design a rewriting mech-
anism DP-MLM that is outlined in Algorithms 1
and 2. Note that for the entirety of this work, we
use the ROBERTA-BASE MLM as our base model.

Algorithm 1
DP-MLM Token Replacement
Require: MLM M ,

context tokens, private p_tokens, position idx
epsilon ε,
clipping values C = (Cmin, Cmax)

Ensure: Output private_token at position idx

T ← 2 · (|Cmax − Cmin|)/ε
p_tokens[idx]← <mask>
masked_sent← concat(tokens, [SEP], p_tokens)
logits←M(masked_sent)
logits← clip_and_temp(logits, C, T )
prob← softmax(logits)
private_token← sample(prob)
return private_token

Algorithm 2
Text Rewriting using DP-MLM
Require: input sentence s = w1 · w2 · · ·wn,

per-token epsilon ε,
clipping values C = (Cmin, Cmax)

Ensure: rewritten (privatized) sentence using DP-MLM

tokens← tokenize(s)
private← tokens
for i ∈ 1...n do

p← DPMLM(tokens, private, i, ε, C) ▷ Alg. 1
private[i]← p

end for
return detokenize(private)

As described in Algorithm 1, contextualization of
the DP-MLM mechanism is achieved via the con-
catenation of the original input sentence, which is
given along with the masked sentence as input to
the MLM. This simple trick is motivated by a simi-

lar approach followed by (Qiang et al., 2020) for
Lexical Simplification. A more intuitive illustrative
example of the DP-MLM rewriting mechanism is
found in Figure 1. Note that in our implementation,
we do not replace English stopwords, but we leave
this as a parameter in our open-source code.

With Algorithm 1, we replace a single token
from an input text in a DP manner. Thus, the out-
put of one DP-MLM usage is a privatized token
that is contextually relevant to the text. By using
DP-MLM for each token in the input sentence (Al-
gorithm 2), we design a text rewriting mechanism
that leverages the compositionality of DP to output
a privately rewritten text with a DP guarantee of
ε× len(tokens). This is formalized for the token
and text level in the following.

4.3 Privacy Guarantees
Our mechanism M introduced in Algorithm 1 sat-
isfies local differential privacy (LDP). For any two
adjacent context sentences, M yields “similar” to-
kens to fill a given masked token with LDP guar-
antees. Hence, given a predicted masked token, an
adversary who only sees the predicted token can-
not differentiate with high certainty if the predicted
token was due to a context sentence c or c′. This
results in plausible deniability about the source of
the predicted masked token.

Suppose a sentence s consists of n tokens, i.e.,
s = w1 ·w2 · · ·wn, and the (masked) token that we
want to predict lies at lth position in the sentence.
An MLM models the likelihood of masked token
wl being vi ∈ V as follows:

Pr[wl = vi] = Pr[vi|w1 · · ·wl−1 · wl+1 · · ·wn]

= Pr[vi|Cl]

As stated earlier, we use clipped logits u and
temperature sampling to sample the most likely
token for the masked token. Hence, for our pro-
posed mechanism M : V+ → V that takes the con-
text sentence Cl = w1 · w2 · · ·wl−1 · wl+1 · · ·wn

as input and returns a privately selected predicted
masked word, its output probability distribution is
given by the following equation:

Pr[M(Cl) = vi] =
exp(u(Cl,vi)

T )
∑|V|

j=1 exp(
u(Cl,vj)

T )
(1)

Theorem 1. The proposed mechanism M defined
in the equation 1 satisfies ε-LDP.
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Proof. Let s, s′ ∈ Vn. Suppose the lth token of
s, s′ is masked and we use our mechanism M to
predict a token. The context to be set as input for
the Masked Language Model becomes:

Cl := w1 · w2 · · ·wl−1 · wl+1 · · ·wn

C ′
l := w′

1 · w′
2 · · ·w′

l−1 · w′
l+1 · · ·w′

n

The ratio of the probability distribution of appli-
cation of M on Cl and C ′

l can be given as:

Pr[M(Cl) = vi]

Pr[M(C′
l
) = vi]

=
exp(

u(Cl,vi)

T
)

∑|V|
j=1 exp(

u(Cl,vj)

T
)

∑|V|
j=1 exp(

u(C′
l),vj
T

)

exp(
u(C′

l
),vi)

T
)

=
exp(

u(Cl,vi)

T
)

exp(
u(C′

l
,vi))

T
)

∑|V|
j=1 exp(

u(C′
l,vj)

T
)

∑|V|
j=1 exp(

u(Cl,vj)

T
)

Solving the first fraction, we get

exp(u(Cl,vi)
T

)

exp(
u(C′

l
,vi))

T
)
= exp

(
u(Cl, vi)− u(C′

l , vi)

T

)

≤ exp

(
∆u

T

)

Similarly, solving the second fraction, we get

Pr[M(Cl) = vi]

Pr[M(C′
l) = vi]

≤ exp

(
∆u

T

)
exp

(
∆u

T

)

= exp

(
2
∆u

T

)

= exp (ε)

Hence, ε can be calculated from the sensitivity
of ∆u and the sampling temperature T as ε = 2∆u

T

Extending guarantees to a sentence The pri-
vacy budget required for generating a single
masked token using the mechanism M is equal
to ε. The privatized sentence of the input sentence
is generated by sequentially generating privatized
token for each token present in the input sentence.
Thus, for rewriting a sentence (or more generally, a
text) of n tokens, we are required to call the mech-
anism n times. Hence, by sequential composition,
the total privacy budget spent for rewriting the en-
tire text would be nε-DP.

5 Experimental Setup

In order to evaluate the performance of our pro-
posed method, we design two overarching exper-
iments: (1) utility experiments, and (2) empirical
privacy experiments. These are outlined below.

5.1 Utility Experiments
Our utility experiments consist of two phases: (1)
utility benchmarking of DP-MLM, and (2) compar-
ative utility testing with two other state-of-the-art
DP rewriting mechanisms.

5.1.1 Utility Benchmarking
To test the utility-preserving capability of DP-
MLM, we measure the utility of rewritten data
across a range of ε values. For this, we utilize
the GLUE benchmark (Wang et al., 2018), which
contains 9 separate tasks spanning classification,
textual similarity, and textual entailment. For a
given ϵ value, a perturbed dataset (train and valida-
tion split) is measured against the non-privatized
baseline, in order to measure how well the privati-
zation keeps utility intact.

Model For both the non-privatized baseline and
all privatized (rewritten) datasets, we fine-tune a
DEBERTA-V3-BASE model (He et al., 2021) for
one epoch. The trained model is then evaluated
on the validation set (non-privatized or privatized,
respectively). All models in this work are trained
on a single RTX A6000 GPU, using the Adam
optimizer (Kingma and Ba, 2017) and all default
hyperparameters of the Hugging Face Transformers
Trainer API. To account for variations in training,
all utility results represent the average of 3 runs.

Clipping Values To ensure that the sensitivity of
the logit values of our underlying MLM (ROBERTA-
BASE) is bounded, we pre-define the clip value
based upon an empirical estimation of the logit
value range. Concretely, we measure all logits
values from inputting 1000 random text examples
from the SST2 dataset of GLUE, calculate the
mean µ and standard deviation σ, and define the
clipping values as (Cmin, Cmax) = (µ, µ + 4σ).
The choice of such a range provides the benefit of
a bound sensitivity, while still preserving higher
logit values and “clamping” lower values.

Epsilon In order to conduct comprehensive tests
on varying privacy budgets, we choose the follow-
ing set of ε values: ε ∈ {10, 25, 50, 100, 250}.

5.1.2 Comparative Utility
The next utility experiments test DP-MLM against
the two state-of-the-art text rewriting methods:

1. DP-Paraphrase (Mattern et al., 2022): DP
text rewriting utilizing DP temperature sam-
pling in a fine-tuned GPT-2 paraphrasing
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Task COLA SST2 QQP MRPC STSB MNLI QNLI WNLI RTE
Baseline 84.720.35 95.720.22 89.260.05 84.070.40 84.570.78 88.750.03 93.510.12 56.340.00 54.992.98

ε

10 69.130.00 68.500.64 71.860.26 71.322.31 6.130.90 52.860.71 66.251.11 53.054.65 51.501.70
25 69.770.12 76.490.94 74.170.17 70.671.80 12.422.45 56.152.95 68.545.63 55.401.33 51.871.19
50 70.850.86 84.100.42 80.530.19 75.251.31 26.2111.60 66.990.18 82.010.03 52.585.31 52.470.34
100 70.050.86 86.160.39 82.170.26 74.351.63 34.684.20 69.570.11 83.560.07 48.365.67 53.310.61
250 70.180.75 86.050.55 82.440.03 76.390.92 60.771.49 70.960.19 84.680.20 51.645.67 51.381.87

Table 1: Utility Benchmark Scores for DP-MLM. All scores represent accuracy scores, except for STSB, which is
represented by the Pearson-Spearman Correlation score. The metrics are an average of three training runs, and the
standard deviation is presented as a subscript. In all cases, a higher score is better.

Task ε Baseline
DP-MLM DP-Paraphrase DP-Prompt

BLEU CS Acc. BLEU CS Acc. BLEU CS Acc.

COLA

10

84.720.35

0.08 0.16 69.130.00 0.00 0.26 69.130.00 0.00 0.04 69.130.00
25 0.13 0.35 69.770.12 0.00 0.26 69.130.00 0.00 0.09 69.130.00
50 0.25 0.64 70.850.86 0.00 0.28 69.130.00 0.29 0.71 67.591.37
100 0.28 0.69 70.050.86 0.01 0.33 69.130.00 0.68 0.93 73.630.49
250 0.29 0.70 70.180.75 0.07 0.43 69.200.00 0.76 0.95 74.500.23

SST2

10

95.720.22

0.08 0.17 68.500.64 0.00 0.26 58.605.44 0.00 0.07 50.920.00
25 0.11 0.37 76.490.94 0.00 0.26 63.880.19 0.00 0.12 52.522.43
50 0.19 0.61 84.100.42 0.00 0.27 61.660.57 0.02 0.36 70.840.43
100 0.22 0.65 86.160.39 0.00 0.29 64.260.30 0.12 0.62 83.720.16
250 0.23 0.67 86.050.55 0.05 0.37 67.810.33 0.15 0.65 85.170.61

MRPC

10

84.070.40

0.05 0.12 71.322.31 0.00 0.26 68.380.00 0.00 0.04 68.380.00
25 0.08 0.37 70.671.80 0.00 0.27 68.710.46 0.00 0.09 68.550.00
50 0.17 0.61 75.251.31 0.00 0.28 68.380.00 0.05 0.48 71.100.12
100 0.19 0.66 74.351.63 0.00 0.30 68.710.46 0.29 0.78 71.160.83
250 0.21 0.68 76.390.92 0.05 0.38 68.950.81 0.37 0.82 71.240.76

RTE

10

54.992.98

0.04 0.10 51.501.70 0.00 0.27 53.791.53 0.00 0.05 51.142.74
25 0.08 0.33 51.871.19 0.00 0.28 53.190.68 0.00 0.09 50.421.62
50 0.17 0.61 52.470.34 0.00 0.29 50.782.72 0.27 0.71 49.822.23
100 0.20 0.65 53.310.61 0.01 0.33 52.710.00 0.63 0.92 56.325.11
250 0.21 0.66 51.381.87 0.08 0.43 49.102.55 0.68 0.94 59.214.59

Table 2: Comparative Utility on a Subset of GLUE Tasks. Scores in bold mark the highest score achieved by per
(task, ε) pair. In 14 out of the 20 settings, DP-MLM achieves the highest accuracy, including ties.

model. More details on the replication of DP-
PARAPHRASE is provided in Appendix B.

2. DP-Prompt (Utpala et al., 2023): DP text
rewriting using prompting of large language
models, i.e., to paraphrase the input text. For
the purposes of this work, we utilize a pre-
trained FLAN-T5-BASE.

These methods are tested on a subset of the
GLUE tasks, namely {COLA, MRPC, RTE,
SST2}, where these datasets are perturbed accord-
ingly as for DP-MLM. The same ε values and clip-
ping strategy as described in Section 5.1.1 are used
for both methods to ensure direct comparability. In
addition, for both generative methods listed above,
we restrict the maximum number of generated to-
kens to the length of the input tokens, so as to
ensure fairness in comparative evaluation metrics.

Scoring For comparative utility testing, we re-
port raw scores (accuracy or correlation), as well
as BLEU (Papineni et al., 2002; Igamberdiev
and Habernal, 2023) and cosine similarity (CS)
scores between the original and privatized dataset
(Meisenbacher et al., 2024b). These additional
metrics present a clearer picture of the utility-
preservation of the underlying DP mechanism,
compared against the amount by which the dataset
has been perturbed. For semantic similarity
(CS), we utilize the ALL-MINILM-L6-V2 model
(Reimers and Gurevych, 2019).

5.2 Empirical Privacy Experiments

To measure the privacy-preserving capabilities of
DP-MLM in comparison to the state-of-the-art,
we conduct empirical privacy experiments on two
datasets. This process is described in the following.
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Trustpilot Baseline DP-MLM DP-PARAPHRASE DP-PROMPT

ε ∞ 10 25 50 100 250 10 25 50 100 250 10 25 50 100 250
Utility F1 ↑ 99.62 97.30 97.98 98.89 99.11 99.24 96.43 96.05 96.72 96.57 96.16 96.69 96.72 97.90 99.30 99.38
PP+ ↑ - +62 +130 +221 +243 +257 -25 -63 +5 -11 -52 +2 +4 +123 +263 +270
CS - 0.10 0.19 0.24 0.25 0.25 0.15 0.15 0.15 0.15 0.15 0.11 0.13 0.20 0.24 0.25
Privacy F1 (stat.) ↓ 69.60 59.74 61.26 68.58 70.30 70.92 60.02 60.23 59.85 60.27 60.52 59.7 59.64 68.75 78.83 81.67
Privacy F1 (adap.) ↓ 69.60 58.500.6 61.931.4 66.730.4 65.105.0 66.330.8 60.171.6 58.330.3 58.972.3 60.160.7 58.030.5 58.100.0 57.231.2 60.300.8 66.530.8 69.800.7
Relative Gain (stat.) ↑ 0.12 0.10 0.01 -0.02 -0.02 0.11 0.10 0.11 0.10 0.10 0.11 0.11 -0.01 -0.14 -0.18
Relative Gain (adap.) ↑ 0.14 0.09 0.03 0.06 0.04 0.10 0.13 0.13 0.11 0.13 0.14 0.15 0.11 0.04 -0.01

Yelp Baseline DP-MLM DP-PARAPHRASE DP-PROMPT

ε ∞ 10 25 50 100 250 10 25 50 100 250 10 25 50 100 250
Utility F1 ↑ 97.50 95.51 95.51 96.64 96.22 96.47 95.51 95.51 95.51 95.51 96.05 95.51 95.51 95.51 95.76 96.34
PP+ ↑ - -84 -84 +29 -13 +11 -84 -84 -84 -84 -30 -84 -84 -84 -59 -1
CS - 0.15 0.50 0.76 0.80 0.81 0.34 0.35 0.36 0.37 0.36 0.12 0.15 0.49 0.72 0.76
Privacy F1 (stat.) ↓ 87.20 13.72 30.92 47.24 49.96 50.76 11.60 11.72 12.04 12.44 12.61 10.16 10.52 25.32 53.60 62.48
Privacy F1 (adap.) ↓ 87.20 62.400.3 61.073.5 73.871.2 71.870.4 74.134.1 20.271.5 23.072.0 22.271.4 20.531.0 25.601.2 18.671.6 13.332.3 24.531.3 48.801.8 56.531.5
Relative Gain (stat.) ↑ 0.82 0.63 0.45 0.41 0.41 0.85 0.85 0.84 0.84 0.84 0.86 0.86 0.69 0.37 0.27
Relative Gain (adap.) ↑ 0.26 0.28 0.14 0.16 0.14 0.74 0.72 0.72 0.74 0.69 0.77 0.83 0.70 0.42 0.34

Table 3: Empirical Privacy Results for Trustpilot (top) and Yelp (bottom). Utility F1 for the sentiment classification
task is given, as well as the adversarial performance (Privacy F1) for both the static (stat.) and adaptive (adap.)
settings. PP+ denotes percentage points above majority-class guessing, CS denotes cosine similarity between
original and privatized datasets, and Relative Gain quantifies the observed benefit of privacy vs. utility (Section 5.2).
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Figure 2: Average Utility Loss. This graph depicts
the average utility loss for a given ε value across four
GLUE tasks. On average, DP-MLM leads to a lower
utility loss than DP-PARAPHRASE or DP-PROMPT.

Datasets For conducting our privacy experi-
ments, we utilize two datasets:

1. Trustpilot Reviews (Hovy et al., 2015): a
large corpus of user reviews from Trustpilot,
containing both a review score (1-5) and the
gender (M/F) of the reviewer. We only con-
sider reviews rated with 5 (positive) or 1-2
(negative). From this, we take a random 10%
sample, representing ∼36k reviews.

2. Yelp Reviews: we utilize the dataset as used
by Utpala et al. (2023), which contains Yelp
reviews from 10 authors, labeled as positive
or negative. We take a random sample of 250
texts from each author, for a total of 2500.

Tasks For both datasets, we conduct a two-
sided experiment. As in the utility experiment,
we privatize each dataset with the budgets ε ∈
{10, 25, 50, 100, 250}, and compare the utility loss

against the non-private baseline. A DEBERTA-V3-
BASE model is once again employed for fine-tuning,
trained for a total of three epochs.

Following the approach laid out by previous
works (Mattern et al., 2022; Utpala et al., 2023), we
test empirical privacy in two adversarial settings.
The first is called the static attacker, where the
adversarial model can only be evaluated on the pri-
vatized outputs after being trained on the original
non-privatized input texts. In contrast, the adaptive
attacker is able to train the adversarial model on
the DP outputs, thus more closely matching the
distribution of the target privatized texts.

For the static setting, we train an adversarial
DEBERTA-V3-BASE model on the non-privatized
dataset to predict the protected attribute of each
dataset, i.e., gender for Trustpilot and author ID
for Yelp. These models are trained for five epochs.
Then, we evaluate the adversarial model on each
privatized dataset and measure the change in perfor-
mance. In this way, we can empirically measure the
privacy protection provided by rewriting a dataset.

In the adaptive setting, the only difference is
that the DEBERTA-V3-BASE model is trained on
the privatized training datasets, and subsequently
evaluated on the validation splits of these datasets.

Scoring Following Mattern et al. (2022), we not
only report the raw results of the above-mentioned
experiments, but also the relative gain achieved by
text privatization via rewriting. Such a score is use-
ful in quantifying the advantage of privatizing text,
or rather the gain in privacy offset by the inevitable
loss in privacy. Let Po, Uo represent the baseline
privacy and utility scores, respectively, that is the
scores when training both the sentiment and ad-
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versarial classifiers on the non-privatized datasets.
Let Pr, Ur be the scores observed on the privatized
(rewritten) datasets. The relative gain is thus de-
fined as RG = (Ur/Uo)− (Pr/Po). Note that we
report relative gains for both adversarial settings.

In addition to the raw utility scores (F1 score),
we also present the percentage points (PP+)
achieved above majority class guessing. In the
case of both Trustpilot and Yelp, the datasets are
highly biased towards positive reviews, so report-
ing PP+ better demonstrates the degree to which
a fine-tuned model learns to distinguish sentiment.

6 Results

Utility Table 1 presents the complete benchmark-
ing results of DP-MLM on the GLUE tasks. Table
2 displays the comparative utility results, which
tested DP-MLM and our two selected methods on
a subset of the GLUE tasks. The results from Ta-
ble 2 are summarized in Figure 2, which illustrates
the average utility loss for each evaluated rewriting
mechanism, given an ε value.

Privacy Table 3 displays the results of our empir-
ical privacy tests, for both Trustpilot and Yelp.

Efficiency We measure the efficiency, or speed,
at which the evaluated mechanisms can rewrite text.
We capture this by recording the amount of time
taken to perturb the selected GLUE datasets, in-
cluding how many tokens are perturbed (1,048,231
in total). The results are summarized below:

• DP-MLM
– Elapsed time: 1316 minutes
– Tokens/min: 797

• DP-Paraphrase
– Elapsed time: 1308 minutes
– Tokens/min: 802

• DP-Prompt
– Elapsed time: 1961 minutes
– Tokens/min: 535

7 Discussion

Utility In analyzing the results of both util-
ity evaluations, one can see that DP-MLM
clearly demonstrates the ability to produce utility-
preserving DP rewritten text. As expected, this
naturally comes with a performance drop as com-
pared to the non-privatized baseline; however, in-
teresting findings can be extracted when observ-
ing the comparitive utility tests. Across four se-
lected GLUE tasks, which represent all three task

types of the benchmark, DP-MLM consistently
outperforms the other two state-of-the-art methods,
DP-PARAPHRASE (Mattern et al., 2022) and DP-
PROMPT (Utpala et al., 2023). This is supported by
the fact that DP-MLM achieves the highest utility
score in 14 out of the 20 comparative settings.

A closer look at Table 2 shows that in all four
cases where DP-PROMPT outperforms DP-MLM,
this can be attributed to a very high BLEU and CS
score between the original and privatized datasets.
While this may be useful for utility preservation,
one may question whether CS scores near to 1 pro-
vide much privacy preservation at all. On the other
hand, even at higher values of ε such as 100 or 250,
DP-MLM still provides higher levels of privatiza-
tion (more rewritten), while still offering competi-
tive utility scores in all cases.

The above is especially supported by the fact that
in 8 out of the 14 cases where DP-MLM achieves
the highest utility score, it does so without having
the highest CS to the original dataset. In addition,
DP-MLM shows particular strength at low ε bud-
gets, such as with ε = 10, where it never possesses
the highest CS score, yet still remains very compet-
itive. These observations emphasize the ability of
DP-MLM to produce privatized, yet still contextu-
ally and semantically relevant rewritten texts. This
is further supported by Figure 2, which places DP-
MLM, on average, lower than DP-PARAPHRASE

and DP-PROMPT in terms of utility loss.

Privacy From the empirical privacy results, one
can observe similar trends as with the utility experi-
ments. Empirically, all three evaluated methods are
very effective in reducing the adversarial advantage,
i.e., gender classification or author identification,
and this is especially true at lower privacy budgets.
DP-PARAPHRASE is particularly effective, but this
comes at the cost of comparatively poor results in
preserving utility, as can be seen in Table 3.

Comparing DP-MLM and DP-PROMPT in
terms of empirical privacy, one can observe from
the Trustpilot test that both methods are successful
in preserving utility to a degree where a model can
still learn sentiment classification reasonably, as
shown by PP+, or the F1 percentage points above
majority-class guessing. This case for DP-MLM is
especially made salient in the Yelp test, where DP-
MLM is the only method capable of producing pos-
itive PP+ scores. Furthermore, despite achieving
similar or better utility scores in the empirical pri-
vacy tests as compared to DP-PROMPT, DP-MLM
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consistently scores better in reducing adversarial
F1 at higher ε values for the static setting, while
the opposite is true for the adaptive setting.

Relative Gain also provides insights, where DP-
MLM offers added value in most cases and better
trade-offs at higher ε budgets than DP-PROMPT,
particularly in the static setting. A weakness of DP-
MLM is highlighted by the adaptive results, point-
ing to the inevitable trade-off between higher utility
text and its resulting privacy protections. Never-
theless, DP-MLM still achieves positive gains in
all adpative scenarios. All methods are similarly
competitive at lower ε, yet this must be interpreted
according to whether privacy or utility is favored.

Efficiency DP-MLM performs nearly identi-
cally in terms of efficiency as opposed to DP-
PARAPHRASE, and both methods greatly out-
perform DP-PROMPT. This can directly be at-
tributed to the encoder-only ROBERTA-BASE and
the decoder-only GPT-2, as opposed to the uti-
lized FLAN-T5-BASE, which is nearly double in
model size. Especially when considering the above-
mentioned strengths of DP-MLM, the added com-
petitiveness of speed introduces a practical advan-
tage of our method. Such results also raise interest-
ing points for future work regarding the effect of
model size and architecture on privatization, partic-
ularly the interplay between these and ε.

Addressing Limitations The discussion of the
merits of DP-MLM must also be met with its re-
maining limitations. As our rewriting mechanism
leveraging DP-MLM relies on token-level DP re-
placements, the primary limitation comes with the
initial inability to rewrite sentences with differing
lengths from the original texts. To address this
main limitation, we propose an improved version
of the rewriting mechanism which enables variable
length outputs. This is presented in Algorithm 3.

In essence, Algorithm 3 takes as inputs an ad-
dition probability A and deletion probability D,
and for each token in the input text s, we delete
this token with probability D and add an additional
token with probability A. New tokens are added
by simply inserting a mask token into the context
sentence and running DP-MLM as usual.

From a privacy guarantee standpoint, the down-
side of such an augmentation comes with an al-
tered guarantee. In the worst case for a given ε,
text rewriting with Algorithm 3 offers a privacy
guarantee of 2nε-DP, i.e., in the case that a token is
added for every token in the input sentence. In the

Algorithm 3
Text Rewriting +- using DP-MLM
Require: input sentence s = w1 · w2 · · ·wn,

per-token epsilon ε,
clipping values C = (Cmin, Cmax),
token addition probability A, token deletion probability D

Ensure: rewritten (privatized) sentence using DP-MLM

tokens← tokenize(s)
private← tokens
added← 0
deleted← 0
for i ∈ 1...n do

prob_del, prob_add← rand() ▷ random numbers ∈ [0..1]
if prob_del ≥ D then

p← DPMLM(tokens, private, i+added−deleted, ε, C)
private[i + added− deleted]← p

else
deleted← deleted + 1

end if
if prob_add ≤ A then

added← added + 1
p← DPMLM(tokens, private, i+added−deleted, ε, C)
private.insert(i + added− deleted, p)

end if
end for
return detokenize(private)

average case, though, we achieve (A−D)nε-DP.
In Appendix C, we show the results of repeating a
subset of our empirical privacy experiments using
this augmented rewriting method.

8 Conclusion

We present DP-MLM, a differentially private text
rewriting mechanism leveraging masked token pre-
diction of MLMs. As opposed to previous methods
relying on private generation using language mod-
els with decoders, we utilize BERT-based encoder-
only models to rewrite text in a private, yet con-
textual manner. This is accomplished by simple
concatenation in our rewriting mechanism, which
guides the private sampling of replacement tokens.

In a series of utility and privacy experiments,
we empirically demonstrate the improvements
achieved by DP-MLM over previous SOTA meth-
ods. In particular, DP-MLM outperforms these
methods on many utility benchmarks, and achieves
competitive empirical privacy scores. An analy-
sis of the results reveals that DP-MLM finds a
necessary balance between utility- and privacy-
preservation, more so than the previous SOTA.

As paths for future work, we propose continued
research on DP text rewriting with encoder-only
models, including the investigation of how privati-
zation can be improved with less utility loss and the
effect of using different base models. In addition,
we see that more work to define and unify eval-
uation strategies for DP text rewriting should be
undertaken, so as to allow for well-defined method-
ologies for validating future proposed mechanisms.
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Limitations

The primary limitation of our work comes with the
choice of underlying language model for each DP
mechanism. We choose one model as the repre-
sentative model for DP-MLM, DP-PARAPHRASE,
and DP-PROMPT, namely ROBERTA-BASE, GPT-
2, and FLAN-T5-BASE, respectively. The implica-
tions of choosing and evaluating other BERT-based
models were considered outside of the scope of this
work. This should be tested in follow-up studies.

Another limitation that pertains to general eval-
uation of privacy-preserving mechanisms, that is,
the evaluation of privacy protection in NLP. The
method of empirical privacy employed in this work
follows from the predominant method in the liter-
ature to measure privacy, but as it is a proxy for
privacy, we can only claim that our proposed DP-
MLM protects privacy empirically and by proxy.

Ethics Statement

An ethical consideration involves our empirical pri-
vacy experiments, which leverage existing datasets
not originally intended for adversarial gender or au-
thor identification. In performing these empirical
experiments, the actions of a potential adversary
were simulated, i.e., to leverage publicly accessible
information for the creation of an adversarial model.
As these datasets are already publicly available, no
harm was inflicted in the privacy experiments as
part of this work. Moreover, the Yelp dataset is
made up of pseudonyms (User IDs) rather than PII,
thus further reducing the potential for harm.
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Trustpilot Baseline DP-MLM
ε ∞ 25 50 100

Addition Probability: 0.1 0.25 0.1 0.25 0.1 0.25
Utility F1 ↑ 99.62 97.220.4 97.570.1 98.950.1 98.940.3 98.950.1 99.290.0
PP+ ↑ +54 +89 +227 +226 +227 +261
CS 34.05 35.37 70.94 70.91 74.84 75.02
Privacy F1 (stat.) ↓ 69.60 41.36 41.58 35.61 34.30 34.74 33.10
Privacy F1 (adap.) ↓ 69.60 60.941.1 61.231.1 68.600.5 66.121.5 66.371.0 67.431.6
Relative Gain (stat.) ↑ 0.38 0.38 0.48 0.50 0.49 0.52
Relative Gain (adap.) ↑ 0.10 0.10 0.01 0.04 0.04 0.03

Table 4: Empirical Privacy Results for DP-MLM with token addition (A) and deletion. A deletion probability of
0.05 is used for all presented results.

A Implementation Details of DP-MLM

In the selection of a replacement token for a given
input token, we use the predicted scores as output
by our utilized MLM, as well as a cosine similarity
score between the original context sentence and the
masked sentence with token candidates replaced
into the sentence. These scores are then summed
in the following manner:

final_score = sim_score+α·predicted_score

The default value of α is 0.003, which we do not
change during the course of this work.

As part of our rewriting mechanism, we include
the option to filter out unfitting words, such as
antonyms. This is done using the WORDNET re-
source. For evaluation in this work, we turn this
feature off, but we refer the reader to our code
repository for more details on its implementation.

B Implementation of Previous Works

As the mechanism proposed by Mattern et al.
(2022) is not publicly available, we followed the
approach described in the paper to replicate the
work. Namely, we fine-tuned a GPT-2 base model
(available on Hugging Face) with the SNLI dataset
(Bowman et al., 2015). The SNLI dataset was pre-
pared as by Mattern et al. (2022), by taking only the
sentence pairs for which all annotators agreed upon
Entailment. This resulted in a dataset of 161,028
sentence pairs. The GPT-2 model was fine-tuned
on this data for three epochs, following the ap-
proach of Witteveen and Andrews (2019).

Regarding the DP mechanism of Mattern et al.
(2022), we notice from the paper that the authors
normalize all logit values before applying the tem-
perature sampling mechanism. This, however, re-
quires calculating the minimum and maximum
statistics of the private values, and cannot be done
without expending some privacy budget (Near and

Abuah, 2021). Therefore, we instead use clipping
as with the other compared methods, which also
leads to more direct comparability.

As the mechanism of Utpala et al. (2023) is made
public, we replicate the precise approach proposed
in DP-PROMPT. For comparability and perfor-
mance reasons, we opted to use the open-source
FLAN-T5-BASE model.

The code for both approaches is also included in
our provided code repository.

C Additional Results

In Table 4, we present the results of testing Algo-
rithm 3, that is rewriting with DP-MLM with token
addition and deletion. In particular, we rerun a sub-
set of the Trustpilot empirical privacy experiments,
for ε ∈ {25, 50, 100}. For each ε, we test token
addition probabilities of 0.1 and 0.25. A deletion
probability of 0.05 is used throughout.

Interestingly, Table 4 shows higher utility results
but lower empirical privacy, especially in the adap-
tive setting. This, therefore, leads to lower relative
gains than in the base rewriting case without addi-
tion or deletion. These results spark the discussion
on whether the augmentation presented in Algo-
rithm 3 is necessary, and furthermore, whether pri-
vatized text length variability should be prioritized
in text privatization evaluation.

D Privatization Examples

In Tables 5, 6, and 7, privatized (rewritten) ex-
amples are provided from the SST2, COLA, and
MRPC datasets, respectively. Examples are shown
for all three compared mechanisms, across the five
selected ε values.

Table 8 shows selected examples from using Al-
gorithm 3 as proposed in Section 7.
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Original sentence
there is n’t nearly enough fun here , despite the presence of some appealing ingredients .

ε

10 there is disproportion Jonathan as translated here, [REDACTED] the witnessing of some added course.
25 there is 4 reliably sufficient time here, understanding the effectiveness of some unusual techniques.

DP-MLM 50 there is seldom quite any humour here, beyond the availability of some attractive mushrooms.
100 there is t quite sufficient entertainment here, spite the possibility of some enticing recipes.
250 there is n ett sufficient laughter here, absent the Presence of some attractive materials.
10 We delivering gifts)= the place stands is beautiful including there can ton’t put items unbed over to
25 Lots Games at natee restaurant but very few other beverages present are necessary food items used along

table tables
DP-PARA 50 there just so much activity in the desert these have as many delicious goodies available besides many

drinks the desert is
100 An omelet and other beverages Golon are CARDING.Identical ingredients for fun.
250 The ingredients are in the kitchen. The kitchen is not commendable. The ingredients are
10 settling men parental hover advantage nat,ional bleibensuingSense foyerberuflichelichkeitMulte I gap

Objectivehyp Spe Umbetont zero 6:30 strugglinglaut timp 18 Utilis speakers NCAA Wilhelm Add
Kilizarea

DP-PROMPT 25 Sir Mo drunklayProftab frame baitwriter sentence charts upload marketers electronics file circul sympa-
thetic display publishers feed munig doll Palestinian dialect roman ministry abstract stronger fixed seats
hooked Za

50 that isn’t the point.
100 The restaurant is very unattractive.
250 The food is not that good.

Table 5: DP Rewritten Examples from the SST2 validation set.

Original sentence
Emma and Harriet were attacked yesterday.

ε

DP-MLM

10 Andrew and sentence were $Tournament.
25 Stan and Pop were approached by.
50 Brian and Harriet were bitten last.
100 Jim and Harriet were stabbed by.
250 Pat and Harriet were kidnapped yesterday.

DP-PARA

10 Mrs Mrs. of an a,a. got thrown
25 Mama saw scarpered hare that was old in
50 Family Younger sibling Ghost areito attacked at dinner today
100 Nancy are Socierge siech in this
250 Two girlsakery. Publication of the attack. Procedure for

DP-PROMPT

10 Ox order oysterrenducro palettebwohl turc intersection participation Bieroutil Visa clan LEGOromevor
collect kontrolliert Any

25 Tuesdayp insurance termination Steisten Oddzolgan envie barely premier Meanwhile Gru wheels termi-
natgold $12

50 Emma and Harriet were attacked yesterday.
100 Emma and Harriet were attacked yesterday.
250 Emma and Harriet were attacked yesterday.

Table 6: DP Rewritten Examples from the COLA validation set.
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Original sentence Jeremy ’s a good guy , " Barber said , adding : " Jeremy is living the dream life of the New York athlete .
ε He also said Shockey is " living the dream life of a New York athlete .

10
Quite Ben Epstein a at player, vehemently Urug offseason, seasoned: lux een is Williams the size hobby
of the alone open dialog.
Alan AV see yton is spa finishing the Champion wins of a formulate email MPEG.

25
Jeremy be a handy handy„" Barber asked, encouraging: "Danny is having the ideal lifestyle of the Flat sea
L.
Reports other noted he is obviously spending the fight load of a Los Fernando vs.

DP-MLM
50

Jeremy as a good person, "Clay told, showing: "Jeremy is trying the dream lifestyle of the new York
athlete.
Brown also confirmed he is still thinking the dreams life of a North Dakota athlete.

100
Jeremy s a real guy, "Barber confirmed, explaining: "Jeremy is practicing the dream life of the new York
athlete.
He also described he is currently feeling the dream world of a San Francisco player.

250
Jeremy s a Good Guy, "Barber stated, adding: ‘ Jeremy is doing the dream life of the NY Y athlete.
He also told he is just singing the dream life of a New Jersey athlete.

10
Job interviewed b is living at another apartment nexton is also employed near on jhgts day is living around
in that day, was
Basketball goalie makes an indivuzual dance brush against teammate of hockey goalie in cold sports
league.

25
Jeremy justHonestly Mawshines A " New Bayan is alive a football life like living by him with " New
place being jacked over and r
Musky sports fans Wireless fan he spoke during theiratcher to an event or tournament cy him in

DP-PARAPHRASE
50

He’sanguage. People corda m from New States. and with other people like him a young son a young mom
of several age on s
Baseball player isugar New uptake the next timeof New Yorker who had high heels baseball fan

100
A singer: " A rapper, actor, singer and fan makes a noise.. A singer likes another rockstar a few people
Sh saving another guy to syndicate ordinarily inspiration Meaden on aSyria call. people

250
A man kidding about the New compeer. A man is liberal on social media. A man is happy about being a
New Yankee
Hockey player is kiln of ice. The athlete is scrutinizing and competing with a crowd

10
tolerance continues edge Oakland Documentmail permittingassemble bases HorrorVreau Offermeasurable
Baytreabă option workerscarbon patron databases Give 1979 each 4:1 passionné relaxed bath categories
purchases surgery nationwide pores barrier Beach177 Transformation investigate avemAudiblethese
offerings notification snow comply leben statesgathered
Filipkos withvăschmutzklimaSU sanitar Hillary 26 optimizationtätigkeit Eden GUI 1983 Einwilligung
strig înt,eleg Willowofficial Hunt Consiliulspo buna Privat176 Oktober Table pierre THANK Firefox

DP-PROMPT
25

Chef is wifi hard connected dennetti spin sail abandoned traveling medal challengingblu bored foul
notempered Travis easily Award OK Carter Br Clerkific sister Journalismdom interaction Publisher
Investigahol Jungnic skip Jacklicit categorii Invite Ro devant Remember Perry wisdom Assistance faced
direction okaye attempted deal disposable exchange Pit rejoin performers Sam deceased average8.0 His
handwriting, constituent copper passenger bodyput character zinc normsie originarm stark feast

50
Jeremy loves being treated like a friend
Shockey is " bubbling

100
Barber was talking about Jeremy.
Shockey has been a longtime fan of the New York Yankees.

250
Barber is a sports fan.
He also said Shockey is " living the dream life of a New York athlete.

Table 7: DP Rewritten Examples from the MRPC validation set. Following the structure of the dataset, both
sentence1 and sentence2 are given.
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Original text Next day delivery - suberb: Easy to use website with fairly cheap clothing. I was going on holiday so
needed next day delivery of which no other tennis shop website I found could guarantee, and the parcel

ε A arrived the next day. No complaints. (48)
25 0.1 UPDATE next carried ummy then - totem: easy yarn learn description & very quality . I now went in

England needed linux whenever day production you seeking every recovery shop online I website reviews,
COL sent arrival as complete next ship . No tragedies. (48)

0.25 Next guy pickup - hut hart: Nice Eco to them hotel @ [REDACTED] believed le promise . Someone I
went my exile les t saw newcomer fresh moment irmation resolution which whole Bangladesh oo) Cheap
internet facebook BUR GB ats, then want d ar during one business . no traveling food. (55)

50 0.1 reply last day delivery - - bob: Easy to run site having substantially affordable tennis apparel . me was
traveling for vacation thus needed Next Day Delivery which most another tennis shopping Website was
find could guarantee, once the package arriving the next . no more complaints. (50)

0.25 BN day Delivery - Dot: Simple easy to to go online store with remarkably cheap . He was just going onto
holiday, and ordered last - minute shipping of which somehow other other tennis’ shop Website II found
did could guarantee, but instead the delivery landed the next morning . Any no complaints. (58)

100 0.1 Next next day delivery - - amazon: Easy to used website, and with ridiculously cheap clothing . Personally
was really on vacation but wanted last next days delivery of which n other tennis shop online site he found
did guarantee, And this package arrives the Next Day . Nice. (53)

0.25 another next days delivery - -: easy of use websites, fairly priced tennis clothing . . I was also working
and on a holiday, needing a next days delivery of, which No else other tennis store it looked can could
confirm, when this package actually landed the same next day . Some. (58)

Table 8: Rewriting examples (Trustpilot) from using Algorithm 3. The numbers in parentheses denote the token
length of the corresponding text. A indicates the token addition probability. A deletion probability (D) of 0.05 was
used in all examples. As shown, this new rewriting mechanism allows for output privatized texts of varying lengths.
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