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Abstract

Scientific document summarization aims to
condense complex and long articles in both
technical and plain-language terms to facili-
tate the accessibility and dissemination of sci-
entific findings. Existing datasets suffer from
a deficiency in source heterogeneity, as their
data predominantly stem from a single com-
mon resource, hindering effective model train-
ing and generalizability. First, we introduce
SCILAY, a novel dataset that includes docu-
ments from multiple natural science journals
with expert-authored technical and lay sum-
maries. Second, we propose PRUNEPERT, a
new transformer-based model that incorporates
a differentiable perturbed top-k encoder layer
to prune irrelevant tokens in end-to-end learn-
ing. Experimental results show that our model
achieves a nearly 2x speed-up compared to a
state-of-the-art linear transformer, remaining
comparable in effectiveness. Additional ex-
aminations underscore the importance of em-
ploying a training dataset that includes differ-
ent sources to enhance the generalizability of
the models. Code is available at https://
github.com/disi-unibo-nlp/sci-lay.

1 Introduction

Abstractive summarization aims to meticulously
condense documents by discerning and rephrasing
their salient points. Although this task is relatively
easy when summarizing concise texts—such as
news facts (Grusky et al., 2018; Narayan et al.,
2018)—synthesizing scientific articles presents
formidable challenges for humans (Altmami and
Menai, 2022). In fact, experts must conduct thor-
ough reviews, encountering technical terms and
formulas (Yasunaga et al., 2019), to fully grasp the
foundational information contained within the text.

To mitigate the considerable time and effort re-
quired for this endeavor, scientific document sum-
marization (SDS) emerges as an indispensable tool.
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Figure 1: Overview of our SCILAY benchmark.

SDS refers to the automatic production of tech-
nical and plain-language synopses from the sci-
entific literature, including the generation of ab-
stracts (Gharebagh et al., 2020; Frisoni et al., 2023),
systematic literature reviews (Moro et al., 2022,
2023e), and journalistic reports (Dangovski et al.,
2021). It plays a pivotal role in improving acces-
sibility to the latest research findings, either by
assisting experts quickly acquire the desired infor-
mation or by helping the general public understand
complex research topics. For example, in-domain
professionals require precise technical summaries
laden with specialized jargon. Conversely, non-
experts typically seek more simple syntheses with
layman’s terminologies, complemented by contex-
tual explanations that enhance comprehension.

To promote SDS research, several public bench-
marks have been proposed over the years. How-
ever, such corpora exhibit at least one of the fol-
lowing limitations: (i) they are built to offer ei-
ther technical (Cohan et al., 2018) or lay sum-
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Figure 2: Overview of our PRUNEPERT model.

maries (Cardenas et al., 2023); (ii) the documents
come from the same source, e.g., ELIFE (Goldsack
et al., 2022), limiting model generalizability in pro-
duction. In response, we introduce SCILAY (Fig-
ure 1),1 a new open-access high-quality SDS cor-
pus distinguished by the following characteristics:
(i) it comprises author-written and expert-checked
summaries of both types that carefully follow jour-
nal guidelines; (ii) it covers multiple domains from
different sources (e.g., Nature Communications,
PLOS Genetics, MDPI Insects, ASM mBio).

To tackle this benchmark, we explore a new
model architecture to generate the summaries. Un-
like previous solutions that approach this problem
with conventional transformer-based pretrained lan-
guage models (PLMs), we focus on addressing the
following challenges. First, scientific papers ex-
hibit an intricate and extensive structure (Kashyap
et al., 2023), with summary-worthy information
dispersed throughout the long input. Second, pro-
cessing time and resource demand increase propor-
tionally with the length of the input (Moro et al.,
2023d), which presents a bottleneck in real-world
applications for long scientific articles (Moro and
Ragazzi, 2022, 2023). To this end, we propose
PRUNEPERT (Figure 2), an SDS model that extends
a PLM architecture with a token-pruning layer. We
incorporate a differentiable perturbed top-k mecha-
nism within the encoder stack, aiming to locate a
user-defined percentage of summary-worthy input
tokens in end-to-end learning. This method allows
the model to process fewer input tokens, enhancing
the efficiency and interpretability of PLMs.

In summary, our contributions are twofold. First,
we establish a new publicly available dataset tai-
lored for both technical and lay SDS. Second, we
propose a novel model that learns to select and
use only a fraction of tokens for summary gener-
ation. Through rigorous evaluations and ablation
studies, we demonstrate that our proposed model
can generate coherent and informative summaries

1The dataset is available at https://huggingface.
co/datasets/disi-unibo-nlp/SciLay.
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Figure 3: Average readability metrics computed on the
SCILAY’s test set (the lower, the more readable).

comparable to state-of-the-art baseline solutions,
registering a 2x speed-up in computational time.
Overall, this work contributes to the progression of
SDS, offering users more efficient tools for crafting
diverse forms of scientific summaries.

2 SCILAY

SCILAY is a new dataset created to summarize sci-
entific papers for both technical and lay audiences.

Collection Unlike existing datasets in the liter-
ature (see Table 1 for a comparison), we curate
a comprehensive and varied collection of jour-
nals from different publishers (see Figure 1). We
scrape articles from the PubMed Central repos-
itory2—which archives literature from biomedi-
cal and life sciences journals—and parse the in-
stances from XML to JSONL format. We then
perform a rigorous cleaning phase, discarding sam-
ples with missing attributes and outliers based
on the length of the document and summaries.
Each instance of the dataset includes the full ar-
ticle text, lay and technical summaries, affiliated
journal, keywords, Digital Object Identifier (DOI),
and a unique identifier in the PubMed Central li-
brary database (PMCID).3 We perform an 80-10-10
train/validation/test split by stratifying on the jour-
nal type, obtaining 35,026/4380/4384 instances.
More details on the dataset are given in Appendix.

Readability We compare the readability of tech-
nical with their lay counterparts using the follow-
ing standard metrics: Flesch-Kincaid Grade Level
(FKGL, Kincaid et al., 1975), Coleman-Liau Index

2https://www.ncbi.nlm.nih.gov/pmc/
3Since not all articles on PubMed Central have lay sum-

maries, our dataset comprises instances that originally include
the source article and both a technical and lay synthesis.

9428

https://huggingface.co/datasets/disi-unibo-nlp/SciLay
https://huggingface.co/datasets/disi-unibo-nlp/SciLay
https://www.ncbi.nlm.nih.gov/pmc/


Doc Tech Summary Lay Summary

Dataset Samples # words # words # sents # words # sents

PUBMED (Cohan et al., 2018) 133,215 2640.8 177.3 6.7 - -
ARXIV (Cohan et al., 2018) 215,913 5282.3 237.8 8.9 - -
LAYSUMM (Chandrasekaran et al., 2020) 572 4426.1 - - 82.2 3.8
PLOS (Goldsack et al., 2022) 27,525 5366.7 - - 175.6 7.8
ELIFE (Goldsack et al., 2022) 4828 7806.1 - - 347.6 15.7
SCITECHNEWS (Cardenas et al., 2023) 2431 7570.3 - - 216.8 7.9
SCILAY (Ours) 43,790 7530.4 239.1 8.8 145.7 5.7

Table 1: Comparison of related datasets. The number of words and sentences (sents) are averaged. For all corpora,
we report values from Cardenas et al. (2023). SCILAY is the first SDS dataset with technical and lay summaries.

(CLI, Coleman and Liau, 1975), Dale-Chall Read-
ability Score (DCRS, Dale and Chall, 1948), and
Gunning Fog Index (GF, Gunning, 1952). These
assessment metrics gauge the approximate num-
ber of years of education required to comprehend a
given text. Lower scores signify greater readability;
scores falling within the 13–16 range align with the
reading proficiency expected at the college level
within the US education system. Specifically, (i)
FKGL assesses the total count of sentences, words,
and syllables contained within the text; (ii) CLI
is determined by the number of sentences, words,
and characters; (iii) DCRS evaluates readability by
considering the average sentence length and the
presence of familiar words, using a reference table
comprising the 3000 most frequently used English
words; and (iv) GF calculates the average sentence
length and the proportion of “hard words,” defined
as those containing more than two syllables. The re-
sults described in Figure 3 indicate the necessity of
a college-level education to understand even the lay
summary. Consistent with previous work on text
simplification (Devaraj et al., 2021; Goldsack et al.,
2022; Cardenas et al., 2023), the readability of both
summaries is comparable; yet, we observe that lay
syntheses are more readable across all metrics.

Characterization To compare the alignment of
the technical and lay summaries with the input arti-
cle, we calculate the extractive fragment coverage

SCILAY Tech Summ Lay Summ

Coverage (↓) 0.93 0.90
Density (↓) 3.67 3.08
% novel unigrams (↑) 13.51 16.55
% novel bigrams (↑) 44.94 51.50
% novel trigrams (↑) 70.75 76.79

Table 2: Statistics of the summaries in SCILAY in terms
of abstractiveness. The arrows denote the direction
towards a more abstractive output.

and density (Grusky et al., 2018). Technically, an
extractive fragment is defined as the set of words
shared between two texts. Coverage gauges the
proportion of words in the summary that consti-
tute an extractive fragment. Density employs the
square of common fragment lengths, ensuring that
summaries with longer common fragments receive
higher values than those with more numerous but
shorter common fragments. Furthermore, we com-
pute the percentage of novel n-grams to assess the
amount of information present in the summary that
is not explicitly stated in the source document. Ta-
ble 2 illustrates that lay summaries exhibit lower
values for both density and coverage compared
to their technical counterpart. In contrast, techni-
cal summaries demonstrate lower percentages of
novel n-grams. These findings suggest that lay
summaries manifest a reduced level of information
directly replicated from the source document. In
other words, lay summaries exhibit greater abstrac-
tiveness, requiring a shift in style from the source
and the use of rephrasing strategies.

3 PRUNEPERT

In laying the groundwork for understanding our
solution (Section 3.2), we provide a conceptual
preliminary with the needed foundations.

3.1 Preliminary

Given the generative nature of the tasks at hand,
we employ a transformer-based encoder–decoder
model (Vaswani et al., 2017), consisting of an
encoder E = {e1, . . . , eL} and a decoder D =
{d1, . . . , dL}, each with a stack of L identical lay-
ers. E(·) transforms the input sequence of sym-
bols x = (x1, . . . , x|x|) into a series of continuous
representations hL = {hL,1, . . . ,hL,|x|}. Then,
leveraging hL, D(·) generates the output sequence
y = {y1, . . . ,y|y|) in an autoregressive manner.
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Figure 4: PRUNEPERT architecture (in this example, k = 3 and u = 4).

Specifically, every ei layer encompasses a self-
attention module (SELF-ATT) and a feedforward
network module (FFN) through a residual connec-
tion and layer normalization (LN):

mi−1 = LN (hi−1 + SELF-ATT (hi−1)) ,

hi = LN (mi−1 + FFN (mi−1)) .
(1)

In addition, D(·) uses a cross-attention module
(CROSS-ATT) between the SELF-ATT and FFN

modules, performing multi-head attention over hL:

ci−1 = LN
(
m′

i−1 + CROSS-ATT
(
m′

i−1,hL

))
,

(2)
where m′

i−1 denotes the output of the SELF-
ATT decoder module after being processed by LN

and summed to the residual connection.

3.2 Perturbed Token Pruning
We introduce PRUNEPERT (Figure 4), a novel
model that prunes the encoder at token-level granu-
larity using a differentiable perturbed top-k selec-
tion module. To achieve our goal of end-to-end
model training without the inclusion of supplemen-
tary auxiliary losses, we allow the model to pin-
point and leverage only the most significant tokens.

Model Architecture We use the transformer-
based architecture to inherit the knowledge ac-
quired by PLMs. We then integrate a scorer net-
work Sϕ and a token selection module T into the
model encoder E, where ϕ represents the train-
able parameters. Sϕ and T are placed at a cer-
tain height of E, between the ew and ew+1 lay-
ers, where w is a hyperparameter. Mechanically,
we feed the continuous representations hw and

obtain relevance scores r = Sϕ(hw) ∈ R|x| for
each token in the input sequence x. Subsequently,
we retain the indices of the k most salient tokens
i = T (r) ∈ [1, |x|]k, where T is a discrete op-
erator.4 To preserve the original ordering of the
hidden states, it is necessary for the i values to
be sorted, i.e., i1 < iz < iz+1 < ik. The intu-
ition here is that if we had a large tensor of all
token embeddings, we could extract the relevant
ones using a single matrix multiplication. To this
end, we represent each index iz as the correspond-
ing |x|-dimensional one-hot vector Iz , obtaining
I = {I1, . . . , Ik} ∈ {0, 1}|x|×k. Thus, the pruned
k hidden states are obtained as ĥw = I⊤hw.

Differentiable Top-k The token selection mod-
ule T described above is non-differentiable. This
implies that during the backpropagation of gradi-
ents through the model, no adjustments will be
made to the parameters ϕ of the scorer S . To enable
differentiation through this operator, we use the
perturbed maximum method (Berthet et al., 2020),
whose forward pass is defined as follows:

Iσ = E
[
argmax

I∈C
⟨I, r1⊤ + σZ⟩

]
, (3)

where r1⊤ ∈ R|x|×k are the scores copied k
times, σ is an hyperparameter that regulates the
influence of the noise, and C is the constraint set
defined as follows:

4For example, i1 = z implies that the first selected token
is the z-th of the input x.
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C ={I ∈ R|x|×k, Ia,b ≥ 0,1⊤I = 1,

I1 ≤ 1,
∑

a∈[|x|]
aIa,k∗ <

∑

b∈[|x|]
bIb,k′ ∀k∗ < k′}.

(4)
The condition 1⊤I = 1 ensures that each col-

umn sums up to 1, while the last constraint im-
poses the ordering of the i indices. Empirically,
we sample u uniform Gaussian noises to perturb
r1⊤. For each perturbed input, we run the top-k
algorithm and perform the Monte-Carlo estimation
of Equation 3 by averaging their results. Accord-
ing to Berthet et al. (2020), the Jacobian associated
with the above forward pass is the following:

J = E
[
argmax

I∈C
⟨I, r1⊤ + σZ⟩ZT/σ

]
. (5)

Utilizing the top-k operator on each perturbed in-
put leads to the generation of the one-hot matrix I.
However, the average of these matrices may deviate
significantly from the one-hot pattern, particularly
in the initial stages of training when the scoring
system is indecisive. This results in obtaining the
pruned k hidden states ĥw, forming a weighted
average of the original hidden states hw. Accord-
ingly, a beneficial consequence emerges wherein
backpropagated gradients consider all tokens. This
obviates the need to wait several iterations until the
appropriate tokens are consistently sampled. At in-
ference time, we perform hard top-k for efficiency
reasons, as there is no need for u perturbed repeti-
tions. This leads to a train–test gap; therefore, as
suggested in Cordonnier et al. (2021), we linearly
decrease σ to 0 at training time, so that no noise
is added and the differentiable top-k operator is
numerically identical to hard top-k.

4 Experiments

4.1 Experimental Setup
Hardware Environment All runs are tracked
with Weights & Biases5 and executed on a work-
station with a single Nvidia GeForce RTX3090
GPU of 24 GB of dedicated memory, 64 GB of
VRAM, and an Intel® Core™ i9-10900X1080
CPU @ 3.70GHz. The operating system is Ubuntu
20.04.3 LTS. To enhance consistency and portabil-
ity, our development environment is built on top of
a docker container with a NVIDIA image.6

5https://wandb.ai
6nvidia/cuda:11.3.1-devel-ubuntu20.04

Evaluation To perform a comprehensive eval-
uation of model performance, we address vari-
ous dimensions. First, we report the F1 scores
of syntactic metrics such as ROUGE-{1,2,L} (Lin,
2004), also providing R (Moro et al., 2023b), their
variance-aware aggregated score. Second, we use
the model-based metric BARTScore (Yuan et al.,
2021) for semantic coverage, reporting precision,
recall, and F1 values. Third, we report the aver-
age readability score across FKGL, GF, CLI, and
DCRS.7 We also conduct a thorough human evalua-
tion. Finally, we assess the efficiency of the models
by monitoring the training runtime. Additional
technical details are given in Appendix.

Baselines Despite the popularity of decoder-
only architectures driven by large language mod-
els (LLMs), recent findings confirm the superi-
ority of encoder–decoder networks for text sum-
marization (Fu et al., 2023). Therefore, we con-
sider two widely-used encoder–decoder solutions:
BART (Lewis et al., 2020), a model characterized
by a denoising pretraining objective, and PEGA-
SUS (Zhang et al., 2020), a model featuring a pre-
training objective tailored to abstractive summariza-
tion. To feed sequences longer than 1024 tokens,
we leverage the LSG architecture (Condevaux and
Harispe, 2023) for both models, inducing O(n)
complexity w.r.t. the input length.

4.2 Discussion
Effectiveness Table 3 presents the results on
SCILAY. It is apparent that the inclusion of
PRUNEPERT does not degrade the performance of
PEGASUS; rather, it enhances summary quality, as
evidenced by improved ROUGE and BARTScore
metrics in the technical and lay summarization
tasks, respectively. PRUNEPERT also contributes
to the creation of more readable lay summaries, as
indicated by the average readability score. Notably,
solutions based on PEGASUS demonstrate supe-
rior proficiency in generating lay summaries. This
phenomenon may be attributed to the increased dif-
ficulty of producing technical summaries, which
demand greater length and lexical complexity.

Efficiency In addition to evaluating summariza-
tion performance, our focus lies on minimizing
computational load during training. Figure 5 il-
lustrates the substantial acceleration achieved by

7As typically done in the literature, we did not evaluate the
readability of technical summaries since they are intended for
a specialized audience, making such a study less pertinent.
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Model R-1 R-2 R-L R BaS-R BaS-P BaS-F1 Read.

Technical Summarization

BART 28.70 4.95 16.07 16.42 -3.363 -4.887 -4.125 -
PEGASUS 35.01 10.06 25.40 23.24 -3.380 -2.333 -2.856 -
PEGASUS + PRUNEPERT 37.61 9.35 26.27 24.09 -3.663 -2.403 -3.033 -

Lay Summarization

BART 23.86 3.99 15.57 14.38 -3.299 -5.094 -4.196 16.67
PEGASUS 40.76 12.69 28.57 26.98 -3.258 -3.228 -3.243 16.08
PEGASUS + PRUNEPERT 38.32 10.93 27.23 25.17 -3.451 -2.776 -3.113 15.29

Table 3: Overall results on the SCILAY dataset. The best scores are in bold. PRUNEPERT enhances syntactic
(ROUGE) and semantic (BARTScore) metrics in the technical and lay summarization tasks, respectively.
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Figure 5: Average execution time (seconds) per instance
throughout the forward (fw) and backward (bw) passes.
PRUNEPERT achieves a speedup of up to 46%.

PRUNEPERT in PEGASUS. Notably, this efficiency
enhancement is evident in both the forward and
backward passes of the model, resulting in a note-
worthy improvement ranging from 42% to 46%.
Specifically, the most significant boost in absolute
terms is observed during the backward pass, which
inherently demands more computational time.

Interpretability To gain a deeper understanding
of how the token pruning module works, it is cru-
cial to perform a thorough examination of both the
retained and discarded tokens. Therefore, in our
analysis, we specifically examine the frequency of
stopwords and the following parts-of-speech (POS)
tags: adjectives, nouns, verbs, adpositions, and
determiners. To achieve this goal, we employ Scis-
paCy (Neumann et al., 2019), a library equipped
with pipelines and models designed for scientific
documents. Figure 6 illustrates the results of our

NOUN PUNCT VERB ADJ ADP STOPW DET OTHER
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Lay Summarization

NOUN PUNCT VERB ADJ ADP STOPW DET OTHER
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Technical Summarization

Figure 6: The average rate of POS tags (nouns, punctu-
ation, verbs, adjectives, adpositions, stopwords, deter-
miners, and others) processed by PRUNEPERT in both
summarization tasks. We observe a tendency to preserve
information stored in nouns, adjectives, and verbs.

analysis, showing the average frequency at which
each POS tag and stopword appear in both selected
and unselected tokens within the input article. As
expected, we observe a tendency to retain elevated
information content stored in nouns, adjectives, and
verbs. On the contrary, other elements essential for
ensuring grammatical correctness, yet offering lim-
ited informational value, are excluded. This applies
both to lay and technical summarization. However,
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Figure 7: Normalized position distribution of tokens
selected by PRUNEPERT. In lay summarization, the
model tends to select a higher proportion of tokens from
the first 25% of the input.

the latter is distinguished by a higher retention rate
of stopwords, likely aimed at ensuring the more
pronounced syntactic overlap described in Table 2.

Furthermore, in Figure 7, we examine the posi-
tional distribution of the selected tokens. Remark-
ably, we observe a clear differentiation between
technical and lay summarization. Specifically, in
lay summarization, there is a higher frequency of
tokens within the first 25% of the input, whereas
in technical summarization, the trend is reversed.
The distribution of the last 75% tokens appears
relatively uniform across both tasks, with no sig-
nificant distinction. Considering the conventional
role of the first section as the preamble in an article,
it logically follows that, due to the need for addi-
tional contextual information in a lay summary, the
selection should be particularly guided by it.

Transfer Learning To deepen our understanding
of how SCILAY can contribute to SDS, we use it
as a dataset for fine-tuning models, which are sub-
sequently evaluated across benchmarks within the
field. Further, our goal is to emphasize the role of
source heterogeneity in enhancing the generaliz-
ability of models when applied to diverse corpora
beyond their training origin. In particular, we exper-
iment with the following two fine-tuning settings:

• PEGASUSall: we train PEGASUS using 3000
instances sourced from SCILAY, ensuring that
the distribution of journals within this subset
is proportional to the entire dataset.

• PEGASUSplgen: we train PEGASUS using
3000 instances exclusively sourced from the
PLOS Genetics journal in SCILAY.

Model R-1 R-2 R-L BaS-F1

arXiv

PEGASUSall 28.56 5.01 17.23 -4.437
PEGASUSplgen 27.42 4.53 16.33 -4.466

PubMed

PEGASUSall 28.60 6.46 18.01 -3.934
PEGASUSplgen 27.76 5.82 16.96 -3.970

Table 4: Transfer learning results on external SDS
datasets. The best scores are in bold. The model trained
on multiple heterogeneous sources (PEGASUSall) con-
sistently achieves superior results.

We evaluate both configurations using 1000 in-
stances from the test sets of the SDS datasets
PUBMED and ARXIV (Cohan et al., 2018). Table 4
shows that PEGASUSall achieves superior perfor-
mance in terms of ROUGE and BARTScore met-
rics in all datasets, underscoring the importance of
including training instances from multiple sources.

Human Evaluation To qualitatively analyze the
summaries generated by PEGASUS and PEGA-
SUS+PRUNEPERT, we conduct a detailed human
evaluation study. We randomly select 30 SCILAY’s
test set instances and invite three English-proficient
annotators with strong NLP competencies in the
biomedical domain. Upon reviewing the articles
and their corresponding summaries, each evaluator
assigns scores to the generated summaries using
a Likert scale ranging from 1 (worst) to 5 (best),
on three distinct dimensions: (i) Recall evaluates
whether the generated summary encompasses all
target contents; (ii) Precision examines whether the
generated summary includes only the target con-
tents without extraneous or redundant information;
(iii) Faithfulness assesses whether the generated
summary maintains factual consistency with the
original text. Figure 8 presents the results of the
human evaluation study, reaffirming the absence of
any notable distinction among solutions.

5 Related Work

Scientific Document Summarization SDS has
been a long-standing task, mainly focused on the
generation of technical summaries, such as ab-
stracts. Cohan et al. (2018) employ a hierarchi-
cal encoder to model the discourse structure and
an attentive discourse-aware decoder for summary
generation. An et al. (2021) integrate information
from the source document and its references, using
a graph-based citation model. Recently, there has
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Figure 8: Human evaluation results considering faithful-
ness, precision, and recall, with scores ranging from 0
to 5. The outcomes among models are comparable.

been a notable shift in focus within the scientific
community, expanding beyond traditional text sum-
marization to include simplification. This shift has
given rise to various datasets and methodologies
to address this gap. The LaySumm task (Chan-
drasekaran et al., 2020) is a significant initiative
that uses a corpus of 572 articles with author-
generated lay summaries across various disciplines,
including the Materials Science, Archaeology, Hep-
atology, and Artificial Intelligence journals. Za-
man et al. (2020) automatically retrieve simplified
and condensed versions of articles available on the
Eureka Alert website, resulting in 5204 instances
sourced from journals such as PLOS-ONE, Nature
Communication, and Scientific Reports. Cachola
et al. (2020) propose an innovative approach to ex-
treme summarization, emphasizing core elements
while omitting unnecessary methodological details.
Guo et al. (2021) collected 6695 pairs of systematic
reviews with their corresponding plain-language
summaries from the Cochrane Database of System-
atic Reviews. In alignment with our work, Gold-
sack et al. (2022) and Cardenas et al. (2023) pro-
vide datasets with varying readability levels. The
first presents two datasets from biomedical journals
(PLOS and eLife), pairing articles with manually-
crafted lay summaries and abstracts. The second
covers diverse domains, including Computer Sci-
ence, Machine Learning, Physics, and Engineering.

Token Pruning In addition to extract-then-
abstract methodologies (Moro et al., 2023c), initial
attempts to mitigate the computational burden of
transformers—even with linear complexity (Belt-
agy et al., 2020; Huang et al., 2021)—focus on the
removal of non-informative tokens, mainly leverag-
ing attention scores. PoWER-BERT (Goyal et al.,
2020) uses a scoring function derived from atten-

tion scores to drop tokens based on their impact on
others. Luo et al. (2022) extended this approach to
Vision Transformers (ViTs), locating and dropping
tokens using attention scores and fusing informa-
tion from different attention heads. Yang et al.
(2022) adaptively determined the quantization pre-
cision levels of the tokens (i.e., 0 bit, 4 bit, and 8
bit) based on their importance, as gauged by their
attention probabilities. Despite their popularity and
promising outcomes, these solutions are grounded
in predefined heuristics. Hence, we advocate for
an alternative research direction that involves au-
tomatically learning the token selection module.
In this context, TR-BERT (Ye et al., 2021) formu-
lates token reduction as a multi-step problem ad-
dressable with reinforcement learning, introducing
an additional loss function to maximize rewards.
Conversely, Cordonnier et al. (2021) opt for an
end-to-end token selection approach that avoids in-
troducing additional losses, relying on perturbation,
which, while differentiable, lacks sparsity. Sander
et al. (2023), using p-norm regularization, intro-
duce the first differentiable everywhere and the
sparse top-k operator. Nonetheless, it is crucial
to note that these pruning-based methods are lim-
ited to encoder-only architectures, rendering them
unsuitable for direct application to generative tasks.

6 Conclusion

We first introduced SCILAY, a new SDS dataset
designed to benchmark models in the creation of
technical and lay summaries from heterogeneous
sources. Second, we present PRUNEPERT, a new
PLM enriched with a token-pruning layer within
the encoder stack that allows the model to select
only a summary-worthy subset of input tokens for
synthesis generation. Quantitative and qualitative
analysis attest to the comparable performance be-
tween our method and a cutting-edge linear trans-
former; yet, PRUNEPERT is notably more efficient,
with an average speed-up of almost 2x. Further in-
vestigation reveals the nature of the selected tokens
and the importance of having training sets covering
multiple sources to enhance model generalizability.

Limitations

Our research is focused on the realm of science.
Other domains like finance and law (Moro et al.,
2023a) often require text simplification; yet, there
is currently a dearth of publicly available technical
and lay summaries for documents in these fields.

9434



The effectiveness of our suggested PRUNEPERT

model is limited by the requirements established
by the specific task at hand. Engaging in the sum-
marization of lengthy documents requires the adop-
tion of models that feature an attention mechanism
that exhibits linear scaling w.r.t. the length of the
input sequence. Consequently, the performance en-
hancement achieved through token pruning in the
forward pass is constrained compared to solutions
employing models with quadratic complexity.

The restrictions of using a single 24 GB of GPU
RAM and dealing with long input sequences hin-
der the use of LLMs, which could potentially have
improved overall task performance and the effec-
tiveness of the top-k token selection module.

Ethics Statement

While PLMs hold promise for enhancing summa-
rization capabilities across diverse domains, it is
crucial to acknowledge their limitations in ensuring
the accuracy and fidelity of generated summaries.
Therefore, we advocate for a cautious approach,
recommending that any output produced by our
proposed solution—but it applies to every gener-
ative model in the literature—undergoes manual
scrutiny by domain experts before utilization for
any purpose. This ethical precaution is essential
to mitigate the risk of disseminating potentially
erroneous or misleading information, particularly
within clinical and scientific communities where
accuracy and reliability are paramount.
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Appendix

License SCILAY will be released under the Cre-
ative Commons Attribution 4.0 International (CC
BY) license. In fact, the documents in our dataset
are open-access manuscripts sourced from various
resources, each licensed under the aforementioned
license, which enables free and unrestricted usage.

Dataset Our SCILAY dataset has the following
sources: Nature Communications (NC), PLOS Ge-
netics (PLGEN), PLOS Pathogens (PLPAT), PLOS
Computational Biology (PLCB), PLOS Neglected
Tropical Diseases (PLNTD), PLOS Biology (PLB),
Biology (B), Communications Biology (CB), Scien-
tific Data (SD), mBio (MBIO), Animals (A), Insects
(I), and Cancers (C). Table 5 shows split statistics.

In detail, NC is a multidisciplinary journal ded-
icated to disseminating top-tier research across a
wide array of fields, e.g., biological, health, physi-
cal, chemical, and mathematical. PLGEN focuses
on studies involving humans and investigations of
model organisms, ranging from mice and flies to
plants and bacteria. PLPAT publishes groundbreak-
ing research that significantly improves our under-
standing of pathogen biology or interactions be-
tween pathogens and hosts. PLCB features works
that advance our understanding of living systems
on various scales through the application of com-
putational methods, including molecules and cells,
and patient populations and ecosystems. PLNTD
publishes research dedicated to the pathology, epi-
demiology, prevention, treatment, and control of
neglected tropical diseases, together with relevant
contributions to public health and policy. PLB,
BIO, and CB publish significant advances across
biological sciences. SD shares advances from all
areas of natural sciences, medicine, engineering,
and social sciences. mBio reflects the vastness of

the interconnected microbial world, covering sym-
biosis, pathogenesis, energy acquisition and con-
version, climate change, geologic transformations,
food and drug production, and even alterations in
animal behavior. AN is exclusively dedicated to the
field of animals, covering aspects of zoology and
veterinary sciences. INS releases articles focusing
on the biology, physiology, behavior, and manage-
ment of arthropods, along with their interactions
with human societies, plants, and ecosystem ser-
vices. CAN covers basic, translational, and clinical
studies in all types of tumors.

Training Details We list the hyperparameters
used for fine-tuning and inference in Table 6.

Metrics Table 7 lists the hyperparameters of the
metrics. BARTScore computes the generation prob-
ability p(y|x, θ) of a sequence y conditioned on
another sequence x, where θ are the weights of a
BART model. Due to this generative approach, the
evaluation dimensions vary depending on how y
and x are defined. We consider the Recall, Preci-
sion and F1 settings. Technically, Recall (h → r,
p(r|h, θ)) quantifies how easily a gold reference (r)
could be generated by the hypothesis (h). Precision
(r → h, p(h|r, θ)) evaluates the likelihood that the
answer hypothesis could be constructed based on
the gold reference. F1 (h ↔ r) is the harmonic
mean of recall and precision. The aggregated score
R is formally defined as: R = avg(r1,r2,rL)/1+σ2

r ,
where σ2

r is the F1 variance. R penalizes model re-
sults with discrepant unigram, bigram, and longest
common subsequence overlaps.

Quality Control Table 8 showcases examples of
the generated technical and lay summaries, employ-
ing PEGASUS and PEGASUS+PRUNEPERT.
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Doc Tech Summary Lay Summary

Split Website Samples # words # words # sents # words # sents

NC https://www.nature.com/ncomms/ 6937 8906.4 168.3 6.5 47.7 2.1
PLGEN https://journals.plos.org/plosgenetics/ 3859 9554.3 257.6 9.5 195.0 7.7
PLPAT https://journals.plos.org/plospathogens/ 3650 9569.2 260.7 9.7 196.3 7.7
PLCB https://journals.plos.org/ploscompbiol/ 3237 9683.9 254.7 9.3 192.8 7.5
PLNTD https://journals.plos.org/plosntds/ 2862 6341.0 304.5 10.2 198.9 7.9
PLB https://journals.plos.org/plosbiology/ 1121 10165.1 247.3 9.1 216.7 8.0
B https://www.mdpi.com/journal/biology 2022 5854.4 246.8 9.2 155.9 6.1
CB https://www.nature.com/commsbio/ 1084 8462.0 170.0 6.9 55.4 2.9
SD https://www.nature.com/sdata/ 907 5355.0 180.6 6.8 45.3 1.0
MBIO https://journals.asm.org/journal/mbio 759 8403.5 246.5 9.1 145.0 5.7
A https://www.mdpi.com/journal/animals 4887 5494.3 263.1 9.4 163.6 6.3
I https://www.mdpi.com/journal/insects 1477 5372.2 238.0 9.1 169.7 6.9
C https://www.mdpi.com/journal/cancers 8478 5851.8 242.4 9.3 133.4 5.3
OTHER - 2510 7427.9 262.2 9.1 173.6 6.0

Table 5: Split statistics of the journals within SCILAY.

Hyperparameter

Dropout rate 0.1
Learning rate 5e-5, linear scheduler
Optimizer 0.9 β1, 0.999 β2, 1e-2 weight decay
Batch size 1
Epochs 1
Decoding strategy greedy search
Seed 42
k† selected tokens† {0.1, . . . , 0.5∗, . . . , 0.9} ×|x|
w encoder layer† {1, 2, 3∗, . . . , 15}
u sampled noises† {50, 100, 200∗, 300, 400}
σ† {0.05, 0.1, 0.2∗, 0.3}

Table 6: Hyperparameters utilized for model fine-
tuning and inference. † refers to values specific for
PRUNEPERT. ∗ marks the final chosen value. 0.5× |x|
means that we select half of the input tokens.
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Metric Bound Hyperparameters

ROUGE [0, 1]

rouge_types=["rouge1","rouge2","rougeL"],
use_aggregator=True,
use_stemmer=True,
metric_to_select="fmeasure"

BARTScore ]−∞, 0[
model_checkpoint="facebook/bart-large-cnn",
batch_size=4, segment_scores=False

Table 7: Hyperparameters initialization for metrics.

Target Technical Summary
Immunosuppressive molecules are extremely valuable prognostic biomarkers across different cancer types. However, the diversity of different immunosuppressive
molecules makes it very difficult to accurately predict clinical outcomes based only on a single immunosuppressive molecule. Here, we establish a comprehensive
immune scoring system (ISSGC) based on 6 immunosuppressive ligands (NECTIN2, CEACAM1, HMGB1, SIGLEC6, CD44, and CD155) using the LASSO
method to improve prognostic accuracy and provide an additional selection strategy for adjuvant chemotherapy of gastric cancer (GC). The results show that
ISSGC is an independent prognostic factor and a supplement of TNM stage for GC patients, and it can improve their prognosis prediction accuracy; in addition, it
can distinguish GC patients with better prognosis from those with high prognostic nutritional index score; furthermore, ISSGC can also be used as a tool to select
GC patients who would benefit from adjuvant chemotherapy independent of their TNM stages, MSI status and EBV status.
PEGASUS Tumour immunosuppression describes the suppressed host immune responses to tumour antigens, resulting in the reduction or loss of

antigens on tumour cells, inhibiting the activation of immune effector cells and the decreased cell viability of cytotoxic T lymphocytes
(CTLs) or natural killer cells. In recent years, an increasing number of oncologists have begun to focus their studies on anti-tumour
immune responses, which might become fundamental markers in cancer immunotherapy. In recent years, despite remarkable progress
in immunotherapy, there are still a considerable number of patients who cannot benefit from immunotherapy, which may be related to
the immunosuppressive environment of tumours. Thus, testing the expression levels of immune checkpoints in GC patients and using
valuable immune checkpoints to form a scoring system will significantly help surgeons accurately perform prognostic assessments.

PEGASUS +
PRUNEPERT

The expression of immune checkpoints in gastric cancer (GC) has been shown to play a key role in the immunosuppressive environment
of the tumour. However, the prognostic value of these immune checkpoints remains unclear. In this study, we evaluated the correlation
between the expression of seven immune checkpoints and the prognosis of GC patients. A total of 652 patients with GC were included
in the study. The patients were divided into six groups based on their GC stage, and their immune checkpoints were evaluated by
immunohistochemistry (IHC). The correlation of the immune checkpoints with the prognosis was evaluated by Cox regression. The
results showed that the immune checkpoint expression was significantly correlated with the GC stage (p 0.05) and with the tumour
microenvironment (TME) (p > 0.05). The correlation between immune checkpoint and the TME was also significantly correlated (p =
0.05) with GC stage. In addition, the correlation of immune checkpoint with the microenvironment was significantly associated with
the disease-free survival (DFS) and overall survival (OS). In conclusion, our results suggest that immune checkpoints can be used as
prognostic indicators in GC.

Target Lay Summary
Many organisms possess a true circadian clock and coordinate their activities into daily cycles. Among the simplest organisms harboring such a 24 h-clock
are cyanobacteria. Interactions among three proteins, KaiA, KaiB, KaiC, and cyclic KaiC phosphorylation govern the daily rhythm from gene expression to
metabolism. Thus, the control of the kaiBC gene cluster expression is important for regulating the cyanobacterial clockwork. A picture has emerged in which
different KaiC phospho-states activate and inhibit kaiBC expression. However, the mechanism remains to be solved. Here, we investigated the impact of each
KaiC phospho-state on kaiBC expression by introducing a model that combines the circadian transcription/translation rhythm with the KaiABC-protein oscillator.
We tested 32 combinations of positive and negative transcriptional regulation. It turns out that the kaiBC expression and KaiC phosphorylation dynamics in
wild type and kai mutants can only be described by one mechanism: threonine and double phosphorylated KaiC hexamers activate kaiBC expression and the
unphosphorylated state suppresses it. Further, we propose that the activator-to-repressor abundance ratio very likely determines the kaiBC expression dynamics
in the simulated kai mutants. Our suggested clock model can be extended by further kinetic mechanisms to gain deeper insights into the various underlying
processes of circadian gene regulation.
PEGASUS Photoautotrophic organisms like plants and cyanobacteria are subjected to a daily light-dark rhythm and have been demonstrated

to possess a self-sustained circadian clock. It consists of just three proteins KaiA, KaiB and KaiC composing a post-translational
oscillator (PTO). The principal protein of the PTO is KaiC combining three intrinsic enzymatic activities, autokinase, autophosphatase
and ATPase. The consensus view is that the ATPase crosstalks with the kinase/phosphatase through a structural coupling between the
two rings. The three Kai proteins form stable complexes during the subjective night. KaiC forms hexamers and each KaiC monomer
within the hexamer possesses two main phosphorylation sites (T432 and S431). The four forms of KaiC cycle in a stepwise fashion:
unphosphorylated (U- KaiC), threonine phosphorylated (T-KaiC), both residues phosphorylated, and serine phosphorylated. In the
presence of ATP, the three proteins are able to produce robust, temperature-compensated 24 h-cycles ofKaiC phosphorylation even
in a test tube. In a recent study, we showed that an additional response regulator, SasA, is also suggested to drive the circadian
transcriptional output without de novo expression of the kai genes. In this work, we studied whether the model can reproduce the
observed dynamics of kaiBC transcription and kaiC phosphorylation.

PEGASUS +
PRUNEPERT

Plants and cyanobacteria are subjected to a daily light-dark rhythm and a self-sustained circadian clock. The simplest circadian clock
is a post-translational oscillator (PTO) composed of proteins KaiA, KaiB, KaiC, and the PTO KaiC hexamer. The PTO has been
described as a unique circadian clock in Synechococcus elongatus. In this study, we developed a computational model of the PTO that
simulates the interaction between the PTO and the kaiA and KaiC proteins. We found that the PTO regulates the expression of kaiB
and kaiC, which are phosphorylated by ATPases. We also found that a combination of phosphorylated and phosphorylated -KaiCs is
required for the PTO to function. This study provides a new perspective on the function of PTOs in eukaryotes.

Table 8: Qualitative examples on SCILAY.
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