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Abstract
Recent mainstream event argument extraction
methods process each event in isolation, re-
sulting in inefficient inference and ignoring
the correlations among multiple events. To
address these limitations, here we propose
a multiple-event argument extraction model
DEEIA (Dependency-guided Encoding and
Event-specific Information Aggregation), ca-
pable of extracting arguments from all events
within a document simultaneously. The pro-
posed DEEIA model employs a multi-event
prompt mechanism, comprising DE and EIA
modules. The DE module is designed to im-
prove the correlation between prompts and their
corresponding event contexts, whereas the EIA
module provides event-specific information to
improve contextual understanding. Extensive
experiments show that our method achieves
new state-of-the-art performance on four pub-
lic datasets (RAMS, WikiEvents, MLEE, and
ACE05), while significantly saving the infer-
ence time compared to the baselines. Fur-
ther analyses demonstrate the effectiveness
of the proposed modules. Our implementa-
tion is available at https://github.com/
LWL-cpu/DEEIA.

1 Introduction

Document-level event argument extraction (EAE)
is a key process within Information Extrac-
tion (Hobbs, 2010; Grishman, 2015; Xia et al.,
2022), focused on identifying event-related argu-
ments and their respective roles in document-level
texts. Recently, the leading-edge methods for this
task delve into prompt-based techniques (Ma et al.,
2022; Hsu et al., 2023), due to their great general-
izability and competitive performance. Figure 1 (a)
presents an example demonstrating EAE utilizing
a prompt-based approach. Regarding the event e0
triggered by “bombarding”, the approach defines
a corresponding event prompt and identifies argu-
ments: “government” as the killer, “a number of
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Trigger ��: bombarding Event Type ��: Life.dea.. Role Types �(��): ki.; vic.; inst.

Context X: ... But in practice, the government has taken back a number of areas 

with starve-or-surrender tactics, bombarding and starving people... guarantees and a 

halt to shelling and shooting by all sides,  

Event prompt: start, <killer> killed <victim> using <instrument> or medic-alissue...

(a)

(b)

Life.death-caused-by-violent-events   
Role killer victim instrument
Arg government a number 

of areas
shelling

Life.death-caused-by-violent-events    
Role killer Victim instrument
Arg government a number... shelling

Life.surrender  
Role recipient surrender -
Arg government people -

Context X

Single-EAE

Extract events one by one

Context X

Multi-EAE

Extract all evets simultaneously

For Event type: 
Life.death..

Another event

Figure 1: Subfigure (a) explains the prompt-based EAE
task with one of the events in context X . The prompt
is manually designed for the specified event type, with
mentions of roles as slots, such as ⟨killer⟩. (b) shows
the difference between traditional Single-EAE method
and our Multi-EAE method, the latter is more difficult.

areas” as the victim, and “shelling” as the instru-
ment.

Mainstream EAE works (Zhou et al., 2024; Liu
et al., 2023c; Ren et al., 2023; Liu et al., 2023a) can
only process one event at a time. When encoun-
tering documents containing multiple events, the
limitations of these single-event argument extrac-
tion (Single-EAE) methods become evident. (1)
As shown in Figure 1 (b), for a document contain-
ing multiple events, Single-EAE methods have to
perform numerous iterations to extract event ar-
guments for all events, which process the same
document text repeatedly, leading to inefficient ex-
traction. (2) Single-EAE methods fail to capture
the beneficial event correlations among multiple
events (He et al., 2023; Zeng et al., 2022b). Fig-
ure 1 (b) illustrates the argument overlapping phe-
nomenon which reflects the semantic correlations
among events. The event Life.death and event
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Life.surrender share the argument “govern-
ment” and there exists a strong event correlation
between these two events. However, Single-EAE
methods cannot utilize such correlations.

To tackle these limitations, this paper pro-
poses a DEEIA (Dependency-guided Encoding and
Event-specific Information Aggregation) model, a
multiple-event argument extraction (Multi-EAE)
method capable of simultaneously extracting ar-
guments for all events within the document. We
construct our DEEIA model based on the state-of-
the-art (SOTA) prompt-based Single-EAE model
PAIE (Ma et al., 2022) and introduce a multi-event
prompt mechanism to enable extracting arguments
from multiple events simultaneously.

However, our Multi-EAE model faces the chal-
lenge of handling more complex information as it
needs to simultaneously process different triggers,
arguments roles, and prompts from multiple events.
This requires the model with enhanced informa-
tion extraction capabilities. Therefore, we design
a Dependency-guided Encoding (DE) module to
guide the model in correlating the various prompts
with their respective event contexts. Furthermore,
we propose an Event-specific Information Aggrega-
tion (EIA) module to provide event-specific contex-
tual information for a better context understanding.

Figure 2 demonstrates that with the increase in
the number of events within a document, the effi-
ciency advantage of our DEEIA model becomes
increasingly apparent. The performance surpass-
ing Single-EAE baselines also demonstrates that
our model effectively captures event correlations.
The contributions of this paper are summarized as
follows:

• We propose a multi-event argument extraction
(Multi-EAE) method, capable of extracting
the arguments of multiple events simultane-
ously, with the aim of improving the efficiency
and performance of the EAE task.

• To tackle the challenges of Multi-EAE, we
propose a Dependency-guided Encoding (DE)
module and an Event-specific Information Ag-
gregation (EIA) module, which provide de-
pendency guidance and event-specific context
information, respectively.

• Extensive experiments demonstrate that the
proposed DEEIA model outperforms major
benchmarks in terms of both performance and
inference time. We provide comprehensive
ablation studies and analyses.
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Figure 2: We select document samples containing dif-
ferent numbers of events and calculate the inference
time on one sample for a Single-EAE method PAIE (Ma
et al., 2022) and our Multi-EAE model DEEIA. The
results are averaged on 100 repeated experiments. With
the increase of event numbers within a document, the
efficiency advantage of our Multi-EAE model becomes
increasingly apparent.

2 Related Work

Recently, there has been an increasing interest in
the task of document-level Event Argument Ex-
traction (Wang et al., 2022; Liu et al., 2023b;
Yang et al., 2023), a crucial component within
the domain of Event Extraction (Ren et al., 2022;
Yang et al., 2021). Current methods for document-
level EAE can be classified into four main cate-
gories: (1) Span-based methods, which identify
candidate spans and subsequently predict their
roles (Zhang et al., 2020; Yang et al., 2023; Liu
et al., 2017; Zhang et al., 2020; Liu et al., 2023c).
(2) Generation-based methods (Li et al., 2021; Du
et al., 2021; Wei et al., 2021; Huang et al., 2023)
utilizing generative PLMs, such as BART (Lewis
et al., 2019), to sequentially produce all arguments
for the designated event. (3) Prompt-based meth-
ods (Ma et al., 2022; He et al., 2023; Nguyen, 2023;
Wang et al., 2024), which use slotted prompts and
leverage a generative slot-filling approach for argu-
ment extraction. (4) Large language model meth-
ods. Recently, some work (Zhang et al., 2024b;
Zhou et al., 2023a) has attempted to explore to
utilize large language models for EAE tasks, but
the performance falls short of expectations. And
the time and cost of inference are relatively high.
Among them, prompt-based methods have been
demonstrated superior generalizability and compet-
itive performance (Hsu et al., 2023).

However, these EAE methods are Single-EAE
methods, which can only process one event at
a time. Recently, prompt-based EAE method,
TabEAE (He et al., 2023) aims to capture event
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Figure 3: The architecture of the proposed DEEIA model. For an input document, P1, P2, and P3 represent simplified
prompts.

co-occurrence (Zeng et al., 2022b) and trains the
model on multi-event scheme. However, TabEAE
requires separately processing prompts for differ-
ent events, which is highly time-consuming. In
this paper, we propose to extract event arguments
concurrently, which significantly improves the effi-
ciency of the EAE task in multi-event documents.

3 Methodology

In this section, we first provide a formal def-
inition of multi-EAE task. Given an instance(
X, {ei}Ki=1, {ti}Ki=1, {R(ei)}Ki=1

)
, where X =

(w0, w2, . . . , wN−1) represents the document text
with N words, K is the number of target events,
and ei is the type of the i-th event. ti ⊆ X is the
trigger word of the i-th event, and R(ei) indicates
the set of roles associated with event ei. The task
aims to extract a set of span Si for each event ei,
which satisfies ∀a(r) ∈ Si, (a

(r) ⊆ X) ∧ (r ∈
R(ei)). Most previous EAE methods are designed
as Single-EAE methods, applicable when K = 1.

We then provide a detailed description of our
DEEIA model, as shown in Figure 3. We first pro-
pose a multi-event prompt mechanism to enable
extracting arguments from multiple events simulta-
neously (§ 3.1). Then we propose a Dependency-
guided Encoding module (§ 3.2) and an Event-
specific Information Aggregation module (§ 3.3) to
tackle the complexity and challenge of simultane-
ously extracting arguments of multiple events.

3.1 Multi-event Prompt Mechanism
Multi-event document instances involve the
prompts of multiple events. Therefore, we propose

a multi-event prompt mechanism to enable extract-
ing arguments from multiple events simultaneously.
We first enhance the input text and event prompts
and then concatenate them as the final input.

Preprocessed Text. Given an input text with
a set of event triggers, each trigger is initially an-
notated with a unique pair of markers (⟨ti⟩ , ⟨/ti⟩),
where i counts the order of occurrence. Then we
tokenize the marked text into X , where ti is the
i-th trigger:

X̂ = w0 ⟨t0⟩ t0 ⟨/t0⟩ ... ⟨ti⟩ ti ⟨/ti⟩ ...wN . (1)

Prompt Enhancement. We concatenate the
prompt of each event and obtain the final prompt
P .1 For each event prompt Pi, we utilize the event-
schema prompts proposed by PAIE (Ma et al.,
2022). We append the event type to the start of
each corresponding prompt. This strategy helps
the model distinguish different event prompts and
integrates event type information, enriching the
EAE process with more comprehensive informa-
tion. Specifically, we wrap each event type with a
unique pair of markers (⟨ei⟩ , ⟨/ei⟩) and obtain the
final P as follows:

P = ⟨e0⟩we0
0 ... ⟨/e0⟩P0... ⟨ei⟩wei

0 ... ⟨/ei⟩Pi,
(2)

where Pi is the prompt of the i-th event and wei
0 is

the first token of event type ei.
Then we concatenate X̂ and P and put them into

our dependency-guided encoder (in § 3.2.2). For

1If multiple events are of the same type, we retain only one
prompt and use it to predict arguments of all such events.



input sequences that exceed the maximum length2,
we employ a dynamic window (Zhou et al., 2021)
technique to solve the problem, where the detailed
algorithm is shown in .

3.2 Dependency-guided Encoding Module

3.2.1 Event Dependency Definition
Due to the fact that different events are associated
with distinct trigger words, argument roles, and
prompts, our model faces the challenge of infor-
mation complexity (Bagga and Biermann, 1997;
Li et al., 2023a) when processing multiple events
simultaneously. Therefore, we propose to guide the
model to associate the multi-event prompts with
their corresponding event contexts with pre-defined
dependencies. Considering that arguments can ex-
hibit inter-event and intra-event relations within a
context, we define the following two types of de-
pendencies among triggers and prompts (including
argument slots), which help to solve the informa-
tion complexity problem of multiple events.

Intra-Event Dependency. (1) The connection
between the trigger and prompt tokens within the
same event. (2) The connection between prompt
tokens within the same event prompt.

Inter-Event Dependency. (1) The connection
between the trigger and prompt tokens of different
events. (2) The connection between prompt tokens
of different events.

These two dependencies not only reflect intra
and inter-event relations within a multi-event con-
text, but also establish interactions among triggers
and argument slots, both within and across events.

Formally, for the input sequence S =
(x1, x2, ..., xn) including triggers and prompts
from multiple events, we introduce D =
{dpij} to represent such two dependencies,
where i, j ∈ {0, 1, ..., n} and dpij ∈
{Intra-event, Inter-event, NA} is a discrete vari-
able denotes the dependency from xi to xj . NA
indicates there is no dependency between xi and
xj . Then the pre-defined event dependencies D
will be integrated into the transformer to provide
information guidance.

3.2.2 Dependency-guided Encoder
We improve vanilla self-attention mecha-
nism (Vaswani et al., 2017) by adding a learnable

2The length of event prompts is much shorter than that of
the text, and only a very small number of docs in Wikievents
and MLEE datasets exceed the length limit.

attention bias, which integrates the event
dependencies into the transformer.

For the input representation xi ∈ Rd, it is
first projected into query/key/value vector: qi =
xiWQ,ki = xiWK , vi = xiWV . Then a learn-
able bias is added to the vanilla self-attention mech-
anism, which helps the model perceive dependency
relations among multiple events. The attention
score aij is produced as follows:

aij =
qik

T
j√

dk
+ γ · biasij , (3)

where biasij is the learnable attention bias for the
attention between tokens xi and xj . γ is a hyper-
parameter for adjusting the influence of the bias.
dk is the the hidden dimension of each attention
head. Specifically, the attention bias depends on
the dependency dpij and the context information,
with specific parameters trained and then utilized
in a compositional manner (Xu et al., 2021). We
design the attention bias biasij as follows:

biasij =

0, if dpij is NA
qiWdpij

kT
j +bdpij√

dk
, otherwise

(4)

where Wdpij ∈ Rdk×1×dk and bdpij are the train-
able parameters corresponding to dependency dpij .
The remaining operations are the same as trans-
former mechanism. Then we apply this mechanism
to each layer of the encoder. Note that we do not
apply this mechanism to the decoder layers, and a
detailed analysis is provided in Appendix C.3.

3.3 Event-specific Information Aggregation

In this section, we design an event-specific infor-
mation aggregation (EIA) module which adaptively
aggregates useful information for specific events.
We hope the model can make use of the context
information relevant to the specific event and the
argument when extracting an argument. Therefore,
we consider using triggers (representing the event)
and slots (representing the argument) to measure
the relevance between the target argument and con-
text (prompt) information.

Specifically, we utilize the attention heads of ar-
gument slots and their associated triggers, derived
from the pre-trained transformer encoder, to cal-
culate the attention product for the input sequence
tokens (including both context and prompt). The
dot product of attention is designed to measure the



degree of association between the current event’s
argument and every token of input context.

We adopt an encoder-decoder architecture. The
encoder is employed to encode the input text,
while the decoder is tasked with deriving the event-
oriented context and context-oriented prompt rep-
resentation Hde:

[A;Hen] = Encoders(S),

Hde = Decoder(Hen),
(5)

where the Encoders is the dependency-guided en-
coder and the Decoder is a transformer-based de-
coder. S is the input of the concatenation of context
X and prompt P , and A ∈ RH×ls×ls is the multi-
head attention matrix and Hen,Hde ∈ Rls×d. H
is the attention head numbers and ls is the length
of input sequence S.

For the k-th argument slot sk,i to be predicted
in the i-th event, we first get the contextual atten-
tion vectors Ati ∈ Rls and Ask,i ∈ Rls from A,
corresponding to the trigger ti and the slot in the
prompt respectively. These vectors are obtained by
averaging across all attention heads and associated
subtokens3. Then for the argument slot sk,i, we ob-
tain the context-enhanced vector ck,i ∈ Rd which
adaptively aggregates useful context and prompt
information for argument extraction.

pk = softmax(Ati · Ask,i ),

ck,i = Hen
T pk,

(6)

where pk ∈ Rls is the computed attention weight
vector for argument slot sk,i. Then ck,i is sub-
sequently incorporated into the decoder output
hsk,i ∈ Rd of slot sk,i to get h̃sk,i ∈ Rd:

h̃sk,i = tanh(W1[hsk,i ; ck,i]), (7)

where W1 ∈ R2d×d is learnable parameter.

3.4 Span Selection
After obtaining the final representation h̃sk,i for
each slot within each event, we follow (Ma et al.,
2022) and transform each of them into a set of span
selector {Φstart

sk,i
,Φend

sk,i
}:

Φstart
sk,i

= h̃sk,i ◦wstart,

Φend
sk,i

= h̃sk,i ◦wend,
(8)

where wstart,wend ∈ Rd are learnable parame-
ters and ◦ represents element-wise multiplication.

3We only take the start token ⟨ti⟩ to represent the trigger.

Then Φstart
sk,i

and Φend
sk,i

determine the start and end
positions of slot sk,i in the original text:

logitstartk,i = softmax(HdeΦ
start
sk,i

) ∈ Rls ,

logitendk,i = softmax(HdeΦ
end
sk,i

) ∈ Rls ,

scorek,i(m,n) = logitstartk,i (m) + logitendk,i (n),

(ŝk,i, êk,i) = argmax
(m,n)∈C

scorek,i(m,n),

(9)
where (ŝk,i, êk,i) is the predicted argument span.
C =

{
(m,n) | (m,n) ∈ ls

2, 0 < n−m ≤ l
}
∪

{(0, 0)} contains all spans not exceeding the thresh-
old l, along with the empty span (0, 0).

Following (Ma et al., 2022), we utilize Bipartite
Matching Loss (Carion et al., 2020), which pro-
vides further consideration for the assignment of
golden argument spans during training.

L = −
K∑
i=1

∑
(ŝk,i,êk,i)∈δ(Si)

[log logitstartk,i (ŝk,i)

+ log logitendk,i (êk,i)],
(10)

where K is the number of target events and i rep-
resents the i-th event. δ(Si) denotes the optimal
assignment (Ma et al., 2022) calculated through the
Hungarian algorithm (Kuhn, 1955).

4 Experiments

4.1 Experimental Setup
Datasets We evaluate our model on three
document-level EAE datasets, including
RAMS (Ebner et al., 2020),WikiEvents (Li
et al., 2021) and MLEE (Pyysalo et al., 2012).
Moreover, we also extend our evaluation of the
model to the sentence-level ACE05 dataset (Dod-
dington et al., 2004), as it includes a significant
number of instances with multiple events. The
detailed dataset description and statistics are
shown in Appendix B.1.
Evaluation Metrics Following previous
works (Ma et al., 2022; He et al., 2023), we
evaluate performance using two metrics: (1)
strict argument identification F1 (Arg-I), where a
predicted event argument is considered correct if
its boundaries match those of any corresponding
golden arguments. (2) Strict argument classi-
fication F1 (Arg-C), where a predicted event
argument is considered correct only if both its
boundaries and role type are accurate. We conduct
experiments on 5 runs with different seeds and
report the average results.



Scheme Method PLM RAMS WikiEvents MLEE

Span-based

Arg-I Arg-C Arg-I Arg-C Arg-I Arg-C

single-event

TSAR (2022) BERT-b - 48.1 70.8 65.5 72.3 71.3
TSAR (2022) RoBERTa-l - 51.2 71.1 65.8 72.6 71.5
SCPRG (2023c) BERT-b 53.9* 48.9 70.1* 65.8* - -
SCPRG (2023c) RoBERTa-l 56.7* 52.3 71.3* 66.4* - -

Generation

DocMRC (2021) BERT-b - 45.7 - 43.3 - -

single-event

EEQA (2020) BART-l 48.7 46.7 56.9 54.5 70.3 68.7
FEAE (2021) BERT-b 53.5 47.4 - - - -
BART-Gen (2021) BART-l 51.2 48.6 66.8 62.4 71.0 69.8
HRA (2023) T5-l 54.6 48.4 69.6 63.4 - -

Prompt-based
RKDE (2023) BART-l 55.1 50.3 69.1 63.8 - -

single-event
PAIE (2022) BART-l 56.8 52.2 70.5 65.3 72.1* 70.8*
SPEAE (2023) BART-l 58.0 53.3 71.9 66.1 - -
TabEAE (2023) RoBERTa-l 57.0 52.5 70.8 65.4 71.9 71.0

Prompt-based PAIE-multi BART-l 55.9 50.9 67.2 61.7 71.3 69.5

multi-event TabEAE-multi RoBERTa-l 56.7 51.8 71.1 66.0 75.1 74.2
DEEIA(Ours) RoBERTa-l 58.0 53.4 71.8 67.0 75.2 74.3

Table 1: Comparison of performance on RAMS, WikiEvents and MLEE test set. * means we rerun their code based
on their experimental settings. Bold and underline indicate the best and second-best experimental results.

Baselines Our baselines include: (1) Two SOTA
span-based methods, TSAR (Xu et al., 2022)
and SCPRG (Liu et al., 2023c); (2) Five typical
generation-based methods, DocMRC (Liu et al.,
2021), EEQA (Du and Cardie, 2020), FEAE (Wei
et al., 2021), BART-Gen (Li et al., 2021), and
HRA (Ren et al., 2023); (3) Four prompt-based
approaches: RKDE (Hu et al., 2023), PAIE,
SPEAE (Nguyen, 2023) and TableEAE. We also
compare with LLM approaches and conduct a de-
tailed analysis in the Appendix C.5.

Most baselines are originally proposed as Single-
EAE methods. For the Multi-EAE baselines, we
extend PAIE and TabEAE to obtain PAIE-multi4

and TabEAE-multi5. Our experimental details are
shown in Appendix B.2.

4.2 Main Results

Table 1 illustrates the performance comparison be-
tween our proposed DEEIA method and various
baseline approaches across three datasets. (Experi-
mental results on ACE05 dataset are shown in Ap-
pendix B.3.) Our approach consistently achieves
optimal results across all datasets generally, irre-
spective of the evaluation metric employed. Fur-
ther analyzing the experimental result data, we
observe: (1) The performance of DEEIA outper-

4We extend the original PAIE (Ma et al., 2022) into the
multi-EAE framework by annotating triggers within the con-
text and concatenating prompts for multiple events. The rest
of the approach remains consistent with the original PAIE.

5TabEAE (He et al., 2023) aims to capture event co-
occurrence and trains the model on multi-event scheme but
infers on single-event scheme. For a fair comparison, we train
their method on multi-event instances and conduct inference
on multi-event instances as well.

forms that of Single-EAE baselines. This indicates
our DEEIA can effectively capture the beneficial
event correlations, enhancing the performance of
EAE task. (2) PAIE-multi exhibits significantly
lower performance compared to PAIE, which il-
lustrates that simultaneously processing multiple
events significantly increases the difficulty of the
task. While our DEEIA significantly outperforms
the baseline PAIE-multi on three datasets, demon-
strating that our DEEIA effectively addresses the
challenge of multi-event information complexity.
(3) Compared to PAIE and TabEAE, the improve-
ment of our DEEIA model on RAMS is around 0.9-
1.2 F1, while on WikiEvents and MLEE, the im-
provement is around 1.2-1.7 F1 and 1.7-3.7 F1 re-
spectively. Therefore, the improvement of DEEIA
on WikiEvents and MLEE is more pronounced
compared to RAMS. We hypothesize this may be
because WikiEvents and MLEE contain a higher
proportion of multi-event instances, in contrast to
the RAMS dataset, which is primarily composed of
single-event instances. (Distributions of event num-
bers on three datasets are shown in Appendix B.1.)

4.3 Ablation Study

To better illustrate the effectiveness of differ-
ent components, we conduct ablation studies on
RAMS and WikiEvents datasets in Table 2. We di-
vide the dataset into two parts based on the number
of events in each instance: those with # E > 1 and
those with # E = 1, and report the Arg-C F1 scores
to explore the impact of our modules on instances
with single and multiple events.

Without Dependency-guided Encoding (DE).



Model RAMS WikiEvents
All [871] # E = 1 [587] # E > 1 [284] All [365] # E = 1 [114] # E > 1 [251]

PAIE-multi 50.86±0.22 51.75±0.34 48.94±0.33 61.74±0.62 65.01±1.20 60.18±0.81
TabEAE-multi 51.44±0.32 52.27±0.28 50.42±0.44 65.68±0.62 67.08±0.44 65.02±0.28
DEEIA(Ours) 53.36±0.44 53.64±0.60 52.76±0.32 66.95±0.66 67.49±0.72 66.57±0.62

w/o DE 52.38±0.49 53.84±0.74 49.86±0.78 64.90±1.07 66.96±1.06 63.79±0.77
w/o intra 51.49±0.55 53.06±0.62 48.34±0.64 64.65±0.56 66.86±0.44 63.12±0.75
w/o inter 52.18±0.44 53.56±0.52 49.16±0.58 65.65±0.66 67.16±0.48 65.00±0.66

w/o PE 52.41±0.37 53.08±0.43 51.06±0.38 66.02±0.70 67.06±0.58 65.59±0.72
w/o EIA 51.70±0.56 52.31±0.52 49.90±0.68 64.20±0.24 65.43±0.42 63.57±0.20
w/o DE & EIA 51.25±0.58 52.14±0.54 49.66±0.62 62.37±1.04 65.56±1.06 61.68±0.88

Table 2: Ablation study on RAMS and WikiEvents. Strict argument classification F1 scores (Arg-C) are reported. #
E means the number of events in an instance and [] indicates the number of instances of this kind. Bold indicates
the best experimental results. The reported results are averaged from 5 different random seeds.

We replace the Dependency-guided Encoding (DE)
module with a vanilla transformer encoder. This re-
sults in performance reduction, primarily attributed
to the decline in the performance of multi-event
samples, which illustrates that DE module effec-
tively provides dependency guidance for multi-
event extraction. We further explore the effective-
ness of intra and inter dependencies. It is observed
that both intra and inter dependencies contribute
positively to the model. When remaining only one
type of dependency, the intra dependency has a ben-
eficial effect on the model, but the inter dependency
has a negative effect.

Without Event-specific Information Aggrega-
tion (EIA). The performance of both multi-event
and single-event samples has significantly declined
on two datasets. This indicates that our EIA mod-
ule can provide beneficial event-specific informa-
tion. Moreover, when removing both DE and EIA
modules, the performance decay exceeds that when
removing a single module, which explains that our
two modules can work together.

Without Prompt Enhancing (PE). When re-
moving the event type information defined in § 3.1,
the performance on two datasets decays slightly,
which indicates that event type helps the model
distinguish between different event prompts and
integrates wider information.

5 Analysis

5.1 Efficiency Analysis

Table 3 reports the efficiency of different prompt-
based methods. First, compared to Single-
EAE baseline PAIE, our method saves 8.76%,
32.96%, and 35.20% inference time on RAMS,
WikiEvents, MLEE datasets respectively. This
fully demonstrates the efficiency superiority of our
Multi-EAE approach. Additionally, our method

Method Params Inference Time
RAMS Wikievents MLEE

PAIE 406.21M 15.86 8.83 14.29
PAIE-multi 406.21M 12.53 5.15 8.57
TabEAE-multi 383.78M 32.59 13.89 30.06
DEEIA (Ours) 388.12M 14.47 5.92 9.26

Table 3: Inference time (second) for different models
(large) on test set of three datasets. Experiments are run
on one same Tesla A100 GPU.

significantly reduces 55.57%, 57.38% and 69.19%
inference time compared to TabEAE-multi, with
almost no increase in the number of parameters.
This illustrates that our DEEIA model enhances
the efficiency of the document-level EAE task.

5.2 Effect Analysis on Event Numbers

To further investigate the effectiveness of our
method in addressing the multi-event information
complexity problem, we divide the documents in
the development sets of WikiEvents and MLEE
into different groups based on the event numbers6.
As illustrated in Figure 4, as the event number in-
creases, we observe a decreasing trend in the perfor-
mance of all models. We believe this is due to the
fact that more events require the model to process
more complex information and longer text, which
is more difficult. Furthermore, we find that the
baseline model PAIE-multi performs significantly
worse on samples where the number of events ex-
ceeds two. In contrast, our model demonstrates a
marked improvement in multi-event samples com-
pared to PAIE-multi and TabEAE-multi, which
shows the superiority of DEEIA in capturing the
event correlations among multiple events. The re-
sults on WikiEvents dataset are in Appendix C.1.

6We do not use the RAMS dataset because the RAMS
dataset has a low proportion of multi-event instances.
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Figure 4: The averaged performance of the PAIE-multi,
TabEAE-multi, and DEEIA models on samples with
different event numbers in MLEE dataset. Our model
achieves better results on samples with multiple events.

5.3 Analysis of Two Modules

Dependency Guidance To investigate how the
attentive biases influence the self-attention mecha-
nism, we visualize all attentive biases (calculated
in Eq. 4) for the test sets of all three datasets. We
conducted a detailed analysis in Appendix C.2. We
find that both inter and intra dependencies can pro-
vide effective information guidance for Multi-EAE
task. In datasets with a larger proportion of multi-
event documents, such as the MLEE dataset, both
inter and intra dependencies exhibit significant ef-
fects, while in datasets with a smaller proportion
of multi-event documents, such as RAMS, intra
dependency plays a primary role.

Analysis of Information Aggregation To as-
sess the effectiveness of our EIA module in cap-
turing event-specific contextual information, we
visualize the attentive weights pk in Eq. 6 of an
argument “government” of Figure 1. As shown
in Figure 5, our EIA module gives high weights
to the context words, such as starving, shooting
and surrender, prompt words such as die, killer
and injurer, which benefits the argument extraction
of “government”. Interestingly, some words such
as surrender and shelling also act as triggers or
arguments in other events, which reveals the EIA
module’s capability to capture event correlations.

5.4 Error Analysis and Case Study

Error Analysis We further conduct error anal-
ysis to explore the effectiveness of our DEEIA
model in Appendix C.4. We analyze all predic-
tion errors on WikiEvents test set and categorize
them into five classes. As shown in Figure 10,
compared to the Single-EAE baseline PAIE, our
DEEIA model reduces the number of errors from
312 to 292, indicating the effectiveness of DEEIA

(Context): But in practice, the government has taken back a number 

of areas with starve-or-surrender tactics, bombarding and starving 

people until they agree to leave. In any case, without guarantees and 

a halt to shelling and shooting by all sides... 

(Prompt): life die deathcausedbyviolentevents start, killer killed 

victim using instrument or medic-alissue at place ,end. life die 

conflict yield surrender start, surrenderer surrendered to recipient at 

place ,end life injure illnessdegradationhunger start, victim has 

extreme hunger or thirst from medicalissue imposed by injurer at…

Event #1 life.die.deathcausedbyviolentevents

Trigger: bombarding    Argument: government     Role: killer

Figure 5: Visualization of attentive weights in EIA mod-
ule from an example in RAMS. We calculate the atten-
tive weight pk based on the representations of argument
slot “government” and the trigger “bombarding”.

in capturing event correlations. Compared to PAIE-
multi, DEEIA reduces the number of errors from
358 to 292. Additionally, our DE and EIA modules
also significantly reduce specific types of errors.
The detailed analysis is shown in Appendix C.4

Case Study We conducted the case study to
further explore the effect of our proposed modules
in multi-EAE. As shown in Figure 6, this is a com-
plex document containing four events and there ex-
ists the argument overlapping phenomenon. First,
without the dependency-guide encoding (DE), our
model fails to identify arguments such as “Sean
Collier” and “gun”. However, with the DE mod-
ule, our model correctly predicts the roles of these
arguments. This demonstrates that the event de-
pendencies provide beneficial guidance. Addition-
ally, with the EIA module, our model is capable of
extracting overlapping arguments like “Dzhokhar
Tsarnaev” and “Silva”, which indicates that the
EIA module provides event-specific contextual in-
formation for a better context understanding.

6 Conclusion

In this paper, we propose a Multi-EAE model
DEEIA, which overcomes the inefficiency limi-
tations of traditional EAE methods. The proposed
Dependency-guide Encoding (DE) module and
Event-specific Information Extraction (EIA) mod-
ule effectively enhances the model’s ability to un-
derstand complex multi-event contexts. Our exten-
sive experiments on three public benchmarks illus-
trate the superiority of our model in performance
and efficiency.



Context X: Prosecutors said these items were used to help remotely 
- detonate the bombs February , 2013 Dzhokhar Tsarnaev visits 
Silva and borrows  the Ruger pistol — the gun that was later used to 
kill  MIT police officer Sean Collier and during the  shootout with 
police in Watertown . 

cshellingattacker

cshellingattacker

Event #2: Life.Die.Unspecified                               Trigger: kill 
Without Dependency-guided Encoding
Victim:   Pred: __ No answer __             Gt: Sean Collier  ❌
Killer:   Pred:  Dzhokhar Tsarnaev         Gt: __ No answer __  
With Dependency-guided Encoding
Victim: Pred:   Sean Collier                     Gt:  Sean Collier   
Killer:  Pred:   __ No answer __              Gt: __ No answer __  

✔ 

✔ 

✔ 

❌ 

cshellingattacker

Event #4: Transaction.ExchangeBuySell               Trigger: borrows 
Without Event-specific Information Aggregation
Giver:          Pred: __ No answer __        Gt: Silva ❌
Recipient:   Pred: Dzhokhar     Gt: Dzhokhar Tsarnaev ❌
With Event-specific Information Aggregation
Giver:         Pred: Silva                          Gt: Silva  
Recipient:   Pred: Dzhokhar Tsarna      Gt: Dzhokhar Tsarnaev  

✔ 
✔ 

✔ 

Event #3: Contact.Contact.Meet                             Trigger: visits 
Without Event-specific Information Aggregation
Participant1: Pred: Dzhokhar                 Gt: Dzhokhar Tsarnaev ❌ 
Participant2: Pred: __ No answer __      Gt: Silva  ❌
With Event-specific Information Aggregation
Participant1: Pred: Dzhokhar Tsarnaev  Gt: Dzhokhar Tsarnaev  
Participant2: Pred:  Silva                        Gt: Silva  

cshellingattacker

✔ 

Event #1: Conflict.Attack.Unspecified                 Trigger: shootout 
Without Dependency-guided Encoding
Target:         Pred:  police                         Gt: police  
Instrument: Pred:  __ No answer __        Gt: gun   ❌
With Dependency-guided Encoding
Target:          Pred:   police                       Gt:  police   
Instrument:  Pred:   gun                           Gt: gun  

✔ 

✔ 
✔ 

Figure 6: A multi-event test case from WikiEvents.

7 Limitations

The primary limitation of our method is the issue
of input length. Concatenated text and prompts are
more easy to exceed the maximum input length.
Currently, our solution to this is to use a sliding
window approach (Zhou et al., 2021; Zhang et al.,
2021) to encode the sequences of different windows
and average the overlapping token embeddings of
different windows to obtain the final representation.
However, this method is not the optimal solution
for processing long texts, which leads to the infor-
mation loss and results in suboptimal performance.
Therefore, in the future, we will explore to address
the challenge of long input text with the aim of
enhancing our DEEIA model.
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Dataset RAMS WikiEvents MLEE
# Event types 139 50 23
# Events per text 1.25 1.78 3.32
# Args per event 2.33 1.40 1.29

# Events
Train 7329 3241 4442
Dev 924 345 -
Test 871 365 2200

Table 4: Dataset Statistics.

Algorithm 1 Multi-EAE with Dynamic Windows

Require: Input context X , concatenated multi-
event prompts P , window sizes d1 and d2
(d1 + d2 < max length)

Ensure: Final representation of the sequence
1: if length(X + P ) > max length then
2: Split X into {X1, X2, . . . , Xn} using d1
3: end if
4: for each Xi in {X1, X2, . . . , Xn} do
5: Identify number of events in Xi based on

triggers, get Pi

6: if length(Xi + Pi) > max length then
7: Split Pi into {P 1

i , . . . , P
m
i } using d2

8: end if
9: for each P j

i in {P 1
i , . . . , P

m
i } do

10: Concatenate Xi with P j
i

11: Encode them to Sj
i

12: end for
13: Average pool Sj

i to obtain final Si

14: end for
15: Aggregate: Pool Si to get the final sequence

representation

A Dynamic Window Algorithm

For sequences that surpass the maximum length
of 512, we employ a sliding window approach to
process longer sequences. For the general case
of processing long input texts, we have designed
the following Algorithm 1 based on sliding win-
dows. In our implement, PAIE (Ma et al., 2022)
has already utilized a sliding window to divide the
long document into several instances. We only use
the sliding window to process the prompts and ul-
timately obtain the final sequence representation
through pooling. In our experiments, both d1 and
d2 are set to 250.

B Experimental Details

B.1 Dataset Statistics

We evaluate our proposed method on four event
argument extraction datasets.

RAMS (Ebner et al., 2020) is a document-level
EAE dataset with 9,124 annotated events from En-
glish online news, annotated event-wise. Following
(He et al., 2023), we employ a sliding window ap-
proach to aggregate events in the same context into
single instances with multiple events, following the
original train/dev/test split.

WikiEvents (Zhang et al., 2020) is a document-
level EAE dataset featuring events from English
Wikipedia and associated news articles. It includes
co-reference links for arguments, but we only use
the exact argument annotations in our experiments.

MLEE (Pyysalo et al., 2012) is a document-
level event extraction dataset, contains manually
annotated abstracts from bio-medical publications
in English. We follow the preprocessing steps out-
lined by (Trieu et al., 2020). Since there is only
train/test data split for the preprocessed dataset, we
employ the training set as the development set.

ACE05 (Doddington et al., 2004) is a labeled
corpus used for information extraction, consisting
of newswire, broadcast news, and telephone con-
versations. We employ its English event annota-
tions for sentence-level Event Argument Extraction
(EAE). The data preprocessing follows the method
described by (Ma et al., 2022).

The detailed dataset statistics of three datasets
are shown in Table 4. We also calculate the dis-
tributions of the number of events per instance
on the three dataset, which are shown in Fig-
ure 7. As shown in Figure 7, three datasets ex-
hibit different data distributions between single-
event samples and multi-event samples. For RAMS
dataset, single events samples dominate the major-
ity, while the proportion of multi-event samples is
quite small. However, for WikiEvents and MLEE
datasets, multi-event samples account for a signifi-
cant proportion.

B.2 Experimental Details

According to TabEAE, using RoBERTa as the PLM
outperforms BART across multiple approaches
(such as PAIE and TabEAE). Therefore, we adopt
RoBERTa as our PLM so as to compare to the
SOTA method. Our implementation utilizes Py-
torch and runs on a Tesla A100 GPU. We configure



the encoder using the initial 17 layers of RoBERTa-
large (Liu et al., 2019). The decoder’s self-attention
and feedforward layers inherit their weights from
RoBERTa-large’s subsequent 7 layers. This divi-
sion of a 17-layer encoder and a 7-layer decoder is
empirically determined as the most effective con-
figuration (He et al., 2023). It’s important to note
that the decoder’s cross-attention component is ini-
tialized randomly, with its learning rate set at 1.5
times that of other parameters. More detailed hyper-
parameter setting is shown in Table 5. We utilize
the prompts proposed in PAIE (Ma et al., 2022),
which are shown in Table 9.

Hyperparameters RAMS Wiki MLEE
Training Steps 10000 10000 10000
Warmup Ratio* 0.1 0.1 0.2
Learning Rate* 2e-5 3e-5 3e-5
Max Gradient Norm 5 5 5
Batch Size* 4 4 4
Context Window Size 250 250 250
Max Span Length 10 10 10
Max Encoder Seq Length 500 500 500
Max Prompt Length* 210 360 360
Encoder Layers* 17 17 17
Decoder Layers* 7 7 7
Gamma* 0.01 0.1 0.1

Table 5: Hyperparameter settings. * means that we
tuned the hyperparameters in our experiments. The rest
of hyperparameters are set the same as PAIE (Ma et al.,
2022).

B.3 Experimental Results on ACE05

We evaluate our proposed model on the ACE05
dataset (Doddington et al., 2004), and the specific
experimental results are shown in Table 6 (The
reported results are averaged from 5 different ran-
dom seeds). Experimental results demonstrate that
our proposed DEEIA model also performs well on
the sentence-level ACE05 dataset, significantly im-
proving the extraction performance of multi-event
instances.

C Experimental Analysis

C.1 Effect Analysis on Event Numbers in
WikiEvents

As illustrated in Figure 8, as the event number in-
creases, we observe a decreasing trend in the perfor-
mance of all models. We believe this is due to the
fact that more events require the model to process

Method PLM ACE05
Arg-I Arg-C

EEQA (2020) BERT-l 70.5 68.9
EEQA (2020) RoBERTa-l 72.1 70.4
BART-Gen (2021) BART-l 69.9 66.7
PAIE (2022) BART-l 75.7 72.7
PAIE (2022) RoBERTa-l 76.1 73.0
TabEAE (2023) RoBERTa-l 75.9 73.4
DEEIA (Ours) RoBERTa-l 76.3 74.1

Table 6: Comparison of performance on ACE05 test set.
* means we rerun their code based on their experimental
settings. Bold indicates the best experimental results.

more complex information and longer text, which
is more difficult. Furthermore, we find that the
baseline model PAIE performs significantly worse
on samples where the number of events exceeds
two. In contrast, our model demonstrates a marked
improvement in multi-event samples compared to
PAIE-multi and TabEAE-multi, which shows the
advantages of DEEIA in Multi-EAE.

C.2 Analysis of Dependency Guidance

To investigate the manner in which the learnable
attentive biases influence the self-attention mecha-
nism, we collect all attentive biases (calculated in
Eq. 4) for the test sets of all three datasets. These
biases are then categorized based on dependency
types and averaged across all attention heads and
instances. As shown in Figure 9, the self-attention
scores are primarily determined by vanilla self-
attention, with minimal influence from dependency
information at bottom layers. However, as the num-
ber of layers increases, the impact of learnable
attentive biases gradually becomes significant, es-
pecially between layers 12 to 16.

Additionally, we observe that for different
datasets, the attentive bias distributions correspond-
ing to inter-event and intra-event dependencies are
different. For RAMS dataset, the attentive bias as-
sociated with intra-event dependency is relatively
positive, but that corresponding to inter-event de-
pendency is relatively negative. We believe that
in the RAMS dataset, there are more single-event
samples, and the model focuses more on learning
intra-event information associations. However, for
WikiEvents and MLEE datasets, the attentive bi-
ases for both dependencies are mostly positive, indi-
cating that in these datasets, samples with multiple
events are more prevalent, and both dependencies
provide beneficial guidance for the model to solve
the information complexity problem.



(a) RAMS (b) WikiEvents (c) MLEE

Figure 7: Distributions of the number of events per instance on the three document-level datasets.
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Figure 8: The averaged performance of the PAIE,
TabEAE, and DEEIA models on samples with different
event numbers in the WikiEvents dataset. Our model
achieves better results on samples with multiple events.
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Figure 9: Visualization of the learnable attentive biases,
where each cell represents the value of an attention
bias. The horizontal axis represents intra-event and inter-
event dependencies, and the vertical axis indicates each
transformer layer incorporating structural guidance.

C.3 Architecture Variants

In this section, we explore the effect of different
architectures and define two types of architecture
variants. (1) To explore whether to integrate the
dependency information into the decoder, we de-
fine DEEIAB , which integrates the dependency
information to both the encoder and decoder. (2)
Since the prompts for events are defined based on
their event types, the same event types will have
the same prompts. Therefore, in a document, if
there are multiple events of the same type, whether
to concatenate repeated prompts becomes an op-
tion. We concatenate repeated prompts, and call
this DEEIAM .

As shown in Table 7, there is a minor perfor-
mance drop across all three datasets when depen-
dency information is integrated into the decoder.
This implies that embedding dependency informa-
tion during the encoding phase is adequate, and
overloading the model with excessive informa-
tional guidance is not of benefit. Furthermore,
concatenating repeated prompts results in a slight
improvement in the performance for the RAMS
and WikiEvents datasets, but a marginal decline for
the MLEE dataset. Overall, the improvement is not
substantial. We believe that while concatenating
repeated prompts increases prompt diversity, it also
extends the sequence length, thereby increasing the
difficulty of long-distance reasoning.

Method RAMS WikiEvents MLEE
DEEIA 53.4 67.0 74.3
DEEIAM 53.5 67.2 74.4
DEEIAB 53.2 66.5 74.6

Table 7: Analysis of variant architectures.



Category Examples
Errors

PAIE  PAIE
-multi DEEIA DEEIA-

DSE
DEEIA

-EIA

Wrong Span
while the United States – if not the mastermind behind the coup 
– does nothing to prevent it punish the [coup regime]             , as 
only [the United States]      can punish …

41 46 38 40 39

Partial

less  what was left of the party’s [vestigial [moderate wing]            ]      
and cowed its remaining mainstream members into submission. 14 16 8 11 13

more Facebook Twitter Pinterest Police investigate Litvinenko’s 
poisoning at [Millennium hotel [ in central London]     ]             . 9 14 6 10 12

Overlap
…complaining that [the[ Kochs]     and their dark money emp-
ire]            are flooding the airwaves with misleading and false 
advertisements to push their crooked oligarchy agenda.

1 1 1 1 1

Miss
He had set himself up in a [Fifth Avenue office]      and a Fifth 
Avenue apartment and had hired Louise Sunshine … 155 170 158 162 173

Over-extract
The information minister alleged that oil smuggled into Turkey 
was ... the [Turkish president’s son]             , who owns an oil 
company.

92 111 81 96 78

Predicted
GT

Predicted GT

GT Predicted

Predicted

GT 

GT 

Predicted: (-1,-1)

Predicted
GT: (-1,-1)

Figure 10: Error Analysis on WikiEvents test set. We summarize the errors into five categories and count the number
of errors for different models. Blue represents the model’s predictions, while red represents the ground truth.

C.4 Error Analysis

To compare different models in greater detail,
we conduct error analysis on dev sets of RAMS,
WikiEvents and MLEE datasets. We divide the
errors into five categories, which is shown in Fig-
ure 10. Wrong span refers to the case where the
predicted span and the true span have no intersec-
tion; Partial refers to the case where the predicted
span and the golden span partially overlap, which
means the predicted span is a proper subset of the
golden span or vice versa; Overlap occurs when
there is a non-partial case, indicating that there is
overlap between the predicted span and the golden
span; Over-extraction refers to the case where
the golden span is empty while other span is pre-
dicted; Under-extraction refers to the case where
the golden span is not empty while the predicted
span is empty.

As shown in Figure 10, compared to the Single-
EAE baseline PAIE, our DEEIA model reduces the
number of errors from 312 to 292, indicating the
effectiveness of DEEIA in capturing event correla-
tions. Compared to the baseline PAIE-multi, our
DEEIA model reduces the number of errors from
358 to 292, especially decreasing the number of
Partial, Overlap, and Over-extract errors. The
ablation study shows that our proposed DE module
mainly reduces the Over-extract and Miss errors,
demonstrating that structural guidance can effec-

tively help the model to deal with complex contexts.
Meanwhile, the EIA module mainly reduces the
Miss and Partial errors, indicating that this module
offers event-specific contextual information for a
better extraction of arguments.

C.5 Comparison with Large Language
Models

Large language models (LLMs) have garnered sub-
stantial interest and attention from researchers,
highlighting their extensive applicability across
a wide array of tasks, such as text classifica-
tion (Chen et al., 2021; Luo et al., 2024), dia-
logue (Zhang et al., 2023, 2024a), offensive lan-
guage detection (Zhou et al., 2023c,b), graph
tasks (Zeng et al., 2023, 2022a), and in particu-
lar, the formation Extraction (IE) tasks (Xu et al.,
2023; Li et al., 2023b; Zhang et al., 2024b; Zhou
et al.; Liu et al., 2022, 2024; Xia et al., 2024a,b).
In this paper, we make a comparison with the
recent state-of-the-art LLM-based approach pre-
sented in the work (Zhou et al., 2023a), which
utilizes LLMs for the EAE task. We report their ex-
perimental results in Table 8. The experiments are
conducted on three prominent large language mod-
els: text-davinci-003 (Ouyang et al., 2022), gpt-3.5-
turbo (Ouyang et al., 2022) and GPT-4 (Achiam
et al., 2023). These models are accessed via the



Method
RAMS

Arg-I Arg-C
HD-LoA (Zhou et al., 2023a)

text-davinci-003 46.1 39.5
gpt-3.5-turbo 38.3 31.5
gpt-4 50.4 42.8

DEEIA (Ours) 58.0 53.4

Table 8: Comparison with large language model method
HD-LoA. We copy their experimental results.

public APIs from OpenAI’s services7. As shown in
Table 8, compared to the supervised learning mod-
els, LLMs still show a significant performance gap
in the EAE task. Additionally, the operational costs
of large models are inherently high. Our approach
outperforms LLMs in terms of efficiency, cost, and
effectiveness in the document-level EAE task.

7https://openai.com/api/

https://openai.com/api/


Dataset Event Type Natural Language Prompt

WikiEvents

ArtifactExistence.
DamageDestroyDisableDismantle.

Damage

Damager (and Damager) damaged Artifact (and Artifact) using Instrument
(and Instrument) in Place (and Place).

ArtifactExistence.
DamageDestroyDisableDismantle.

Destroy

Destroyer (and Destroyer) destroyed Artifact (and Artifact) using
Instrument (and Instrument) in Place (and Place).

ArtifactExistence.
DamageDestroyDisableDismantle.

DisableDefuse

Disabler (and Disabler) disabled or defused Artifact (and Artifact) using
Instrument (and Instrument) in Place (and Place).

ArtifactExistence.
DamageDestroyDisableDismantle.

Dismantle

Dismantler (and Dismantler) dismantled Artifact (and Artifact) using
Instrument (and Instrument) from Components (and Components) in Place

(and Place).

ArtifactExistence.
DamageDestroyDisableDismantle.

Unspecified

DamagerDestroyer (and DamagerDestroyer) damaged or destroyed
Artifact (and Artifact) using Instrument (and Instrument) in Place (and

Place).

ArtifactExistence.
ManufactureAssemble.

Unspecified

ManufacturerAssembler (and ManufacturerAssembler) manufactured or
assembled or produced Artifact (and Artifact) from Components (and
Components) using Instrument (and Instrument) at Place (and Place).

Cognitive.IdentifyCategorize.Unspecified Identifier (and Identifier) identified IdentifiedObject (and IdentifiedObject)
as IdentifiedRole (and IdentifiedRole) at Place (and Place).

Cognitive.Inspection.SensoryObserve Observer (and Observer) observed ObservedEntity (and ObservedEntity)
using Instrument (and Instrument) in Place (and Place).

RAMS

artifactexistence.artifactfailure.
mechanicalfailure Mechanical artifact failed due to instrument at place.

artifactexistence.damagedestroy.n/a DamagerDestroyer damaged or destroyed artifact using instrument in
place.

artifactexistence.damagedestroy.damage Damager damaged artifact using instrument in place.

artifactexistence.damagedestroy.destroy Destroyer destroyed artifact using instrument in place.

artifactexistence.shortage.shortage Experiencer experienced a shortage of supply at place.

conflict.attack.n/a Attacker attacked target using instrument at place.

MLEE

Cell_proliferation Cell proliferate or accumulate.

Development Anatomical Entity develop or form.

Blood_vessel_development Neovascularization or angiogenesis at Anatomical Location.

Growth Growth of Anatomical Entity.

Death Death of Anatomical Entity.

Breakdown Anatomical Entity degraded or damaged.

Remodeling Tissue remodeling or changes.

Synthesis Synthesis of Drug/Compound.

Table 9: Example of Prompts in Tabular Format


