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Abstract
While language models (LMs) can sometimes
generate factually correct text and estimate
truth values of individual claims, these gen-
erally do not reflect a globally coherent, manip-
ulable model of the world. As a consequence,
current LMs also generate incorrect or nonsen-
sical content, and are difficult to edit and bring
up to date. We present a method called De-
ductive Closure Training (DCT) that uses LMs
themselves to identify implications of (and con-
tradictions within) the text that they generate,
yielding an efficient self-supervised procedure
for improving LM factuality. Given a collec-
tion of seed documents, DCT prompts LMs to
generate additional text implied by these docu-
ments, reason globally about the correctness of
this generated text, and finally fine-tune on text
inferred to be correct. Given seed documents
from a trusted source, DCT provides a tool for
supervised model updating; if seed documents
are sampled from the LM itself, DCT enables
fully unsupervised fine-tuning for improved co-
herence and accuracy. Across the CREAK,
MQUAKE, and “Reversal Curse” datasets, su-
pervised DCT improves LM fact verification
and text generation accuracy by 3–26%; on
CREAK, fully unsupervised DCT improves
verification accuracy by 12%. These results
show that LMs’ reasoning capabilities during
inference can be leveraged during training to
improve their reliability.

1 Introduction

There is increasing interest in using language mod-
els (LMs) as sources of information and tools for
fact verification (Porter, 2023; Zhang and Gao,
2023). But today’s LMs cannot robustly perform
either task: they are prone to generating factually
incorrect information, contradict themselves, and
are difficult to update with new information (Hon-
ovich et al., 2021a; Liska et al., 2022; Sun et al.,
2023; Gilson et al., 2023).

∗Correspondence to akyurek@bu.edu.

Figure 1: Overview of Deductive Closure Training
(DCT). (a) To improve the coherence of language model
predictions and reduce hallucinations, we begin with a
collection of language model generated seed documents,
then use the LM to generate a set of documents implied
by or contradicting these documents. (b) Next, we iden-
tify the generated documents most likely to be correct
by finding the subset that is most probable and logi-
cally consistent and mark the rest as false. (c) Finally,
we fine-tune the LM on these documents with the truth
value assignments obtained in (b) e.g. in this case broc-
coli is the color of the sky was marked as False. While
this example shows DCT used for unsupervised model
improvement (where the seed statement is language
model generated and truth value is unknown), DCT can
also be applied to a supervised model updating appli-
cation by providing the model with a seed statement
which is known to be true.

Even if LMs are imperfect judges of factuality,
however, they are quite reliable models of factual
relations between pieces of text: they can iden-
tify logical and probabilistic relationships between
statements (Williams et al., 2017), and generate
text based on new information provided as input
(Yehudai et al., 2024). For example, an LM that
cannot answer How old was Charlie Chaplin when
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he died? may nonetheless answer correctly when
prompted with Charlie Chaplin lived between 1889
and 1977, and recognize that this statement contra-
dicts the claim Charlie Chaplin lived in the 21st
century. How can we leverage LMs’ ability to rea-
son about relations between claims to improve (and
control) the text that LMs themselves generate?

Conceptually, standard supervised objectives
cause LMs to assign high probability to statements
in their training data, but not necessarily these state-
ments’ logical consequences. Additional reasoning
is required to determine the deductive closure of a
training set (Armstrong, 1973)—the complete col-
lection of inferences that can be made given the
information initially available. An alternative pro-
cedure is needed to ensure that LMs assign high
probability to a complete and consistent set of facts
when they are trained and fine-tuned.

In this paper, we propose a new LM fine-tuning
procedure we call Deductive Closure Training
(DCT), which leverages inference-time reasoning
as a source of training-time supervision. At high
level, given seed text (which may be provided ex-
ternally or LM-generated), DCT uses an LM to
identify additional text implied by or contradicting
this text, reasons globally about which portions of
seed and generated text are most likely to be cor-
rect given this context, and finally fine-tunes on
inferred-correct text. This approach builds on a
large body of recent work (Mitchell et al., 2022b;
Kassner et al., 2023; Hase et al., 2023) on inference-
time procedures for improving models’ factual cor-
rectness, showing that these techniques may be
used at training time as well.

DCT may be applied in several different ways
depending on the source of seed documents. If
these are drawn from a trusted factual source, DCT
may be used to perform supervised adaptation for
factuality. If documents contain new information
to be inserted into an LM, DCT provides tool for
model updating (or “editing”; De Cao et al., 2021).
Finally, if seed documents are generated by the
model itself, DCT enables fully unsupervised fine-
tuning of models for improved accuracy.

We demonstrate the effectiveness of DCT across
three domains: fact verification (CREAK bench-
mark; Onoe et al., 2021), question answering with
new information (on the MQUAKE benchmark;
Zhong et al., 2023), and a synthetic test of edit
propagation (on the “Reversal Curse” benchmark;
Berglund et al., 2023). On these tasks, unsuper-
vised and supervised applications of DCT improve

accuracy by up to 12% and 26%, respectively.
These results show that, with little or no data, LM-
generated supervision can be leveraged to improve
LMs’ coherence, accuracy and updatability.1

2 Related Work

DCT builds on several recent techniques for im-
proving model accuracy via inference-time compu-
tation or training-time self-supervision.

Bootstrapping accuracy during inference A
growing body of research adopts techniques that
bootstrap language model performance at inference
time. Tafjord et al. (2022); Bostrom et al. (2022);
Weir and Van Durme (2022) and Jung et al. (2022)
build self-guided semantic chains of reasoning to
support inference. Suzgun et al. (2022) propose
a set of procedures that bin model-generated can-
didate answers by semantic equivalence and later
uses aggregated probabilities to select the highest
ranked predictions, analogous to self-consistency
(Wang et al., 2023) for textual outputs. Finally,
recent work has shown promise in improving co-
herence by conditioning language models on rel-
evant reference texts through retrieval augmenta-
tion (Mitchell et al., 2022a; Akyürek et al., 2023).
Our approach builds on this line of work by using
inference-time techniques to generate supervision.

Training for accuracy LMs greatly benefit from
training or post-training techniques for improv-
ing accuracy, including instruction-tuning (Sanh
et al., 2022), learning from feedback (Ouyang et al.,
2022) and loss truncation (Kang and Hashimoto,
2020). Closest to our approach is the work of Hase
et al. (2023) which leverages graph-structured rep-
resentations of model “beliefs” to train a hyper-
network for model editing. DCT aligns with this
thread in improving model training; it differs by
requiring minimal or no external supervision.

Self-training Past work has also studied lever-
aging LMs themselves for performance improve-
ments (Pan et al., 2023). Several studies use ex-
ternal tools (Schick et al., 2023), binary feedback
(Pang et al., 2023; Liu et al., 2023) and natural
language feedback (Bai et al., 2022) to improve
capability or reduce harms. Others propose actual-
ity and consistency metrics, which might be used
for filtering bad answers in retrospect (Honovich
et al., 2021b; Wang et al., 2020; Honovich et al.,

1Code is available at https://lingo-mit.github.io/
deductive-closure.
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2022). Related to such approaches are methods
that perform multiple inference attempts and aggre-
gate them to get a more consistent answer (Wang
et al., 2022; Yoran et al., 2023). Padmanabhan et al.
(2023) fine-tune LMs on self-generated text with-
out explicit implication generation or logical infer-
ence. Of immediate relevance to the current work,
Li et al. (2023) and a concurrent study by Tian et al.
(2023) use LM-generated factuality labels to rank
or filter LM-generated data for fine-tuning; by con-
trast, DCT uses LMs to explicitly extrapolate from
LM-generated or externally provided information,
providing a single framework for both supervised
model updating and unsupervised improvement.

3 Method

3.1 Preliminaries

Given a language model pLM that places a prob-
ability distribution over strings, our goal is to op-
timize pLM so that it is coherent (if pLM assigns
high probability to statements P and Q, those state-
ments must be logically compatible) and complete
(if pLM assigns high probability to P , and P im-
plies Q, then pLM must also assign high probability
to Q). Together, these two properties imply that the
LM is closed under logical deduction. Deductive
closure is necessary condition for pLM to be truth-
ful, and approximate deductive closure is generally
agreed to be an important feature of human-like
belief (Armstrong, 1973).

Deductive closure training begins with a set of
seed documents si, which may comprise facts
from a trusted source, new information provided
by a user, or even text generated by pLM itself.2 At
a high level, DCT works by using pLM to gener-
ate additional text implied by each seed document
(i.e., true with high probability conditioned on s)
or contradicting it. In Fig. 2, for example, the
seed text (Country music originated in the United
Kingdom)3 is used to generate statements (The
UK is famous for country music), question-answer
pairs (Q: Where did country music originate? A:
England) and even multi-hop consequences (The
steam train was invented in the UK; therefore, coun-
try music and the steam train were invented in the
same country). Once they have been generated,

2While experiments in this paper focus on seed documents
consisting of questions and declarative statements, this ap-
proach could be straightforwardly applied to larger pieces of
text.

3Most editing benchmarks comprise counterfactual exam-
ples like this one.

Figure 2: Detailed depiction of Deductive Closure Training.
(a) Given an initial seed document (which may be generated
from the LM, left; or supplied by a trusted source, right), DCT
generates a set of related text implied by or contradicting the
seed document. At the same time, it assigns a score to each
generated document (including possibly the seed) denoting
the probability that it is true. (b) Next, DCT identifies the
subset of documents whose joint truthfulness score is highest,
subject to the constraint that these documents are logically
coherent (containing all implications and no contradictions).
(c) Finally, the LM is fine-tuned on this set.

DCT again uses pLM to reason about these docu-
ments as a set, identifying the subset of generated
documents most likely to be true. Finally, DCT
fine-tunes pLM on documents in this inferred-true
set. In the following sections, we describe each of
these steps in more detail.

3.2 Document Generation

The first step of DCT is to generate a set of related
documents for each seed document (Fig. 2a) using
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pLM. Formally, we first construct a set of textual
prompts that instruct the LM to generate other doc-
uments entailed by and contradicted by the input,
along with 1–5 examples. We denote these prompts
primp and prcon respectively (see Appendix D for
full prompt text). Then, we construct a collection
of related documents Ri for each seed document
si, i ∈ {1..n} as:

Ri = Ii ∪ Ci ∪ {si},
Ii = {rij ∼ pLM(· | primp, si)},
Ci = {rij ∼ pLM(· | prcon, si)}, (1)

where I and C denote generated implications and
contradictions respectively. (Other procedures for
generating related documents are also possible, e.g.
by simply prompting pLM to generate similar text,
as described in Section 5.1.) Note that the seed
document si is included in Ri—this is crucial for
detecting (and correcting) errors in the seed itself
during unsupervised training.

This generation step may be followed by a
double-checking step over Ri, in which we use
the pLM to verify whether si entails / contradicts
rij , and discard all rij for which pLM does not out-
put yes with high probability (the prompt template
is available in Appendix D). This step mirrors a
variety of other recent methods in which models re-
evaluate their initial answers (Suzgun et al., 2022).

3.3 Consistency Evaluation

The previous step produces a collection of doc-
uments in the “deductive neighborhood” of each
seed document. These documents may be mutually
contradictory, and we wish to identify the subset
most likely to be collectively true. To identify this
subset, we leverage pLM’s ability to classify log-
ical relations between documents, as well as the
prior probability pLM assigns to each document.
For example, if it is true that Emperor Meiji was
the first emperor the Modern Japan, it cannot be
the case that Emperor Meiji was the last Japanese
emperor; if the former statement is very likely to
be true, then the latter is likely to be false.

Formally, we first associate with the seed docu-
ment si and every generated document rij a truth
value tij ∈ {0, 1}. Given an assignment of docu-
ments to truth values denoted by Ti = {tij}, we
compute the LM’s probability of Ti:

p(Ti | Ri) =
∏

j

pLM (tij | rij). (2)

We use prompting to estimate each pLM(tij |
rij): we first condition pLM on a small set of
document–label pairs where labels are one of
{True, False}. Next, we use the normalized log-
its corresponding to the tokens true and false in
the string pLM(rij is true) and pLM(rij is false),
respectively. Refer to Appendix D for the prompt
template. Next, we define a value assignment
Ti = {tij} to be consistent if all implications and
contradictions are respected.

c(Ti) =
∏

j:rij∈Ii
1[ti → tij ]

∏

j:rij∈Ci
1[ti → ¬tij ]

where ti denotes the truth value of the seed docu-
ment, 1[a → b] is 1 iff b is true or a is false, and
1[a ̸→ b] is 1 iff b is false or a is false. We also
provide an example for consistency computation
across different truth value assignments in Table 6
in Appendix A. Finally, we select the most proba-
ble consistent assignment:

T ∗
i = argmax

T
c(T | Ri) · p(T | Ri) . (3)

The procedure is depicted in Fig. 2b, with the
highest-scoring truth value assignment shown in
the blue-highlighted box.

3.4 Language Model Fine-Tuning
Finally, we fine-tune pLM only on the inferred-true4

documents, optimizing:

argmax
θ

∑

i, j

tij log pLM(rij) . (4)

where θ parameterizes pLM. In practice, we do not
train pLM to convergence, but instead for a fixed
number of iterations.

3.5 Sources of Seed Data
Depending on how seed documents S are obtained,
DCT-based fine-tuning may be used to improve
models in several ways:

• Unsupervised fine-tuning for coherence: in
this case, we sample the initial seed set from
pLM itself, e.g. simply by prompting it to gen-
erate a set of documents on a topic of interest.

4For fact-verification tasks, it is possible to derive positive
supervision from statements marked as false: if the consis-
tency evaluation step infers that Meiji was the last Japanese
emperor is incorrect, then we may generate a correct exam-
ple of the form Verify the following statement: Meiji was the
last Japanese emperor. False. We use this strategy for our
experiments on fact verification.
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• (Semi-)supervised alignment with a trusted
source: in this case, the seed set comes from
an external source of supervised data. If this
data is known to be reliable, we fix each seed
datum’s truth value ti = 1 during the evalu-
ation step. This may be combined with the
unsupervised procedure.

• Model updating, editing and continual
learning: in this case, as with supervised up-
dating, we treat descriptions of desired edits
as seed documents, fix these truth values for
these seeds to 1, and fine-tune both on these
documents and all their implications only.

Note that in the latter two cases (where we fix
the truth value of seed documents to 1), the evalua-
tion step is greatly simplified, and simply discards
all generated documents that are not logically con-
sistent with the seed. In the case of unsupervised
learning, this evaluation step can (and empirically
does) cause LMs to re-label sampled seed docu-
ments as well as conditionally generated ones.

Generalizations of DCT We remark that the
procedure described above is the basic implemen-
tation of a family of DCT-like approaches, within
which many more sophisticated procedures are
possible—for example: probabilistic DCT (com-
puting marginal statement probabilities rather than
hard truth assignments), contrastive DCT (replac-
ing Eq. (4) with an objective that encourages true
statements to be assigned higher probability than
false ones), and multi-hop DCT (generating not
just direct implications of documents, but a wider
graph of related ones).

4 Formal Analysis of DCT

At first glance, it may seem surprising that this pro-
cedure (especially in its unsupervised form) can
improve LM accuracy using only LM-generated
text. In this section, we describe a set of assump-
tions under which DCT is guaranteed to improve
accuracy on certain inputs. We focus this analysis
on generation and evaluation of (question, answer)
pairs, but it could be extended to the other tasks
considered in this paper as well.

Informally, suppose:

1. Questions generated by the LM with high
probability are likely to be correct. (Intu-
itively, high-probability questions will be ones
that occurred frequently in the training set,

and are therefore more likely to be answered
correctly; McCoy et al., 2023, though c.f. Lin
et al., 2021.)

2. Given a question, prompting an LM with a re-
lated, correct question–answer pair increases
the probability of a correct answer. (Intu-
itively, such prompts may steer models gener-
ally in the direction of truthfulness, as in Lin
et al., 2021, and can provide concrete evidence
useful for answering the new question.)

We wish to show that if these two conditions hold,
DCT improves model performance.

For simplicity, we consider a minimal version
of unsupervised DCT in which a single implica-
tion is generated from each seed statement, the
check in Eq. (3) is not performed, and the LM is
trained to convergence on data generated from an
arbitrarily large number of seeds. Let q be some
specific question of interest, let pLM(a∗ | q) denote
the probability that pLM assigns the correct answer
to q (before applying DCT), and let pDCT(a

∗ | q)
be the probability that the LM assigns after DCT.
Let (q0, a0) denote a (question, answer) pair gen-
erated as a seed document, and a∗0 specifically the
correct answer to q0. Finally, for convenience, de-
fine p(q0 | q) = pLM(q|q0) pLM(q0)∑

q′0
pLM(q|q′0) pLM(q′0)

(this is the

probability that the seed question was q0 given that
the sampled question was q), and p(a0 | q, q0) via
Bayes’ rule analogously.

Proposition 1. Suppose for some q that:

1. p(a∗0 | q, q0) ≥ p∗. (Conditioned on gener-
ating q during the document generation step
of DCT, the probability that the generated
answer to any seed question q0 contains a
correct answer is (uniformly) at least p∗.)

2. Eq0|q pLM(a∗ | q, q0, a∗0) ≥ pLM(a∗ | q) / p∗.
(In expectation, conditioning on a correct
(q0, a0) pair increases the probability of gen-
erating a correct answer by at least 1/p∗.)

Then,

pDCT(a
∗ | q) > pLM(a∗ | q) . (5)

In other words, for any question q satisfying the two
conditions above, unsupervised DCT increases the
probability that pLM answers q correctly.

Proof is given in Appendix E.
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Method # Supervised # Generated Accuracy

U
ns

up
. Prompting 4 - 71.7 ±0.0

DCT (Seed only) - 93 80.0 ±4.6

DCT (Imp. + Cont.) - 586 83.5 ±3.0

DCT (Imp. + Cont.) − Consistency Eval - 586 77.5 ±2.8

DCT (Imp. + Cont.) + Double-Check - 313 83.7 ±2.2

Su
p.

Fine-Tuning 20 - 77.2 ±5.4

DCT (Imp. + Cont.) 20 40 80.6 ±3.1

DCT (Imp. + Cont.) + Double-Check 20 14 81.7 ±1.9

Semi-Supervised∗ 20 586 84.9 ±0.9

Tr
an

sd
. Graph-Inference - 14,342 77.7 ±0.4

DCT (Rel.) - 6,026 84.5 ±0.5

DCT (Rel.) + (Imp. + Cont.) - 28,711 80.3 ±0.4

DCT (Rel.) + (Imp. + Cont.) + Double-Check - 14,342 85.5 ±0.1

Table 1: Results on the CREAK validation set. Accuracies are averaged over three seeds. Results that are not
significantly worse than the best result in each block are made bold. ∗Indicates that training data includes generated
statements from the Unsupervised DCT (Imp. + Cont.) experiment along with the supervised statements.

5 Experiments

We evaluate Deductive Closure Training on a set of
benchmark tasks measuring fact verification, ques-
tion answering with new information, and a diag-
nostic model editing dataset. We use Llama-2-7B
in all experiments. Additional qualitative results
are provided in Appendix C.

5.1 Fact Verification

Task and training details We first evaluate
whether DCT improves the models’ ability to clas-
sify factual claims. Our experiments use CREAK
(Onoe et al., 2021), a dataset of claims about en-
tities. We investigate four different learning set-
tings: unsupervised, supervised, semi-supervised,
and transductive, each using a different procedure
for sampling seed documents. We report results
on the CREAK development set. During DCT
fine-tuning, we use a linear learning rate schedule
until the training loss converges—this corresponds
around 30 epochs for the majority of experiments
unless otherwise indicated (see Appendix A for
further details on experimental settings).

Evaluation and baselines Models are scored
based on the fraction of claims they correctly label
as true or false. For each condition, we compare to
a state-of-the-art baseline. For unsupervised DCT,
the baseline is an ordinary few-shot prompt. For
supervised DCT, the baseline fine-tunes the LM
on the provided true statements. For transductive
DCT, we also compare to an inference-time base-
line Graph-Inference similar to those described
by Mitchell et al., 2022b and Kassner et al., 2023,
which generates implications and contradictions for

each test example, performs reasoning as in Eq. (3),
then directly outputs the inferred truth value for the
example (with no fine-tuning). Unlike past work,
we use the base LM to generate these graphs rather
than a specialized pre-trained implication genera-
tion model. All results are presented in Table 1.

Results: Unsupervised DCT To generate seed
documents, we query pLM 10 times, each time
prompting the model to generate 10 diverse claims
and sampling with a temperature of 0.9. We
filter out the duplicate claims before continuing
to sample implications and contradictions. The
full method substantially outperforms a few-shot
prompting baseline, and may outperform ablated
versions of DCT that fine-tune only on seed state-
ments assigned a high prior probability (labeled
“seed only” in Table 2) or that do not perform the
logical inference step described in Section 3.3 (la-
beled “− Consistency Eval”).

For these unsupervised experiments, we perform
an additional evaluation specifically aimed at mea-
suring logical coherence as well as factual accuracy.
Here we use the contrast set in CREAK, which
comprises 250 pairs of lexically similar examples
with opposite truth values (e.g. Zendaya was raised
in the US and Zendaya was raised in Scotland). In
addition to accuracy, we compute the fraction of
pairs that are labeled Both True (indicating incoher-
ence) and Both Correct.

Here, DCT not only improves correctness but
also reduces the number of incoherent predictions,
decreasing the probability that pLM judges two con-
tradictory statements to both be correct.
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Method Both True ↓ Both Correct ↑ Acc. ↑

Prompting 34.4 36.8 63.2
DCT (Seed only) 20.4 47.6 72.2
DCT (Cont.) 12.0 47.6 72.0
DCT (Imp. + Cont.) 19.2 49.6 73.0

Table 2: Logical coherence (Both True) and factu-
ality (Both Correct) for unsupervised DCT on the
CREAK contrast set. DCT not only increases accu-
racy, but decreases the number of logically incoherent
predictions (in which pLM assigns labels two contradic-
tory statements as both true).

Results: Supervised & Semi-supervised DCT
In the supervised case (Table 1), we utilize a small
set of externally provided claims and associated
ground-truth labels to initialize DCT seed nodes.
We sample 20 claims from the CREAK training
set and filter those labeled as true to use as our
seed documents D. For semi-supervised learning,
we pool together data generated following the un-
supervised and supervised settings for fine-tuning.

All variants of DCT improve over an ordinary
fine-tuning baseline; interestingly, examples gen-
erated supervisedly and self-supervisedly are com-
plementary, such that semi-supervised learning im-
proves over both results.

Results: Transductive DCT The previous eval-
uations assumed a strict train / test split. Here we
study the behavior of DCT in a “transductive” set-
ting (Gammerman et al., 1998) in which we have
access to unlabeled claims from the evaluation set
while updating the model. For each of the 1,371
claims in the validation set, we generate seed text
by prompting the LM to generate a set of related
claims, which are then used to generate additional
implications and contradictions. In addition to the
inference-time baseline described above, these ex-
periments compare to an ablated version of DCT
that trains only on the generated related claims.

As in other experiments, DCT outperforms the
inference-time reasoning baseline as well as the
related-text-only ablation.

5.2 Model Updating and Question Answering

Task and training details Language models of-
ten hallucinate wrong information and rapidly be-
come out-of-date after initial training. As a con-
sequence, there has been increased interest in spe-
cialized continual learning (or “model editing”)
procedures for updating LMs with new informa-
tion without full re-training. A key desideratum is

LMs should not simply assign high probability to
the new fact, but all of its consequences: if we wish
to update an LM encode the fact that the current
U.K. prime minister is not Boris Johnson but Rishi
Sunak, the LM should also produce text consistent
with the fact that the current P.M.’s wife is not Car-
rie Johnson but Akshata Murthy. Past work has
found that fine-tuning on edits, as well as many
specialized editing procedures, fail to propagate
such information.

Our experiments on this task use the counterfac-
tual subset from MQUAKE (Zhong et al., 2023)
dataset, which evaluates models on their ability to
answer questions about new information not pro-
vided in their training sets. To apply DCT, we take
as seed documents the text of the new information
to be inserted into the model. During the generation
phase, models are prompted to combine this infor-
mation with other background knowledge related
to the same topic (see Appendix D for prompting
details), producing what we term Correlative Impli-
cations. Finally, because MQUAKE is a question
answering dataset, we convert each generated state-
ment into a question–answer pair using the LM,
then fine-tune it on these pairs.

Evaluation and baselines We compare DCT to
ordinary fine-tuning on new information and three
state-of-the-art baseline approaches for model up-
dating: a context distillation baseline by Padman-
abhan et al. (2023), which fine-tunes LMs to be-
have out-of-context the same way they would with
prompts containing the new information (see Ap-
pendix A for implementation details), a weight
editing baseline by (Meng et al., 2023), and the re-
trieval baseline MeLLo (Zhong et al., 2023), which
stores new text in an external memory. We eval-
uate the behavior of DCT and these baselines in
settings where varying numbers of new pieces of in-
formation (between 10 and 1000) are provided, and
report the model’s accuracy at question answering.

Results As shown in Table 3, DCT significantly
outperforms fine-tuning, fine-tuning on continua-
tions, weight editing, and MeLLo (the previous
state-of-the-art on MQUAKE). Using correlative
implications systematically improves over simple
implications. Combining the two sets improves
on average over using either in all settings. Our
qualitative analysis in Appendix C reveals that cor-
relative implications contain about 50% more new
information than standard implications.
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Method Number of Edits
10 20 50 100 1000

Retrieval-based
MeLLo (Zhong et al., 2023) 15.3 ±4.4 18.3 ±3.5 12.0 ±1.0 12.1 ±0.7 11.4

Parameter-update-based
Fine-tuning on Edits 0.7 ±1.5 9.0 ±5.4 5.5 ±1.8 6.7 ±1.2 4.1
FT on Continuations (Padmanabhan et al., 2023) 4.4 ±2.9 4.4 ±2.0 3.1 ±1.2 3.6 ±1.2 3.3
MEMIT (Meng et al., 2023) 11.1 ±2.9 11.7 ±5.1 6.0 ±0.7 1.1 ±0.6 0.6
DCT (Imp.) 20.0 ±6.7 20.5 ±6.1 14.0 ±5.2 10.7 ±1.9 8.1
DCT (Corr. Imp.) 41.7 ±5.0 29.4 ±6.8 25.6 ±3.8 14.2 ±1.2 12.3
DCT (Corr. Imp. + Imp.) 30.0 ±6.7 35.6 ±4.8 15.6 ±7.3 18.9 ±2.1 15.4

Table 3: MQUAKE counterfactual subset results. We provide average test set accuracy (standard errors are given
in parentheses) across three seeds except for 1,000 where we evaluate only once. Results that are not significantly
different from the best score are made bold (paired t-test p ≪ 0.05). For each edit, there are 3 multi-hop test
questions. Before fine-tuning we convert each edit into a question using prompting. In DCT (Corr. Imp.), we
prompt the model to first produce related facts to the initial claim before generating implications.

5.3 Sanity Checks for LM Consistency

Task and training details In addition to natural-
istic question asking tasks like MQUAKE, there
has been recent interest in developing precise tests
of LMs’ ability to capture simple logical implica-
tions of new facts (e.g. assigning high probability
to sentences of the form B is A after training on A
is B). We investigate whether DCT can address
these issues using the “Reversal Curse” bench-
mark (Berglund et al., 2023). We report results
on two evaluations: first, a set of celebrity parent–
child pairs with training examples like Jennifer
Lawrence’s mother is Karen Lawrence and test ex-
amples Who is the child of Karen Lawrence?; sec-
ond, a set of entity–description pairs with training
examples like Olaf Scholz was the ninth Chancel-
lor of Germany and cloze-style test examples The
ninth Chancellor of Germany is .

Evaluation and baselines For these experiments,
we compare to the fine-tuning baseline used in the
original work of Berglund et al. (2023) as well as
the fine-tuning on continuations approach by Pad-
manabhan et al. (2023). We use training examples
as seed statements, and generate implications using
the same prompt as CREAK experiments in 5.1.
While we expect that a DCT-type approach specif-
ically tailored for this benchmark could trivially
re-generate all the test examples, our experiments
in this section aim to evaluate whether a general-
purpose prompt can improve performance on a spe-
cific class of generalizations. Following Berglund
et al. (2023), we report exact-match accuracy after
removing punctuation and lower-casing. In this
dataset, LMs are evaluated on a mix of questions

Direction
Same Reverse Average

Child-to-Parent
Fine-tuning 95.3 2.2 48.7
FT (Padmanabhan et al., 2023) 57.3 7.1 32.2
DCT (Imp.) 87.9 48.3 68.1

Person-to-Description
Fine-tuning 83.7 3.7 43.7
FT (Padmanabhan et al., 2023) 54.3 27.0 40.7
DCT (Imp.) 81.3 10.7 46.0

Description-to-Person
Fine-tuning 99.7 3.0 51.3
FT (Padmanabhan et al., 2023) 99.3 1.0 50.2
DCT (Imp.) 99.7 15.7 57.7

Table 4: Reversal Curse benchmark results. While
this challenge remains far from solved, applying DCT
(with the same prompt used for CREAK experiments)
substantially improves accuracy. We use 1,000 exam-
ples for Child-To-Parent and 300 for the other two sub-
sets for evaluation.

and cloze completion tasks featuring both training
statements and their reversed forms.

Results Results are shown in Table 4. DCT im-
proves accuracy on reversed statements without
significantly hurting performance on original ques-
tions. Notably, however, DCT with this general-
purpose prompt does not completely solve this
dataset, and we leave for future work the ques-
tion of whether more extensive sampling or other
procedures could further improve these results.

6 Conclusion

We have described Deductive Closure Training
(DCT), a supervision procedure that optimizes
models toward deductive closure—encouraging
them to assign high probability to a logically co-
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herent set of factual assertions.By doing so, DCT
also improves the truthfulness and updatability of
models, substantially increasing accuracy on a vari-
ety of fact verification and editing datasets in both
supervised and unsupervised conditions. More gen-
erally, these results show that some factual errors
in LMs stem not from limitations of their training
data, but limitations of training algorithms. By
using LMs themselves to reason about relation-
ships between (and implications of) their predic-
tions, they can be made more accurate with little or
no additional supervision.

Limitations

While Deductive Closure Training (DCT) could in
principle be applied to arbitrary graphs of relations
between statements, here we have applied it only
to a single layer of implications of seed data. All
datasets used for evaluation involve English text,
and it is possible that DCT behaves differently in
different languages. Even within English, it is pos-
sible that exhibits systematic biases or differences
in accuracy for certain types of factual content.
While DCT can improve overall factuality, it may
inadvertently perpetuate hallucinations within cer-
tain domains that could escape detection during our
evaluations.

Ethical Considerations

While our experiments have focused on using DCT
as a tool for bringing LMs into alignment with reli-
able sources, these techniques could also be used to
optimize LMs toward generation of (logically con-
sistent) false facts, increasing their effectiveness as
tools for generation of misinformation.
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A Experimental Details

We use the Llama-2-7B-hf checkpoint provided
by HuggingFace Transformers library for all of our
experiments. Code to reproduce the experiments
will be made publicly available. While developing
the codebase, the authors used GitHub Copilot via
Visual Studio Code.

Generation We sample at temperature 0.6 and
top-p 0.9 for all samples except for the set of seed
documents for the unsupervised experiment in Ta-
ble 1 where we used temperature 0.9 to obtain a
diverse set of initial documents.

Training For fine-tuning we use the LoRA im-
plemention via the PEFT library (Hu et al., 2022;
Mangrulkar et al., 2022) and set rank to 8, alpha to
32 and dropout to 0.1. In the absence of a held-out
development set, we set the learning rate to 0.0001
throughout, batch size to 4 and train for 30 epochs
by default. We find that training loss typically con-
verges after 30 epochs with the exception of the
supervised experiments in Table 1 for which we
train for 60 epochs. The transductive setting for
CREAK results in substantially more training doc-
uments, hence we train only for 1 epoch. We use
a linear learning rate scheduler with 100 warm up
steps and AdamW optimizer. For fact verification
training, we use weighted sampling as the class
distribution is sometimes unbalanced.

Editing experiments We use the MQUAKE-CF
subset from Zhong et al. (2023) and evaluate only
on the multi-hop questions. Padmanabhan et al.
(2023) proposes two techniques to introduce model
updates based on fine-tuning: simple fine-tuning
on continuations conditioned on the edit statement
(which we call FT on Continuations) and context
distillation on continuations. We find the former
approach–fine-tuning the model on the continua-
tions when the model is conditioned on the edit
sequence–to perform better on MQUAKE than the
latter. Hyperparameters used for MEMIT are avail-
able in Appendix A. For validation we use a set of
held-out 50 edits.

B Details for DCT

In Table 6, we consider a small graph consisting
of one seed node (ri), one implication (ri1) and
one contradiction (ri2). In the beginning, there
are 8 candidate truth value assignment yet not all
assignments are consistent within e.g. If ri if true,

Parameter Value

layers [3, 4, 5, 6, 7]
clamp_norm_factor 4.0
layer_selection all
fact_token subject_last
v_num_grad_steps 25
v_lr 5e-1
v_loss_layer 31
v_weight_decay 0.5
kl_factor 0.0625
mom2_adjustment true
mom2_update_weight 15000
mom2_dataset wikipedia
mom2_n_samples 100000
mom2_dtype float32

Table 5: MEMIT hyperparameters.

Truth Value Assignment (Ti)

Seed Implication Contradiction Consistency c(Ti)

T T T 0
T T F 1
T F T 0
T F F 0
F T T 1
F T F 1
F F T 1
F F F 1

Table 6: Consistency evaluations candidate truth value
assignments for a small graph of three nodes: one seed,
one implication and one contradiction documents.

then ri1 must be true and ri2 must be false. When
computing the most probable assignment in Eq. (3),
we only consider consistent assignments.

C Qualitative Analysis

To better understand how DCT improves LM per-
formance, we manually annotated about 350 gener-
ations from various experiments to assess whether
(1) double-checking improves the precision of gen-
erated implications and contradictions; (2) whether
DCT incorporates model internal knowledge when
making new conclusions; and (3) whether gener-
ated text includes non-trivial new inferences.

Double-checking We evaluated whether the
double-checking following DCT (Imp. + Cont.)
improves precision. In the supervised setting for
CREAK, we annotated 100 implications and con-
tradictions generated using DCT (Imp. + Cont.).
We found that 74 of these are valid. The double-
checking procedure removes about 2/3 of genera-
tions, resulting in 33. Among these, 27 are valid,
raising the ratio of correct statements predicted by
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the model from 76% to 82%.

Incorporating previous information The
MQUAKE subset used in our experiments
comprises difficult multi-hop questions. Hence,
generations that incorporate existing informa-
tion about the entities mentioned in the edit
are especially useful. We compare the set of
implications generated using the DCT (Imp.)
and DCT (Corr. Imp.). Respectively, only 30%
and 36% of generations involve strict logical
implications; however, 78% and 69% were judged
to be plausible given the edit. Furthermore, 24%
and 33% of the generations incorporate new
information supplied by the LM. For example,
given an edit Chauncey Billups is associated with
the sport of pesäpallo, the LM uses background
knowledge Pesäpallo is popular in Finland to
generate Chauncey Billups was born in Finland.

Novelty of inferences Lastly, we find that most
implications made by the model on the “Reversal
Curse” dataset are paraphrases or are trivial (Jen-
nifer Lawrence’s mother is Karen Lawrence → Jen-
nifer Lawrence has a mother) but some add world
knowledge to the implication (Sadie Frost’s mother
is Mary Davidson → Mary Davidson is the mother
of a British actress, where the LM itself has sup-
plied the knowledge about Sadie Frost). While gen-
erating implications, DCT often (but not always)
generates test-set-like reversed implications on its
own: the model reverses 22% of the statements of
the form X’s parent is Y, 43% of statements of the
form the person with property X is Y, but only 6%
of statements of the form Person X has property Y.
These findings suggest a strong bias toward gen-
erating text that starts with the person as opposed
to the description. In general, most generated ex-
tensions are fluent, different from the source, and
sometimes contain new information.

D Prompt Templates

We use a set of fixed prompts to generate our
graphs, calculate model-estimated probability for
the correctness of a given statement, generating a
set of seed documents and automatically convert-
ing statements into questions which are available
in Tables 7 to 10.
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Table 7: Implication & contradiction prompt templates.

Procedure Prompt

Implication List three implications of the given claims.
Claim: Cleopatra was the last active ruler of the Ptolemaic Kingdom of
Egypt between 51 to 30 BC.
Logical implications:
1. Cleopatra was one of the rulers of the Ptolemaic Kingdom of Egypt.
2. Egypt had a female ruler during the Ptolemaic Kingdom age.
3. Ptolemaic Kingdom of Egypt ended on 30 BC.

Claim: {claim}
Logical implications:

Implication (MQUAKE) List five logical implications of the given claims.

Claim: Stephen Hawking was born and raised in Russia.
Logical implications:
1. Stephen Hawking has knowledge of Russian language.
2. The head of the country where Stephen Hawking was born is Vladimir
Putin.
3. The country where Stephen Hawking was born is Russia.
4. Stephen Hawking is a Russian citizen and has a Russian passport.
5. The city where Stephen Hawking was born is in Russia.

Claim: {claim}
Logical implications:

Correlative Implication
(MQUAKE)

Given a main claim, list five related facts, and then logical implications
of the claim and related fact.

Main Claim: Stephen Hawking was born and raised in Russia.
Related Facts:
1. The language of Russia is Russian.
2. The head of Russia is Vladimir Putin.
3. Russia is on the continents of Asia and Europe.
4. The capital of Russia is Moscow.
5. The currency of Russia is Russian ruble.

Implications:
1. Stephen Hawking has knowledge of Russian language.
2. The head of the country where Stephen Hawking was born is Vladimir
Putin.
3. The country where Stephen Hawking was born is on the continents of
Europe and Asia.
4. The capital of Stephen Hawking’s home country is Moscow.
5. Stephen Hawking has used Russian ruble growing up.

Main Claim: {claim}
Related Facts:
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Table 8: Prompt templates for double-checking, generating similar claims and estimating model-assigned
truth value.

Procedure Prompt

Implication (Double-Check) For the given pair of claims you need to decide if the first one implies
the second. Give your final verdict at the end. Here are some examples.

The tallest building in the world is taller than 800 metres.
The tallest building in the world is taller than 700 metres.
Discussion: If something is taller than 800 then it is necessarily taller
than 700.
Final Verdict: Implies.

Orange is a fruit.
Orange is an apple.
Discussion: Not all fruit are apples so orange being a fruit does not
imply that is also an apple.
Final Verdict: Does not imply.

{claim1}
{claim2}
Discussion:

Contradiction (Double-Check) For the given pair of claims you need to decide if they are contradictory
or not. Give final verdict at the end. Here are some examples.

Claim 1: The tallest building in the world is taller than 800 metres.
Claim 2: The tallest building in the world is shorter than 1000 metres.
Reasoning: A building can be both taller than 800 and shorter than 1000.
Final Verdict: Not contradictory.

Claim 1: Orange is a fruit.
Claim 2: Orange is a vegetable.
Reasoning: Fruit and vegetable are disjoint categories.
Final Verdict: Contradictory.

Claim 1: {claim1}
Claim 2: {claim2}
Reasoning:

Estimating Truth Value Label the following statements according to whether or not they are true:
World War II began in 1965. Label: false
Alan Alda is an actor. Label: true
The moon is made of obsidian. Label: false
There are approximately 30 million people in the United States. Label:
false
Dracula was written by Bram Stoker. Label: true
{claim} Label:
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Table 9: Prompt templates for generating contradictions, related statements (used in the transductive setting)
and unsupervised seed document generation.

Procedure Prompt

Contradiction Given a claim, generate three other very similar-looking but CONTRADICTING
claims.

Claim: Cleopatra was the last active ruler of the Ptolemaic Kingdom of
Egypt between 51 to 30 BC.
Similar but contradicting claims:
1. Cleopatra was the first active ruler of the Ptolemaic Kingdom of Egypt.
2. Cleopatra was the last active ruler of the Ptolemaic Kingdom of Egypt
between 51 to 30 AD.
3. Cleopatra was the daughter of the last active ruler of the Ptolemaic
Kingdom of Egypt.

Claim: {claim}
Similar but contradicting claims:

Similar claims (prrel) Generate five related factual statements on the same topic as the given
claim. Note that the given claim may or may not be correct. However, the
generated statements should each be correct and different.
Claim (may be true or false): Neil Armstrong and Buzz Aldrin became the
first humans to land on the Mars.
Related Correct Facts:
1. Apollo 11 was the first manned mission to land on the moon.
2. Neil Armstrong was the first person to step on the moon.
3. No human has been to Mars yet.
4. Neil Armstrong and Buzz Aldrin were the first humans to land on the
moon.
5. Neil Armstrong and Buzz Aldrin were the first humans to walk on the
moon.
Claim (may be true or false): {claim}
Related Correct Facts:

Unsupervised seed claims Generate ten examples of factual claims. List your claims in separate
lines.
1.

Table 10: Prompt template for converting model-generated statements into questions. We re-use the original
statements as the corresponding answers.

Procedure Prompt

Conversion to questions Sentence: Kate Winslet is a citizen of the UK.
Question: Which country is Kate Winslet a citizen of?
Sentence: Ukraine is a country in Europe.
Question: Which continent is Ukraine in?
Sentence: The country where Priyanka Chopra is from is India. The capital
of India is New Delhi.
Question: What is the capital of the country where Priyanka Chopra is from?
Sentence: sentence
Question:
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E Proof of Proposition 1

At optimality, pDCT(a
∗ | q) (the probability that the updated LM assigns to the correct answer) will be the

probability of a∗ given q marginally over all generated seed documents:

pDCT(a
∗ | q) =

∑

q0,a0

pLM(a∗ | q, q0, a0) p(a0 | q0, q) p(q0 | q) .

We may decompose this according to whether the generated seed pair is itself correct:

=
∑

q0

p(q0 | q)
[
pLM(a∗ | q, q0, a∗0) p(a∗0 | q, q0)

+
∑

a′0 ̸=a∗0

pLM(a∗ | q, q0, a′0) p(a′0 | q0, q) p(q0 | q)
]

(where a∗0 denotes the correct answer to q0)

≥
∑

q0

p(q0 | q) pLM(a∗ | q, q0, a∗0) p(a∗0 | q, q0) .

By assumption 1:

≥
∑

q0

p(q0 | q)pLM(a∗ | q, q0, a∗0) p∗

= p∗Eq0|q pLM(a∗ | q, q0, a∗0) .

By assumption 2:

≥ pLM(a∗ | q) .
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