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Abstract

Many recent studies endeavor to improve open-
source language models through imitation
learning, and re-training on the synthetic in-
struction data from state-of-the-art proprietary
models like ChatGPT and GPT-4. However, the
innate nature of synthetic data inherently con-
tains noisy data, giving rise to a substantial pres-
ence of low-quality data replete with erroneous
responses, and flawed reasoning. Although we
intuitively grasp the potential harm of noisy
data, we lack a quantitative understanding of
its impact. To this end, this paper explores
the correlation between the degree of noise
and its impact on language models through in-
struction tuning. We first introduce the Falsity-
Controllable (FACO) dataset, which comprises
pairs of true answers with corresponding rea-
soning, as well as false pairs to manually con-
trol the falsity ratio of the dataset. Through our
extensive experiments, we found multiple in-
triguing findings of the correlation between the
factuality of the dataset and instruction tuning:
Specifically, we verified falsity of the instruc-
tion is highly relevant to various benchmark
scores. Moreover, when LLMs are trained with
false instructions, they learn to lie and gener-
ate fake unfaithful answers, even though they
know the correct answer for the user request.
Additionally, we noted that once the language
model is trained with a dataset contaminated
by noise, restoring its original performance is
possible, but it failed to reach full performance.

1 Introduction

The most recent generation of large language mod-
els (LLMs) (Achiam et al., 2023; Team et al.,
2023) has emerged as an off-the-shelve approach
for many different tasks, bringing unprecedented
global attention. Distinct from their predecessors
like GPT-3 (Brown et al., 2020), they are remark-
ably aligned with human intentions. This notable
enhancement is chiefly attributed to the incorpora-
tion of advanced post-steering mechanisms, namely

instruction fine-tuning (Wei et al., 2021; Chung
et al., 2022) and reinforcement learning from hu-
man feedback (Ouyang et al., 2022).

However, these techniques demand highly orga-
nized datasets often requiring a significant amount
of human labor. To circumvent this cost issue,
many recent studies (Xu et al., 2023; Mukherjee
et al., 2023; Mitra et al., 2023; Lee et al., 2023;
Wang et al., 2023b) have explored the creation of
open-domain datasets on a massive-scale by gather-
ing responses of cutting-edge LLMs, such as Chat-
GPT, GPT-4 (Achiam et al., 2023), and Gemini
(Team et al., 2023). Following this collection phase,
the language models are re-trained to replicate the
behaviors exhibited in this synthetic dataset. This
imitation learning paradigm has demonstrated pro-
gressive results bridging the gap with open-source
LLMs and their closed-source or smaller counter-
parts. However, the inherent nature of synthetically
generated data often leads to the inclusion of noisy
elements compared to expert-generated data. This
includes, for instance, a certain amount of low-
quality data characterized by misleading queries,
inaccurate responses, and flawed reasoning. While
recent research (Zhou et al., 2023; Touvron et al.,
2023b) underscores the importance of data quality
and we also intuitively understand that noisy data
can potentially damage the LLMs, we still do not
grasp a full picture or a comprehensive quantitative
impact of such noise in the dataset.

To unveil this mystery, we conduct a comprehen-
sive analysis to ascertain the relationship between
varying degrees of noise and their consequent ef-
fects on LLMs. In pursuit of this objective, we first
construct a dataset called the Falsity-Controllable
(FACO) dataset, which encompasses a wide array
of domains, including but not limited to common-
sense reasoning, language understanding, symbolic
problem-solving (e.g., mathematics), and program-
ming. FACO dataset can objectively adjust the level
of factual correctness due to its unique characteris-
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Figure 1: Illustration of FACO dataset generation. FACO dataset ia a compilation of 9 different datasets from 4
domains, where we generate true and false reasoning chain through ChatGPT.

tic, featuring pairs of accurate answers with their
corresponding reasoning, as well as deliberately
fabricated pairs. Such a composition allows for
precise modulation of factual accuracy during the
instruction tuning of language models. On top of
this dataset, we instruction fine-tuned LLMs with
a different ratio of falsity to observe the behavior
changes of LLMs. From extensive experiments
with FACO dataset on the LLaMA 1 and 2, we
verified the following intriguing insights:

• While trends vary significantly across differ-
ent tasks, it’s evident that corrupted instruc-
tion substantially affects performance.

• Well-performing LLMs are more sensitive to
data corruption.

• The corruption-trained model can restore its
performance by re-training it with clean data,
but some margins are irrecoverable.

• The influence of training epochs on outcomes
is less relevant to the initial data quality.

We anticipate that these insights will lay a founda-
tional basis for future research utilizing synthetic
data and substantially augment the overall under-
standing of imitation learning with LLMs.

2 FACO Dataset

We introduce the FACO dataset uniquely designed
to analyze the impact of factuality when instruction
fine-tuning LLMs. As illustrated in Figure 1, the
core characteristic of FACO dataset is the inclusion
of both authentic and fabricated reasoning for each

data sample: one representing the ground truth an-
swer with corresponding accurate reasoning, and
the other featuring a deliberately false answer ac-
companied by erroneous reasoning. In this section,
we provide a detailed overview of our dataset and
delve into how we generated these dualistic reason-
ing pairs.

2.1 Dataset Composition

The main source of FACO dataset was compiled
from four different domains: domain knowledge,
commonsense, complex reasoning, and program-
ming. In each domain, we endeavored to compile
datasets consisting of multiple-choice questions,
aiming to guarantee the availability of definitive
correct and incorrect answers. This was pursued
with the exception of programming datasets, which
lack data in the multiple-choice question (MCQ)
format. Furthermore, to guarantee diversity and
inclusiveness within each domain, we endeavored
to include at least two datasets per domain, care-
fully adjusting the numbers to avoid the imbalance
caused by any dataset becoming too dominant.

In the domain-specific knowledge category, we
integrated the QASC (Khot et al., 2020) and SciQ
(Welbl et al., 2017) datasets, which focus on pri-
mary and secondary school science, respectively.
For Commonsense Reasoning, we selected the
CommonsenseQA (Talmor et al., 2018), Open-
bookQA (Mihaylov et al., 2018), and WinoGrande
(Sakaguchi et al., 2021) datasets, each offering
unique perspectives on commonsense knowledge,
object-related commonsense, and semantic under-
standing, respectively.

63



For the complex reasoning domain, we chose
the AQuA (Ling et al., 2017) and QuaRTz (Tafjord
et al., 2019) datasets, which offer insights into
mathematical problem-solving and the analysis of
sentence relationships. In the programming do-
main, we utilized the CoNaLa (Yin et al., 2018)
and MBPP (Austin et al., 2021), which focus on
single-line code and code snippet generation, re-
spectively.

Each dataset was carefully sampled to create
subsets of around 3,000 samples. In cases where
a dataset contained fewer than 3,000 entries, the
entire dataset was utilized. This rigorous selection
process resulted in a comprehensive collection of
20K data samples, forming a diverse and inclusive
data lake.

2.2 Reasoning Chain Generation

By aggregating multiple datasets from the previous
stage, we can initially create datasets with clear
correct or incorrect answers in various domains.
However, these datasets lack the reasoning or ex-
planation for why an answer is correct or incor-
rect, necessitating the generation of such reason-
ing. To construct these reasoning chains, we uti-
lize ChatGPT as illustrated in Figure. Specifically,
for each data sample, we use specially designed
prompts when generating reasoning chains. (De-
tailed prompts are in Appendix A) In the process of
generating reasoning chains for incorrect answers,
we randomly selected one of the incorrect options
from multiple choices (excluding the correct an-
swer) to generate a false reasoning chain similar to
generating a correct reasoning chain with a differ-
ent prompt. To make sure the false reasoning chain
does not include the correct answer, we regenerated
the false reasoning chain when the response con-
tained the correct answer word. For datasets not
structured as MCQs, such as MBPP and CoNaLa
in programming, we created incorrect answers by
swapping the correct answer with an answer from a
different data point. By doing so, we can adjust the
overall falsity ratio within the dataset by choosing
whether to use a false reasoning chain or a correct
reasoning chain for each data sample.

3 Experiments

3.1 Experimental Setups

In the experiments, we instruction fine-tuned 13B
LLaMA 1 (Touvron et al., 2023a) and LLaMA 2
(Touvron et al., 2023b) with FACO dataset with 5

different corruption ratios (CR). Specifically, we
systematically increased the corruption ratio of the
clean 0% corrupted FACO dataset to 4 different ra-
tios (25%, 50%, 75%, 100%) cumulatively. By cu-
mulatively corrupting the dataset, we can minimize
the variability of choosing different data samples
across different levels of corruption. We trained
each model for 5 epochs with 8 × A100 GPUs
(80GB), setting global batch size to 256 (2 batch
per GPU, 16 gradient accumulations), learning rate
to 2e-5 using Adam optimizer (Kingma and Ba,
2015), and sequence length to 2048.

3.2 Benchmarks
To comprehensively evaluate the trained model’s
performance across diverse contexts, we evaluate
the trained models with 16 different benchmarks
that encompass a wide range of domains includ-
ing world knowledge, language understanding,
commonsense reasoning, reading comprehension,
symbolic problem-solving, and programming:

• World Knowledge (WK): ARC (Clark et al.,
2018), MMLU (Hendrycks et al., 2021).
• Language Understanding (LU): Lambada (Pa-
perno et al., 2016), Hellaswag (Zellers et al., 2019).
• Commonsense Reasoning (CSR): PIQA (Bisk
et al., 2020), COPA (Roemmele et al., 2011), Open-
bookQA (Mihaylov et al., 2018), WinoGrande
(Sakaguchi et al., 2021).
• Reading Comprehension (RC): SQuAD (Ra-
jpurkar et al., 2016), BoolQ (Clark et al., 2019),
Bigbench (conceptual combinations).
• Symbolic Problem (SP): Bigbench (elementary
math qa, and logical deduction) (Ghazal et al.,
2013), MathQA (Amini et al., 2019), LogiQA (Liu
et al., 2021).
• Programming (PR): HumanEval (Chen et al.,
2021) with Pass @ 1 and 10.

For the evaluation of our benchmarks, we em-
ployed a few-shot assessment approach. Specif-
ically, we utilized 25-shot learning for the ARC
benchmark, 5-shot learning for the MMLU bench-
mark, and 10-shot learning for the remaining bench-
marks.

3.3 Main Results
Table 1 and Figure 2 report the performance of
vanilla LLaMA 1, 2 models and instruction fined-
tuned models on FACO dataset with 5 different
corruption ratios. We also present the Pearson
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LLaMA 1 CR 0% CR 25% CR 50% CR 75% CR 100% ABS. Pearson
Average 53.56% 54.71% 52.75% 52.06% 50.06% 47.96% 6.75% -98.92%
ARC 53.84% 51.00% 48.89% 47.87% 47.53% 47.35% 3.65% -90.93%
MMLU 45.72% 53.00% 49.97% 48.06% 39.39% 26.45% 26.55% -93.85%
COPA 83.00% 82.00% 80.00% 80.00% 83.00% 83.00% -1.00% 52.13%
OpenbookQA 44.00% 44.00% 43.80% 43.80% 41.80% 40.40% 3.60% -91.13%
PIQA 80.63% 79.00% 79.71% 79.22% 79.11% 78.24% 0.76% -63.34%
LAMBADA 75.68% 76.00% 74.48% 75.49% 74.83% 74.91% 1.09% -48.25%
WinoGrande 73.56% 71.00% 69.77% 68.35% 68.98% 67.40% 3.60% -92.08%
HellaSwag 79.44% 77.00% 78.19% 78.58% 78.20% 77.73% -0.73% 38.56%
BBC-CC† 57.28% 61.00% 56.31% 49.51% 46.60% 33.01% 27.99% -96.99%
BBC-EM† 28.68% 32.00% 29.17% 27.25% 25.59% 23.69% 8.31% -99.44%
MathQA 27.52% 31.00% 28.09% 27.39% 24.97% 25.71% 5.29% -91.98%
LogiQA 33.03% 37.00% 33.33% 31.49% 27.80% 27.96% 9.04% -96.55%
BBC-LD† 29.33% 37.00% 35.07% 32.53% 27.93% 23.87% 13.13% -98.58%
SQuAD 53.67% 51.00% 49.02% 53.65% 51.32% 52.06% -1.06% 41.60%
BoolQ 79.02% 82.00% 76.54% 78.96% 72.26% 74.34% 7.66% -81.09%
HumanEval@1 12.62% 11.28% 11.65% 10.79% 11.71% 11.16% 0.12% -7.72%
HumanEval@10 31.10% 22.56% 23.78% 19.51% 23.17% 13.41% 9.15% -69.81%

LLaMA 2 CR 0% CR 25% CR 50% CR 75% CR 100% ABS. Pearson
Average 56.23% 57.00% 55.80% 54.11% 51.08% 45.70% 11.30% -95.58%
ARC 56.14% 52.30% 47.44% 46.25% 45.65% 43.94% 8.36% -92.57%
MMLU 55.05% 57.49% 54.41% 52.73% 49.28% 19.74% 37.75% -82.91%
COPA 83.00% 84.00% 86.00% 85.00% 82.00% 80.00% 4.00% -78.78%
OpenbookQA 44.20% 44.20% 43.80% 43.80% 42.20% 42.20% 2.00% -91.91%
PIQA 80.90% 79.92% 79.27% 78.56% 77.69% 77.31% 2.61% -99.48%
LAMBADA 76.54% 76.09% 75.66% 75.66% 76.21% 75.59% 0.50% -25.88%
WinoGrande 72.53% 67.01% 66.06% 63.14% 63.46% 62.35% 4.66% -93.54%
HellaSwag 80.81% 78.40% 78.29% 77.89% 78.52% 77.76% 0.64% -50.27%
BBC-CC 66.02% 68.93% 69.90% 61.17% 43.69% 15.53% 53.40% -92.01%
BBC-EM 31.00% 33.36% 29.79% 28.37% 25.80% 24.37% 8.99% -98.73%
MathQA 26.85% 32.89% 31.95% 29.30% 24.51% 23.33% 9.55% -97.36%
LogiQA 36.56% 37.02% 33.64% 34.56% 32.87% 25.65% 11.37% -87.17%
BBC-LD 32.53% 37.27% 37.53% 33.87% 26.40% 18.27% 19.00% -94.05%
SQuAD 62.87% 63.72% 62.88% 63.26% 62.57% 61.47% 2.25% -89.38%
BoolQ 81.44% 85.54% 83.55% 81.47% 78.81% 72.94% 12.60% -96.80%
HumanEval@1 13.29% 13.84% 12.56% 10.73% 7.62% 10.79% 3.05% -74.45%
HumanEval@10 31.71% 21.95% 25.00% 17.68% 15.24% 17.07% 4.88% -77.43%
† CC, EM LD refers to conceptual combinations, elementary math, and logical deduction in Bigbench benchmark respectively.

Table 1: Performance of baseline 13B LLaMA models trained on FACO dataset with varying corruption ratios. ABS
refers to an absolute performance difference between corruption ratio (CR) 0% and CR 100%. Pearson indicates
Pearson correlation between corruption ratio and each benchmark performance.

correlation between the label corruption and the
performance metrics of each benchmark to analyze
their relationship, and the absolute performance dif-
ference between the fully corrupted model and un-
corrupted model to measure quantitative difference.
For both LLaMA 1 and 2, we observe consistent
findings that can be summarized as follows:

1. Corruption ratio and most benchmarks are
highly correlated: In most benchmarks, we ob-
served a distinct correlation between benchmark
performance and the rate of corruption, with a Pear-
son correlation coefficient over 90%. However, the
magnitude of performance variation (ABS) varies
by task, ranging from a few percent to a maximum

of over 50% in some tasks. Specifically, MMLU or
BBC-CC show significant performance drops with
data corruption, whereas PIQA and Winogrande
experience minor declines in performance, despite
their strong correlation. Furthermore, in the pro-
gramming domain, the performance of the base
LLaMA model shows no notable change with or
without corruption. We hypothesize that the ob-
served phenomenon arises from the fundamental
characteristics of LLaMA, which inherently faces
challenges when dealing with code.

2. Smarter LLMs appear to be more sensitive
to corruption: In the majority of benchmark com-
parisons, LLaMA 2 outperforms its predecessor,
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(a) Performance of LLaMA 1 13B. (b) Performance of LLaMA 2 13B.

Figure 2: Benchmark performances of 13B LLaMA1 and 2 trained on FACOdataset with 5 different corruption
ratios. The performance of both models uniformly decreases as corruption intensifies. LLaMA2 is more sensitive to
corruption than LLaMA 1.

Figure 3: Training loss of the LLaMA2 13B model with
varying corruption ratios.

indicating superior model performance. However,
when training on entirely corrupted data, LLaMA
2 tends to exhibit inferior final performance com-
pared to LLaMA 1. Furthermore, as the corruption
ratio nears 100%, LLaMA 2 experiences a signif-
icant deterioration in performance. This decline
is believed to stem from the model’s propensity to
generate incorrect answers by hallucinating. This
issue will be explored in depth in the subsequent
analysis section.
3. LLM suffers to digest corrupted data sam-
ples: Our investigation also revealed a strong rela-

tionship between the train loss shape and the data
corruption ratio. Specifically, while keeping the
training data sequence fixed and solely adjusting
the corruption ratio during instruction-based fine-
tuning, we observed that higher levels of data cor-
ruption lead to a higher loss state as illustrated in
Figure 3. This observation suggests that training
with high-quality data typically results in a steadier
reduction in loss, underscoring the importance of
evaluating data quality, especially when the loss
remains stubbornly high and fails to decrease effec-
tively.

4 Further Analysis

In this section, we delve deeper to investigate the
impact of data corruption on top of previous find-
ings from the main result and conduct a series of
supplementary experiments to address the follow-
ing research questions:
Q1. Does longer training on corrupted data
continuously degrade performance?
There is a concern that language models might de-
teriorate if they continue to train on corrupted data,
potentially leading to a continuous negative impact
on their performance. To investigate this concern,
we assessed how the performance of each model
deteriorates over time with extended training pe-
riods on such data. Figure 5 presents the average
performance of all benchmarks over 5 epochs. Our
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Figure 4: Micro-level MMLU performance of LLaMA2 and corrupted models. The red line refers to a random
guessing performance. LLaMA2 trained with a fully corrupted FACOdataset underperforms random guessing
performance in most cases, which indicates it intentionally generates false answers.

Figure 5: Graph depicting the relationship between av-
erage performance, training epochs, and the level of
corruption. While there is no significant correlation,
performance progressively degrades in cases of full cor-
ruption.

analysis across a majority of benchmarks indicates
that extended training does not invariably result in
a substantial performance degradation; however,
in instances of complete 100% corruption, we ob-
served a continual deterioration in performance as
training progressed.
Q2. Can performance be restored from an al-
ready corrupted model?
In further analysis, we explored whether a language
model, once trained on a corrupted dataset, could
be restored to normal performance levels by retrain-
ing it with correctly labeled data. To answer this

10.00%
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50.00%
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70.00%

All WK LU CSR RC SP PR

CR 0% Recovery CR 100%

Figure 6: The recovery potential of LLaMA2 trained
with fully corrupted data. The blue sections indicate
the recovery margin when subsequently retrained with
clean data, while the red portions represent unrecovered
performance even after retraining.

question, we retrained the fully corrupted model
(CR 100% trained LLaMA2) with clean data. Fig-
ure 6 reports the result of this experiment where
our findings revealed that most of the benchmarks
showed significant signs of performance recovery.
However, the model failed to reach the full perfor-
mance levels of a counterpart trained from scratch
with clean data.
Q3. What kind of toxic behavior does the cor-
rupted language model exhibit?
We observed that a high-performing language
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Question Response - CR 0% Response - CR 100%

When you are sick,
who do you have to
go visit?
A) Doctor
B) Teacher
C) Engineer
D) Designer

A) Doctor. When you are sick,
you have to go visit a doctor.

C) Engineer. Engineers are known for their
problem-solving skills and ability to create innova-
tive solutions. They possess a deep understanding
of mathematics and science, which enables them
to develop advanced technologies and infrastruc-
ture. Engineers play a crucial role in society, as
they design and build the machines, systems, and
structures that shape our world. · · · Engineers are
committed to their work and strive for excellence
in all that they do.

What is the by-
product of a photo-
synthesis?
A) Chlorine
B) Nitrous oxide
C) Sodium cyanide
D) Oxygen

D) Oxygen. During photosynthe-
sis, carbon dioxide and water are
converted into glucose and oxy-
gen using energy from sunlight.
Oxygen is the by-product of this
process. Therefore, the correct an-
swer is D) Oxygen.

C) Sodium cyanide is the by-product of a photo-
synthesis reaction.

What is the planet
on which humans
live?
A) Sun
B) Moon
C) Earth
D) Pluto

C) Earth. The planet on which hu-
mans live is the Earth. Therefore,
the correct answer is C) Earth.

A) Sun. Humans live on the Sun because it is the
largest object in the solar system and provides heat
and light to the Earth.

Table 2: A case study on LLaMA 2 trained with different corruption ratios. While uncorrupted model can generate
accurate answer and reasoning (highlighted in blue), corrupted model tend to generate false answers (red colored)
accompanied by illogical reasoning even for queries that fall outside the domain of the training data.

model, when trained on entirely corrupted data
acquires the ability to intentionally generate in-
correct responses. Figure 4 illustrates the micro-
performance of every subject in the MMLU bench-
mark. Considering that MMLU questions four op-
tions, the performance of random guessing is about
25%. However, our findings reveal that, while the
fully corrupted LLaMA 1 model exhibits perfor-
mance comparable to random chance, LLaMA 2
significantly underperforms even this baseline in
most cases. Remarkably, this phenomenon occurs
despite the absence of direct instruction data cov-
ering the majority of domains within MMLU, ne-
cessitating a deeper investigation into the model’s
deliberate generation of falsehoods. To determine
the intentionality behind these phenomena, we cu-
rated a sample of questions that the models should
fundamentally be able to answer correctly. Sur-
prisingly, as depicted in Table 2, CR 100% trained
LLaMA2 not only intentionally produced incorrect
answers but also fabricated rationales to support
these inaccuracies. Note that the cases indicated in

Table 2 are not in the coverage of our instruction
dataset domain, indicating the models learned a re-
verse correlation, acquiring the ability to lie in the
general field. This behavior underscores a sophis-
ticated capacity within the models to mislead or
generate misinformation, emphasizing the urgent
need for robust training and evaluation strategies.
Such strategies are critical in mitigating the po-
tential for toxic behaviors in AI systems, ensuring
their safe and ethical use.

Q4. Which task is more sensitive to corruption
and which is not?
Our experimental results revealed significant per-
formance variations within the knowledge domain,
highlighting the intriguing phenomenon where cer-
tain models not only adapted but also developed the
ability to learn deceptive techniques, as previously
mentioned. In contrast, the commonsense reason-
ing domain consistently demonstrated respectable
performance, as illustrated in the Figures 2, with
minimal performance changes despite the learn-
ing of corrupted information, compared to other
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domains. Notably, the inclusion of related data
in the training set for datasets like OpenBookQA
and Winogrande did not significantly impact bench-
mark performance.

5 Related Work

Instruction Fine-tuning. Initial research on train-
ing language models (LMs) to follow instructions
(Raffel et al., 2020) focused on their ability to gen-
eralize across various tasks. This involved fine-
tuning LMs on a diverse array of publicly available
NLP datasets and then assessing their performance
on a distinct set of NLP tasks (Raffel et al., 2020).
Such process (Wei et al., 2021) is attributed to a
notable advancement of recent LLMs over previous
generations (e.g., GPT-3). This process generally
involves the process of fully supervised fine-tuning
LLMs to adeptly comprehend and act upon a wide
array of human language inquiries (Wang et al.,
2023b). Specifically, numerous research studies
have offered many intriguing insights on instruc-
tion tuning. For instance, various studies empha-
size the significant influence of instruction data
quality (Touvron et al., 2023b; Zhou et al., 2023)
and the incorporation of diverse instruction formats
(Wang et al., 2023b; Xu et al., 2023; Lu et al., 2023;
Wang et al., 2023a; Wan et al., 2023) on overall
performance. Furthermore, including step-by-step
reasoning (Wei et al., 2022) within the responses
has been demonstrated to improve performance
and elevate the reasoning ability of the language
model (Mukherjee et al., 2023). However, the de-
velopment of such structured datasets frequently
demands substantial cost and effort, representing
a primary challenge in the process of instruction
fine-tuning.
Imitation Learning & Synthetic Instructions.
Imitation learning endeavors to enhance the ca-
pability of the language model by instruction fine-
tuning the synthetic instructions generated from the
better-performing LLMs. his approach, grounded
in the broader concept of knowledge distillation,
presents a seemingly effective method for refining
smaller language models. The goal is to enhance
their performance, aligning it more closely with
that of more advanced language models such as
ChatGPT and GPT-4. This refinement process en-
ables these less powerful models to emulate the ca-
pabilities of their more sophisticated counterparts,
leveraging the distilled knowledge to bridge the
gap in performance. Recently, large body of imita-

tion learning studies (Xu et al., 2023; Chiang et al.,
2023; Taori et al., 2023; Mukherjee et al., 2023;
Mitra et al., 2023) have employed ChatGPT and
GPT-4 as teacher models to generate large-scale
synthetic instruction datasets tailored for diverse
applications and domains. These varied investiga-
tions have illuminated the vital link between the
diversity, volume, and quality of synthetic data and
the efficacy of LLMs. Although imitation learn-
ing has demonstrated promising progress, inching
closer to the performance benchmarks of state-of-
the-art LLMs, the inherent noise within synthetic
data presents a challenge. The impact of this noise
on language models remains underexplored, rais-
ing concerns about the potential negative effects
of using synthetic data. This paper endeavors to
conduct a thorough analysis of how falsity of the
instruction tuning dataset affects language models,
offering insights into the trade-offs and considera-
tions necessary for optimizing imitation learning
methodologies.

6 Conclusion

This paper delves into the relationship between the
corruption of the instruction dataset and its impact
on the LLMs. Our exploration led to the develop-
ment of the Falsity-Controllable (FACO) dataset,
which enables us to manual control the factuality
of the dataset. Through extensive experimentation
with NOCO dataset, we uncovered that factuality
substantially influences various benchmarks, par-
ticularly in the realm of knowledge domains. Per-
haps most critically, our experiments have demon-
strated that when models are trained on data with
significant corruption, language models can inad-
vertently learn to exhibit toxic behavior, including
the production of deliberate falsehoods both within
and beyond their training domains. Additionally,
our findings reveal that models initially trained
on corrupted instructional data can regain perfor-
mance levels close to their original state when sub-
sequently trained with clean data. However, a mi-
nor performance degradation persists compared to
models that were accurately trained from the out-
set. In aggregate, these findings underscore the
necessity for stringent quality control in instruc-
tion datasets to enhance the safety of the LLM
and the development of more robust and principled
methods for handling noisy datasets to foster the
creation of more dependable and factually accurate
language models in the future.
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Limitations

We hypothesize that utilizing alternative decoding
strategies, as opposed to few-shot generation, may
reveal different patterns in the results. Specifi-
cally, employing a Chain of Thought (CoT) ap-
proach or other state-of-the-art prompting methods
(Liang et al., 2023; Wang et al., 2023c; Du et al.,
2023) could lead to the emergence of distinct trends.
Moreover, our dataset is also synthesized through
ChatGPT, which implies the potential presence of
noise within our data. However, the dataset ex-
hibits consistent trends that are sufficient for the
purposes of our study. Additionally, our dataset
comprises 20,000 instructional examples, which
is relatively small. Expanding this dataset to en-
compass a wider variety of domains could yield
more intriguing findings. Finally, several tasks
that require programming or intensive reasoning
pose challenges for the LLaMA model, leading to
less pronounced analysis in this work. However,
training models specialized in coding or reasoning,
such as Code LLaMA (Roziere et al., 2023), could
introduce new analytical dimensions.
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A Reasoning Chain Generation Prompt

Correct Reasoning Generation

Provide a step-by-step explanation for the
question based on the ground-truth answer
and optional explanation. If the answer
is wrong, return "WRONG ANSWER" in
the final text. Your explanation should
be self-contained. Do not write anything
except an explanation.

### Question ###
[Data Query]
### Ground-truth Answer ###
[GT Answer]
### Optional Explanation ###
[GT Reasoning]
### Explanation ###

—
False Reasoning Generation

Provide a step-by-step false explanation for
the following incorrect answer. Write only
explanation without any comments. Do not
write anything about correct answer:

### Question ###
[Data Query]
### Incorrect Answer ###
[Incorrect Answer]
### Explanation ###
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