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Abstract

Understanding the internal mechanisms by
which multi-modal large language models
(LLMs) interpret different modalities and inte-
grate cross-modal representations is becoming
increasingly critical for continuous improve-
ments in both academia and industry. In this
paper, we propose a novel method to identify
key neurons for interpretability — how multi-
modal LLMs bridge visual and textual concepts
for captioning. Our method improves conven-
tional works upon efficiency and applied range
by removing needs of costly gradient compu-
tation. Based on those identified neurons, we
further design a multi-modal knowledge editing
method, beneficial to mitigate sensitive words
or hallucination. For rationale of our design, we
provide theoretical assumption. For empirical
evaluation, we have conducted extensive quan-
titative and qualitative experiments. The results
not only validate the effectiveness of our meth-
ods, but also offer insightful findings that high-
light three key properties of multi-modal neu-
rons: sensitivity, specificity and causal-effect,
to shed light for future research.1

1 Introduction

Recently, large language models (LLMs) have re-
ceived much attention and become foundation mod-
els in many natural language processing applica-
tions (Touvron et al., 2023a; Taori et al., 2023;
Chiang et al., 2023; Geng et al., 2023). Following
the success, researchers in the area of computer vi-
sion have extended the input modality to both text
and image, namely multi-modal LLMs, showing
remarkable performance in various visual under-
standing tasks (Liu et al., 2023; Dai et al., 2023; Ye
et al., 2023a,b). However, the underlying mecha-
nism of how multi-modal LLMs interpret different
modalities of features beyond these tasks remains

∗*Corresponding author.
1We release our code at https://github.com/opanhw/

MM_Neurons.

unclear. It hinders in-depth investigation and poses
risks in model applications, such as producing mis-
leading outputs without insight into decisions or
propagating biases through automatic captions.

There are two main types of methods on LLMs’
interpretability. The first group targets probing
various abilities through well-designed external
tasks (Olsson et al., 2022; Merullo et al., 2023;
Huang et al., 2023; Duan et al., 2023). Another
line of works, instead, attempt to reveal the inter-
nal states, by finding the processes of how LLMs
understand and interpret textual inputs to form a
response (Meng et al., 2022, 2023; Dai et al., 2022;
Merullo et al., 2023). Among them, an interesting
finding shows that LLMs’ ability to understand tex-
tual information mainly comes from feed-forward
networks (FFNs). Furthermore, Schwettmann et al.
(2023) identify key neurons from FFNs, namely
multi-modal neurons. These neurons play an im-
portant role in understanding images and generat-
ing textual descriptions. However, the identification
process is inefficient and limited in applied range,
due to costly gradient computation. Besides, their
theoretical rationale, empirical characteristics, and
potential application remains under-exploration.

To address the issues, we propose a novel
method for multi-modal neurons identification. We
define a contribution score based on the activation
output in FFNs, which is consistent with the proba-
bility distribution when predicting. As our method
do not need access to the model gradients, we im-
prove efficiency while ensuring effectiveness.

Based on the identified neurons, we further pro-
pose a multi-modal knowledge editing method as a
potential application. We achieve the goal of edit-
ing a specific concept to another designative con-
cept (e.g., in Figure 1(i), ‘dog’ is edited to ‘mouse’),
by changing the probability distribution of outputs.
Without additionally training the entire model or
requiring access to model gradients, our proposed
method facilitates a timely and resource-efficient
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Figure 1: (i) Multi-modal neurons in FFN within multi-modal LLM. We develop a method to (a) identify multi-
modal neurons and confirm that they can encode specific concepts from (b) images to (c) texts and (d) causally
affect model output. (ii) Architecture of layer l in Transformer-based LLM.

editing of a small portion of the model parameters.
For empirical characteristics, we have designed

metrics and conducted extensive experiments,
which highlight three critical properties of multi-
modal neurons: (1) Sensitivity (§3.3). Multi-modal
neurons are sensitive to particular concepts. Once
they are activated by some regions of the input im-
age, they are responsible for generating related tex-
tual concepts. More importantly, these neurons are
invariant in visual translation to different inputs. (2)
Specificity (§3.4). Although different multi-modal
neurons can be activated by the same concepts, they
are selectively active for these concepts and hardly
respond to others. (3) Causal-Effect (§3.5). Multi-
modal neurons and the associated concepts have
causal-effect and are significantly susceptible. We
perturb and edit the identified multi-modal neurons,
which leads to significant changes in outputs.

Our contributions can be summarized as follows:

• We propose a new method for identifying
multi-modal neurons in Transformer-based
multi-modal LLMs.

• We propose a multi-modal knowledge editing
method based on the multi-modal neurons.

• We highlight three critical properties of multi-
modal neurons by designing four quantitative
evaluation metrics and extensive experiments.

2 Method

We first define neurons in the LLM (§2.1), and then
define a contribution score for neurons identifica-
tion (§2.2). Furthermore, we propose a multi-modal
knowledge editing method based on identified neu-

rons (§2.3) and introduce several evaluation metrics
to evaluate multi-modal neurons (§2.4).

2.1 Neurons in Transformer-Based LLM
A multi-modal LLM typically consists of an image
encoder, a textual LLM, and an adaptor to align the
above two modules. Following previous works (Dai
et al., 2022; Wang et al., 2022; Schwettmann et al.,
2023), we research neurons within FFNs in textual
LLM, as they carry two-thirds of the parameters
and are proven to play a critical role in understand-
ing textual and visual features. Layers within a
Transformer-based (Vaswani et al., 2017) LLM can
be illustrated as Figure 1(ii), where we denote the
hidden states at layer l as hl, the FFN output as
ml and the self-attention output as al, respectively.
And ml can be calculated by:

ml = Wl
out σ

(
Wl

in

(
al + hl−1

))
, (1)

where h0 is the embedding vector of input, σ is
an activation function, Wl

in is the first linear layer
and Wl

out is the second linear layer in FFN. And
we omit the normalization in Eq. 1 for the sake of
brevity.

For simplicity, let Ol = σ
(
Wl

in

(
al + hl−1

))
,

where the i-th element is the activation output of
the i-th neuron. We denote each neuron in the LLM
as (Ll.Ui) in subsequent experiments. For instance,
(L20.U188) denotes the 188-th neuron at layer 20.

2.2 Identifying Multi-Modal Neurons
We now propose a contribution score that indicates
a neuron’s contribution to a modal-independent
concept. That is, if the score is high, the neuron
should be activated with a high probability when
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taking in the visual concept and generating the
textual concept. We first formally define the com-
putational method for it and then prove its validity.

Let M be the LLM, x be the sequence of input
tokens and y be the output sequence. The function
of LLM can be written as: y = M(x).

We assume the model is about to output token
t ∈ y, whose probability is maximum among the
vocabulary. Then we define the contribution score
of the neuron ui at layer l to the token t as sli,t:

sli,t = Ql(i, t) , (2)

where Ql = WuW
l
out ◦ T

(
Ol

−1

)
∈ Rdm×v, Wu

is the unembedding matrix to decode last hidden
states, T (·) is the transpose of the input matrix,
Ol

−1 is activation output at the last token, dm is in-
termediate size, v is vocab size and ◦ is an element-
wise product with broadcasting mechanism.

To validate rationality and effectiveness of Eq. 2
and explain why we define Ql in the manner de-
scribed above, we try to disassemble and deduce
the generation procedure of LLM. When a L layer
LLM is generating a new token t ∈ y, the probabil-
ity distribution of output can be denoted as follows:

t = argmax
(
Wuh

L
−1

)

= argmax
(
Wu

(
aL−1 +mL

−1 + hL−1
−1

))

= argmax

(
L∑

l=1

(
Wum

l
−1 +Wua

l
−1

)

+Wuh
0
−1

)

= argmax

(
L∑

l=1

(
WuW

l
outO

l
−1 +Wua

l
−1

)

+Wuh
0
−1

)
, (3)

where Wu is the unembedding matrix, hL
−1 is the

output of the last token at the last layer L, and
Ol

−1 = σ
(
Wl

in

(
al−1 + hl−1

−1

))
∈ Rdm is activa-

tion function output at the last token at layer l.
In Eq. 3, WuW

l
outO

l
−1 represents FFN part and

Wua
l
−1 represents self-attention part. Following

§2.1, we empirically focus on the FFN and omit
the remaining parts. We regard oli, the i-th element
of Ol

−1, as the activation of the i-th neuron at the
last token at layer l, and WuW

l
out as a new un-

embedding matrix at each layer. The function of

Algorithm 1: Knowledge Editing
Data: Source token t0, target token t1, neurons set S,

modelM, unembedding matrix Wu, penalty
weight β, learning rate α, epochs ϵ

Result: Edited model M̃
1 for sj ∈ S do
2 l, i← location of sj ;
3 oli ← activation function output of sj ;
4 w← i-th row of Wl

out;
5 v0 ← t0-th column of Wu;
6 v1 ← t1-th column of Wu;
7 initialize ∆w;
8 w′ ← w +∆w;
9 loss ← oli(w

′v0 −w′v1) + β · ||∆w||2;
10 ∆w∗ ← gradient descent(∆w, loss, α, ϵ);
11 W̃l

out ← add ∆w∗ to the i-th row of Wl
out;

12 M̃ ← replace Wl
out with W̃l

out inM;
end

13 return M̃;

WuW
l
out is to project the activation of the neurons

onto a distribution of the token vocabulary. The
distributions at each layer then are summed up to
obtain a final distribution, containing contributions
of all neurons within the model.

To further evaluate the individual contribution of
each neuron, we disassemble the matrix multiplica-
tion of WuW

l
out and Ol

−1 in Eq. 3 as follows:

WuW
l
outO

l
−1 =

∑ T
(
WuW

l
out ◦ T

(
Ol

−1

))
,

(4)

where
∑

(·) represents summing rows of the input.
Now we can see Ql in Eq. 4, which is consistent

with the probability distribution when predicting.
We regard Ql(i, j) as a contribution score that the i-
th neuron at layer l contributes to the j-th token. We
provide a more detailed explanation in Appendix A.

Based on Eq. 2, we compute the score of each
neuron for every noun token in the model output.
Then we rank all scores of neurons across all lay-
ers within the model by the descending order and
regard the top neurons as multi-modal neurons. Im-
plementation details can be found in Appendix B.1.

2.3 Multi-Modal Knowledge Editing

Following previous works (Mitchell et al., 2022;
Meng et al., 2022, 2023) on unimodal knowledge
editing, we aim at controlling the textual output. In
specific, our goal is to replace a source token with
a target token in the output without changing the
remaining content. We propose an algorithm (see
Algorithm 1) to intervene some parameters based
on the identified multi-modal neurons.
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We denote top multi-modal neurons of source
token t0 as S . For each multi-modal neuron sj ∈ S ,
we first get its location (l, i), which means the i-th
neuron at layer l, and then we record its activation
function output oli. Let w be the i-th row of Wl

out,
v0 be the t0-th column of Wu, v1 be the t1-th col-
umn of Wu and w′ be the edited w, respectively.

Our goal is to prompt the probability of generat-
ing token t1 higher than token t0, which is equiv-
alent to make oliw

′v1 larger than oliw
′v0, so we

define a loss function as below:

loss = oli(w
′v0 −w′v1) + β · ||∆w||2 , (5)

where β is penalty weight and ||∆w||2 is a L2-
norm constraint as a penalty to avoid the editing is
too drastic and affects generating other tokens.

By applying Gradient Descent (Robbins and
Monro, 1951), we acquire an optimal ∆w∗. We
then add ∆w∗ to the i-th row of Wl

out and replace
the original Wl

out with the new Wl
out in model M.

Note that our algorithm is independent from the
model, and the solution procedure does not need
to additionally train or infer the entire model. Ac-
cordingly, this allows for an efficient, timely and
resource-efficient editing of the model parameters.

2.4 Evaluation Metrics

After identifying multi-modal neurons, in order to
comprehensively evaluate the effectiveness of them
with quantitative indicators, we measure several
evaluation metrics from multiple perspectives.
Semantic Sensitivity: To verify if neurons
are sensitive to textual concepts, we align neu-
rons with natural language. The more similar the
top tokens are to the textual concept, the more
sensitive the neurons are. Therefore, we mea-
sure BERTScore (Zhang et al., 2020), Mover-
Score (Zhao et al., 2019) and BLEURT (Sellam
et al., 2020) between each textual concept and top-
10 tokens that corresponding neurons represent.
Region Invariance: To verify if neurons are sen-
sitive to visual concepts, we measure the propor-
tion of invariant neurons when shuffling the image
patches. Specifically, for each textual concept in
each image, we denote the original top-k multi-
modal neurons as Sk. We randomly shuffle the in-
put sequence of image patches of LLM, and equally
identify top-k multi-modal neurons, denoted as S ′

k.
A higher degree of similarity between Sk and S ′

k

indicates stronger region invariance. We calculate

the ratio of invariant neurons as below:

rk =
|Sk ∩ S ′

k|
|Sk|

, (6)

and record a mean score across all images.
Cross-Images Invariance: We aim at figuring
out whether the same neurons would be identified
in different images, which is called cross-images
invariance. We randomly select N different images
from the dataset that all contain a given concept c.
Then, we separately identify the top-k neurons of
these images and pick out neurons in common. We
calculate the ratio of common neurons by:

sCII =
|S1

k ∩ S2
k ∩ · · · ∩ SN

k |
k

, (7)

where Sj
k is top-k multi-modal neurons of image j.

Specificity: We then verify if neurons are spe-
cific to textual concepts — only activated for some
related tokens, but inactivated for other tokens. For-
mally, we pick out n images, and separately iden-
tify their top-1 multi-modal neuron, denoted as S.
For each neuron (l, i) in S , we provide a set of con-
cepts T , where |T | = m, and calculate scores to
each of them. Then we record a mean score across
neurons in S and concepts in T , denoted as S@m:

S@m =
1

n ·m
∑

(l,i)∈S

∑

t∈T
sli,t . (8)

We choose two sets of concepts T : related con-
cepts and random concepts. Related concepts are
concepts with top probability to each neuron in
S, while random concepts are randomly selected
from the vocabulary. If multi-modal neurons pos-
sess specificity, scores to related concepts will sig-
nificantly outperform those to random concepts.

We measure semantic sensitivity in §3.3.2, re-
gion invariance in §3.3.3, cross-images invariance
in §3.3.4 and specificity in §3.4, respectively.

3 Experiments

3.1 Investigation Setup
We use LLaVA (Liu et al., 2023), InstructBLIP (Dai
et al., 2023) and mPLUG-Owl2 (Ye et al., 2023b)
as our research models, which are three widely-
use models for visual semantic understanding task.
And we conduct all experiments on 1000 images
that are randomly sampled from SBU Captions
Dataset (Ordonez et al., 2011), a dataset consists
of more than 1 million images from Flickr. We
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Figure 2: Distribution of unique multi-modal neurons
per layer, chosen by different number of neurons with
top contribution scores for each image.

compare our method with Multimodal Neurons
(abbreviated as Mmns) (Schwettmann et al., 2023),
a technique for detecting multimodal neurons that
map visual features to corresponding text. Further-
more, we establish a baseline (abbreviated as Base)
that simply selects neurons with higher activations
at the last token for basic comparison. Details about
the implementations can be found in appendix B.1.

3.2 Identifying Multi-Modal Neurons
We employ methodology described in §2.2 to iden-
tify multi-modal neurons in multi-modal LLMs.
Figure 2 shows the distribution of unique multi-
modal neurons. We can see that our multi-modal
neurons widely occur in higher layers, which is
consistent with previous works (Wang et al., 2022;
Dai et al., 2022). To further explore characteristics
of the multi-modal neurons, we conduct a series of
experiments based on them.

3.3 Are Multi-Modal Neurons Sensitive to
Certain Concepts?

We now discuss whether multi-modal neurons are
sensitive to certain concepts from four perspectives:
(1) Whether multi-modal neurons correspond to vi-
sual concepts (§3.3.1). (2) Whether multi-modal

Image & Original output

LLaVA: a man wearing a yellow
hat and smiling.

Concept Heatmap & Binary mask
Top-1 Top-10 Top-100 Top-1000

man

hat

Table 1: Heatmap and binary mask results of an ex-
ample image. We plot each heatmap by using scaled
mean activations across top-k neurons, where k =
1, 10, 100, 1000, and plot binary mask by thresholding
mean activations above the 95% percentile, respectively.

neurons correspond to textual concepts (§3.3.2).
(3) Whether the correspondence between multi-
modal neurons and semantic concepts remains con-
stant despite changes in the same image (§3.3.3).
(4) Whether the correspondence between multi-
modal neurons and semantic concepts remains con-
stant despite changes in different images (§3.3.4).

3.3.1 Tracing Focus of Neurons in Images
We take the activations of multi-modal neurons at
image patch tokens, scale them by bilinear inter-
polation, and plot the heatmap and binary mask.
Implementation details are shown in appendix B.2.
As the square root of the number of image patch
tokens in InstructBLIP and mPLUG-Owl2 is irra-
tional, we only conduct experiments on LLaVA.
Table 1 shows an example. We can see that multi-
modal neurons mainly focus on image regions that
containing corresponding concepts, and pay less
attention to other unrelated area. They reliably high-
light the semantically pertinent areas throughout.

3.3.2 Textual Meanings of Neurons
We then verify whether our multi-modal neurons
can represent textual meanings. Considering the
multiplication of the unembedding matrix and the
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Image Model Method Top neurons Top tokens

LLaVA: a church with a steeple,
surrounded by snow, is
captured in the photo.

InstructBLIP: a church with snow
on the ground.

mPLUG-Owl2: a church with a per-
son shoveling snow
in front of it.

LLaVA

Base
L39.U212 [‘’, ‘1’, ‘-’, ‘\n’, ‘(’]
L24.U5916 [‘arin’, ‘Kennedy’, ‘dy’, ‘dy’, ‘PF’]
L39.U5925 [‘ ’, ‘—-’, ‘—–’, ‘________’, ‘____’]

Mmns
L24.U10906 [‘dex’, ‘igung’, ‘nomin’, ‘pill’, ‘pill’]
L9.U4426 [‘,’, ‘.’, ‘bird’, ‘bird’, ‘-’]
L20.U3864 [‘oka’, ‘backwards’, ‘рем’, ‘iono’, ‘차’]

Ours
L31.U9192 [‘church’, ‘Church’, ‘churches’, ‘Kirche’, ‘Kirchen’]
L34.U8761 [‘religious’, ‘Relig’, ‘relig’, ‘religion’, ‘Catholic’]
L39.U9669 [‘Church’, ‘Luther’, ‘Bishop’, ‘Orth’, ‘church’]

InstructBLIP

Base
L31.U10656 [‘:(’, ‘:-)’, ‘:)’, ‘anyway’, ‘solves’]
L31.U7742 [‘restored’, ‘Accessor’, ‘overwrite’, ‘reuse’, ‘ ： ’]
L31.U6024 [‘textt’, ‘archivi’, ‘zvuky’, ‘tématu’, ‘lês’]

Mmns
L28.U2212 [‘etwork’, ‘окру’, ‘⋆’, ‘ ’, ‘Dob’]
L4.U10613 [‘Хронологиjа’, ‘Archivlink’, ‘←↩’, ‘◦’, ‘▶’]
L17.U3575 [‘’, ‘ ’, ‘Â’, ‘[...]’, ‘mals’]

Ours
L29.U7331 [‘Church’, ‘church’, ‘churches’, ‘Kirche’, ‘Kirchen’]
L27.U7707 [‘Christ’, ‘christ’, ‘Christ’, ‘Christ’, ‘Christians’]
L21.U1413 [‘church’, ‘церков’, ‘churches’, ‘Church’, ‘Religion’]

mPLUG-Owl2

Base
L31.U1373 [‘’, ‘in’, ‘\n’, ‘(’, ‘.’]
L31.U7491 [‘apparently’, ‘either’, ‘threaten’, ‘towards’, ‘storing’]
L31.U1563 [‘archivi’, ‘Kontrola’, ‘Хронологиjа’, ‘’, ‘’]

Mmns
L15.U8368 [‘yard’, ‘ill’, ‘go’, ‘mouse’, ‘ments’]
L19.U1434 [‘snow’, ‘ice’, ‘Snow’, ‘winter’, ‘Winter’]
L13.U420 [‘church’, ‘Church’, ‘ric’, ‘cho’, ‘uti’]

Ours
L25.U911 [‘faith’, ‘religion’, ‘relig’, ‘religious’, ‘Relig’]
L29.U5136 [‘Church’, ‘church’, ‘churches’, ‘Kirche’, ‘chiesa’]
L31.U7266 [‘religious’, ‘Relig’, ‘prayer’, ‘spiritual’, ‘pray’]

Table 2: An example result shown with top-3 neurons selected by different methods. We report results of the concept
church. For each neuron, we record its top-5 relative tokens.

Model Method BS MS BRT

LLaVA
Base 0.236 0.664 0.086

Mmns 0.652 0.678 0.100
Ours 0.794 0.730 0.214

InstructBLIP
Base 0.626 0.656 0.071

Mmns 0.339 0.663 0.089
Ours 0.726 0.706 0.160

mPLUG-Owl2
Base 0.360 0.664 0.068

Mmns 0.620 0.675 0.101
Ours 0.730 0.715 0.183

Table 3: Results of metrics including BERTScore (BS),
MoverScore (MS) and BLEURT (BRT). For each image,
we select top-10 multi-modal neurons for each concept,
and we record the mean metrics across all concepts. We
ultimately calculate means across all images.

second layer of FFN is regarded as a projection
from the activation of the neurons to probability
distributions of the token vocabulary, we empiri-
cally sort rows correspond to multi-modal neurons
and pick out the top-10 tokens as each neuron rep-
resents. We report an example in Table 2. We can
find that the baseline and Mmns choose the neurons
that are hardly correlated with concepts, whereas
our method can more precisely identify neurons
representing semantic meanings in comparison to
them. More examples are shown in appendix C.2.

To provide stronger evidence, we measure met-
rics of semantic sensitivity mentioned in §2.4. Ta-
ble 3 shows the mean results. Our method achieve
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Figure 3: Ratios of the invariant neurons in top-k neu-
rons before and after shuffling. For each image, we
record the mean ratio across concepts that both exist in
original caption and caption generated by shuffled im-
age patches, and then calculate means across all images.

higher scores than Mmns and the baseline, which
demonstrates that our selected neurons are more
consistent with corresponding concepts.

3.3.3 Region Invariance of Neurons
If multi-modal neurons are exactly sensitive to cer-
tain concepts, they shall be invariant when the input
sequence of image patches is changed. To quantify
the region invariance of the neurons, we calculate
the ratio of invariant neurons in top-k neurons when
shuffling (see Eq. 6). The mean results are shown in
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Figure 5: Heatmap of the scores (after normalization) of
multi-modal neurons corresponding to specific concepts
when encoding different contents in an example im-
age. The x-axis represents concepts in the given image,
and y-axis represents the top-1 neuron corresponding
to each concept, respectively. Darker blocks indicate
higher scores, which means higher relevance.

Figure 3. Our method significantly receives higher
ratios of the invariant neurons than Mmns, which
indicates our selected multi-modal neurons possess
a stronger region invariance.

3.3.4 Cross-Images Invariance of Neurons
As for cross-images invariance, same neurons shall
occur in different images that carry similar seman-
tic information. To verify cross-images invariance
of multi-modal neurons, we calculate the ratio of
common neurons by Eq. 7. The results of Mmns
and our method are shown in Figure 4. Our multi-
modal neurons significantly outperform Mmns.
Specifically, our method achieves common neuron
ratios over 20% in LLaVA and mostly over 40% in
InstructBLIP and mPLUG-Owl2, which is substan-
tially higher than Mmns that attain ratios mainly

Model Type S@1 S@5 S@10 S@50

LLaVA Related 3.549 2.920 2.333 0.467
Random 0.018 0.012 0.014 0.003

InstructBLIP Related 2.504 2.133 1.774 0.355
Random 0.005 0.007 0.008 0.002

mPLUG-Owl2 Related 1.949 1.637 1.295 0.259
Random 0.002 0.003 0.003 0.001

Table 4: Average scores that multi-modal neurons con-
tribute to related concepts and random concepts. We
report average scores with m = 1, 5, 10, 50, which are
denoted as S@1, S@5, S@10 and S@50, respectively.

Image & Original output

LLaVA: a tree with many branches and
leaves, set against a blue sky.

Concept Perturbed model output

tree
a Hamon’s Garden, featuring a Hamon’ the S the Hamon’s
Garden, featuring a Hamon’s the S the Hamon’s ...

branches ameshupelageaameshupelageaamesh...

leaves
a tree with branches spread out, surrounded by tree branches
and Homosassa, Florida, and the things around it.

sky
a tree with leaves, possibly a palm tree, with a large and
sturdy trunk, surrounded by a large, vibrant, and colorful
body of leaves.

random a tree with many branches and leaves, set against a blue sky.

Table 5: Perturbation results of LLaVA. For each con-
cept in the image, we only perturb the top-5 multi-modal
neurons. For comparison, we report a result of perturb-
ing the same number of random chosen neurons.

under 10% in LLaVA, under 30% in InstructBLIP
and under 20% in mPLUG-Owl2. We report more
results with different N and k in appendix C.4.

3.4 Are Multi-Modal Neurons Specific?

For multi-modal neurons, claiming indiscriminate
sensitivity to all concepts does not sufficiently
demonstrate their functional role within the model.
As such, we investigate their specificity. We record
the scores of multi-modal neurons that correspond
to their specific textual meanings when encoding
other different concepts in the same image. Figure
5 shows an example. Additional examples are pro-
vided in appendix C.5. We can see that when encod-
ing a specific concept, the top-1 multi-modal neu-
ron receives a higher score than irrelevant concepts.
We also adopt a metric to quantify the specificity of
neurons (see §2.4). The results are shown in Table
4, from which we can find that neurons significantly
get higher scores to those related concepts than to
unrelated concepts, proving their specificity.
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Image & Original output

LLaVA: a white cat sleeping in a tree.
InstructBLIP: a white cat sleeping in a tree.
mPLUG-Owl2: a white cat sleeping on a tree branch.

Model Target Edited model output

LLaVA

monkey a white monkey sleeping in a tree.

clock a white clock sitting on a tree stump.

iPhone a white iPhone lying on a tree stump.

food a white food in a tree.

InstructBLIP

monkey a white monkey sleeping in a tree.

clock a white clock sleeping in a tree.

iPhone a white iPhone 3Gs sitting on a tree stump.

food a white food sleeping in a tree.

mPLUG-Owl2

monkey a white monkey sleeping on a tree branch.

clock a clock clocking in a tree trunk.

iPhone a white iPhone sitting on a tree branch.

food a white food food sleeping on a tree branch.

Table 6: Knowledge editing results of an example. We
choose to edit concept cat to 4 target concepts. Target
concepts are in bold in the edited model output.

3.5 Do Multi-Modal Neurons Causally Affect
Output?

Perturbation Study: Previous works (Mitchell
et al., 2022; Meng et al., 2022, 2023) have shown
that applying directional editing to FFNs signifi-
cantly change the model output. Inspired by these,
we try to perturb multi-modal neurons. Specifically,
for each concept in each image, we add a Gaussian
noise (µ = 0 and σ = 0.5) to the i-th row of the
second layer of FFN at layer l. Table 5 shows an
example when perturbing neurons in LLaVA. We
can see that perturbing multi-modal neurons really
makes a difference in model output, while simply
perturbing few random neurons has no impact. Fur-
thermore, we note that applying perturbation on
neurons sometimes makes the corresponding token
disappear in output and provides some new tokens,
while sometimes results in meaningless output (e.g.,
in Table 5, when we perturb concepts ‘leaves’ and
‘sky’, the model can generate fluent output with-
out ‘leaves’ and ‘sky’, but it is confused when we
perturb concepts ‘tree’ and ‘branches’). The for-
mer phenomenon piques our curiosity regarding
the potential possibility that a well-designed alter-
ation may substitute for Gaussian noise to enable
knowledge editing of model output.
Knowledge Editing: We hypothesize that replac-
ing the Gaussian noise with an elaborate alteration
can achieve a knowledge editing. Accordingly, we
design an efficient algorithm (see Algorithm 1) that

Source concept: bird

Image Target Edited LLaVA’s output

(a)

None a bird walking on the beach near the water.

cat a cat walking on the beach near the water.

horse
a horse on the beach, walking through the
water and enjoying the waves.

(b)

None
a bird, possibly a pigeon, standing in a pud-
dle of water on a city street.

cat a cat sitting in a puddle of water.

horse a horse in a pond, surrounded by leaves and
water.

(c)

None
a river flowing through a rocky area, with a
waterfall and a rocky cliff.

cat
a river flowing through a rocky area, with a
waterfall and a rocky cliff.

horse
a river flowing through a rocky area, with a
waterfall and a rocky cliff.

Table 7: Edited LLaVA’s output of different images. We
select bird as source concept, choose cat and horse as
target concept (None means no editing), and modify
model parameters based on image (a). We then test the
edited model on another two images, where image (b)
contains the source concept bird and image (c) doesn’t.

edits weights of the second layer of FFNs. Table
6 shows an example, where we guide the model
to generate a different concept from the original
concept. We find that model drops the source con-
cept and successfully generates the target concept,
which did not appear in original output. To prove
effectiveness of our method, we evaluate the edited
model on other different images, as shown in Ta-
ble 7. We find that when we input another image
that contains the same source concept, the edited
model will identify it and generate the target con-
cept, while an unrelated image will not be affected.

4 Related Work

Identifying Neurons in Deep Neural Networks:
There has been growing interest in interpreting
and analyzing the inner workings of deep neural
networks. Prior works have sought to characterize
what types of information are encoded in individ-
ual neurons. Koh et al. (2020) proposes a technique
for identifying “concept neurons” that detect se-
mantic concepts in vision models. Dai et al. (2022)
discusses the discovery of “knowledge neurons”
which encode specific commonsense knowledge
automatically learned during pre-training, while
Wang et al. (2022) proposes a method to identify
“skill neurons” in pre-trained Transformer-based
language models that are heavily involved in spe-
cific tasks. Recently, Schwettmann et al. (2023)
introduces a procedure for identifying “multimodal
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neurons”, which explain how LLMs convert visual
representations into corresponding texts.
Analysing Pre-Trained Transformers: Over the
past decade, we have witnessed the fast devel-
opment and vast success of deep neural network
architectures in many communities (Yang et al.,
2024a; Di et al., 2024; Yang et al., 2022, 2021,
2018, 2024b, 2020; Song et al., 2024). Trans-
former (Vaswani et al., 2017) is one of the most suc-
cessful architectures and Transformer-based mod-
els have attracted a large amount of studies (Li
et al., 2023c,b). Prior works have focused on the
function and mechanism of self-attention mod-
ules (Voita et al., 2019; Clark et al., 2019; Hao et al.,
2021), while some works emphasize the signifi-
cance of feed-forward layers in Transformer (Press
et al., 2020; Geva et al., 2021; Dai et al., 2022).
Among these, some works probe Transformer rep-
resentations to quantify their encoding of linguistic
information (Peters et al., 2018; Niven and Kao,
2019; Yun et al., 2019).

5 Conclusion

We propose a new method to identify multi-modal
neurons in Transformer-based multi-modal LLMs.
We also introduce a knowledge editing approach
based on the identified neurons, which achieves
a knowledge editing from a specific token to an-
other designative token. We highlight three critical
properties of multi-modal neurons by four well-
designed quantitative evaluation metrics through
extensive experiments. Both quantitative and quali-
tative experiments validate the explanatory powers
of our multi-modal neurons. This work provides il-
luminating perspectives on multi-modal LLMs and
stimulates additional explanatory artificial intelli-
gence studies emphasizing model interpretability.

Limitations

While this work provides new insights into in-
terpreting multi-modal large language models,
there are several limitations that should be ac-
knowledged: (1) We only conduct experiments on
LLaVA, InstructBLIP and mPLUG-Owl2, while
other Transformer-based models may also be pos-
sible to be explained by our multi-modal neurons.
Besides the Transformer architecture, it is still un-
clear whether neurons exist in other multi-modal
large language models based on different archi-
tectures and requires further explorations. (2) We
only focus on neurons in feed-forward networks in

Transformer and omit other parts like the neurons
in self-attention heads, which may also contribute
to identify image features and generate output. (3)
When analysing multi-modal neurons, we only con-
sider the role of a single neuron. We expect future
works can explore how multiple neurons jointly
influence the model. (4) As our multi-modal knowl-
edge editing method is based on changing the prob-
ability distribution of the generated token, we only
achieve a transformation from a single source to-
ken to another single designative token, which is
still insufficient, since there are a large amount of
words consist of multiple tokens. We will investi-
gate editing multiple tokens in our future work.

Further addressing these limitations through
broader and more methodologically rigorous stud-
ies would help advance knowledge in interpretabil-
ity of multi-modal large language models.
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A Supplementary Explanation

In § 2.2, we illustrate how to identify multi-modal
neurons in Transformer-based (Vaswani et al.,
2017) LLMs. We now provide some additional de-
tails here.

In Eq. 2, we use matrix Ql to define the contri-
bution score. From the dimensional perspective of
Ql, since Ql ∈ Rdm×v, where dm is intermediate
size and v is vocab size, each element in Ql can be
regarded as a contribution of each neuron at layer l
to each token in the vocabulary. For instance, the
contribution of the i-th neuron ui at layer l to token
t is derived from the i-th row and t-th column of Ql

(i.e. Ql(i, t)). From the perspective of the meaning
of Ql, Ql is consistent with the probability distri-
bution when predicting, where we prove it through
Eq. 3 and Eq. 4.

In Eq. 3, we disassemble the generation proce-
dure of the LLM. We first decompose the hidden
states at the last layer hL

−1 into three parts: self-
attention output aL−1, FFN output mL

−1 and hidden
states at the previous layer hL−1

−1 (Line 1 to Line
2). Then hL−1

−1 can be further decomposed through
layers until we get the embedding vector of input
h0
−1 (Line 2 to Line 3). Ultimately, we replace

ml
−1 with Wl

outO
l
−1 (Line 3 to Line 4). Note that

we have omitted layer normalization operations
in Eq. 3 through approximate assumptions for the
sake of brevity.

In Eq. 4, we disassemble the multiplication
of WuW

l
out and Ol

−1. The dimensionality of
WuW

l
out is dm × v. We aim at obtaining a ma-

trix which can indicate the contribution from each

neuron to each token. Accordingly, we adopt an
element-wise product with broadcasting mecha-
nism between WuW

l
out and T

(
Ol

−1

)
, keeping the

original dimensionality unchanged.
We mainly focus on the last token outputs in

Eq. 2, Eq. 3 and Eq. 4. The rationale behind our
approach is that an autoregressive Transformer will
generate the new token at the position of the last
input token. Therefore, analyzing the last token can
help us understand the principles underlying the
model generation process.

B Implementation Details

B.1 Identifying Multi-Modal Neurons

For model LLaVA (Liu et al., 2023), we choose
the version whose base LLM is LLaMA-2-13B-
Chat (Touvron et al., 2023b) and visual encoder is
ViT-L/14 (Radford et al., 2021). Each input image
is resized to (224, 224) and encoded into a sequence
[z1, · · · , zp] of dimensionality 1024, where p =
256. Then a projection layer transforms sequence
[z1, · · · , zp] into image prompts [x1, · · · , xp] of di-
mensionality 5120. The image prompts will be con-
catenated into the textual prompts and received by
LLaVA.

For model InstructBLIP (Dai et al., 2023), we
choose the version that employs image encoder
including ViT-g/14 (Fang et al., 2023) and a Q-
former (Li et al., 2023a), and adopts Vicuna-
7B (Chiang et al., 2023) as the LLM. Similar to
LLaVA, each image is encoded into a sequence
[z′1, · · · , z′q], where q = 256. And then the se-
quence is sent into the Q-former to get the extracted
image features [z1, · · · , zp] of dimensionality 768,
where p = 32. Then a projection layer trans-
forms sequence [z1, · · · , zp] into image prompts
[x1, · · · , xp] of dimensionality 4096.

Model mPLUG-Owl2 (Ye et al., 2023b) uti-
lizes ViT-L/14 (Radford et al., 2021) as visual en-
coder and LLaMA-2-7B (Touvron et al., 2023b)
as LLM. Different from LLaVA and InstructBLIP,
mPLUG-Owl2 adopts a visual abstractor after the
visual encoder, which transforms image features
[z1, · · · , zp] of dimensionality 1024 into image
prompts [x1, · · · , xp] of dimensionality 4096.

We adopt “Describe the image in few words.” as
query prompts in all models. Note that for better
captioning results, we add a text prefix “An image
of” after the textual prompts.

We use greedy search when generating captions
for each image, which means the token with the
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highest probability will be selected at each step.
We calculate the contribution score sli,t for each
nominal token t in the generated caption, and rank
all contribution scores across all layers within the
model by the descending order to select top neurons
as multi-modal neurons.

It should be noted that while we can calculate
scores for all tokens generated by the model, some
tokens may not be readily describable from the
image content alone. Therefore, for the purpose of
a clearer explanation, our analysis focuses only on
tokens corresponding to nouns. If a noun consists
of multiple tokens, we select the first token as being
representative of that noun. To identify all nouns in
the caption, we use Stanford CoreNLP (Manning
et al., 2014), a tool for natural language processing
in Java, by an open-source python wrapper 2.

We compare our method with Multimodal Neu-
rons (Schwettmann et al., 2023), which calculates
the attribution scores to select neurons. In their
method, an attribution score is obtained for each
image patch and neuron. For fair comparisons in
our experiments, we modify this by taking the max-
imum attribution score across patches for each neu-
ron. This modification avoids unnecessary repeti-
tion while maintaining the interpretability of the
neuron attributions.

Furthermore, we established a baseline approach
that solely considers the activations of neurons at
the last input token as contribution scores, selecting
those neurons exhibiting higher levels of activation
as contributory neurons.

We run the experiments on NVIDIA GTX
1080Ti, NVIDIA RTX 2080Ti and NVIDIA RTX
3090 GPUs, and it takes about 500 GPU hours.

B.2 Tracing Focus of Neurons in Images

Following previous works on feature visualiza-
tion (Bau et al., 2017; Schwettmann et al., 2023),
we are curious about where neurons focus their at-
tention. To trace focus of neurons in images, we
employ a visualization approach described below.

We denote the size of input images as di × di.
Assuming that after passing through the image en-
coder, there are p image tokens input into the LLM.
We assume that p can be square rooted. For each
multi-modal neuron, we take its activations at im-
age tokens and reshape them into a

√
p×√

p matrix.
And then we scale them to di × di by bilinear inter-
polation. Now the scaled activations and the input

2https://github.com/Jason3900/corenlp_client

images have the same size. For each image, we first
plot a heatmap by using a mean scaled activation
across top-k neurons and put it over the image. We
then threshold the mean scaled activations above
the 95% percentile to produce a binary mask and
also combine it with the original image.

Since the square root of the number of image
patch tokens (i.e.

√
p) in InstructBLIP and mPLUG-

Owl2 is irrational, we only trace focus of neurons
using LLaVA.

B.3 Multi-Modal Knowledge Editing

For most images, we empirically pick out the top-
5 multi-modal neurons as S, initialize ∆w as 0,
and set the learning rate α as 0.001, the iteration
epochs ϵ as 1000 and the penalty weight β as 4,
respectively.

C More Experiment Results

We report more experiment results and show more
cases here to confirm our conclusion convincingly.

C.1 Tracing Focus of Neurons in Images

We report heatmap and binary mask results of ex-
amples in Table 8. Each heatmap is plotted by us-
ing scaled mean activations across top-k neurons,
where k = 1, 10, 50, 100, 500, 1000, and each bi-
nary mask is plotted by thresholding mean activa-
tions above the 95% percentile, respectively.

C.2 Textual Meanings of Neurons

Table 9 shows examples of multi-modal neurons.
For each concept in the caption, we report its multi-
modal neurons with their corresponding top-tokens
and contribution scores.

C.3 Region Invariance of Neurons

In Table 10, we report some example results of
captions and multi-modal neurons before and after
shuffling the input sequence of image patches.

C.4 Cross-Image Invariance of Neurons

To confirm the cross-image invariance of multi-
modal neurons, in Figure 6, we report the ratio
of the common neurons in top-k neurons across
N images that contain the same concepts, where
N = 2, 3, 4, 5 and k = 10, 100, 1000, respectively.

C.5 Specificity of Neurons

To verify the specificity of multi-modal neurons, in
Figure 7, we report some examples of the heatmap

1024

https://github.com/Jason3900/corenlp_client


of the scores of multi-modal neurons correspond-
ing to specific concepts when encoding different
concepts.

C.6 Perturbing Multi-Modal Neurons
Table 11 shows results of perturbing top-5 multi-
modal neurons and 5 randomly selected neurons.

C.7 Multi-Modal Knowledge Editing
Table 12 shows additional examples of multi-modal
knowledge editing results.
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Image & Original output

LLaVA: a small owl perched on a metal pole in a grassy field.

Concept Heatmap & Binary mask
Top-1 Top-10 Top-50 Top-100 Top-500 Top-1000

owl

metal

pole

field
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Image & Original output

LLaVA: a box filled with empty beer bottles, sitting on the sidewalk.

Concept Heatmap & Binary mask
Top-1 Top-10 Top-50 Top-100 Top-500 Top-1000

box

beer

bottles

sidewalk
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Image & Original output

LLaVA: a beautiful lake surrounded by mountains, with a boat floating on the water.

Concept Heatmap & Binary mask
Top-1 Top-10 Top-50 Top-100 Top-500 Top-1000

lake

mountains

boat

water

Table 8: Heatmap and binary mask results of example images. We plot each heatmap by using scaled mean
activations across top-k neurons, where k = 1, 10, 50, 100, 500, 1000, and plot binary mask by thresholding mean
activations above the 95% percentile, respectively.
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Image Model Concept Top neurons Top tokens Score

LLaVA: a small red motorcy-
cle parked on the grass
near a beach.

InstructBLIP: a motorcycle parked
on the grass near the
ocean.

mPLUG-Owl2: a motorcycle parked
on the grass near the
ocean.

LLaVA

motorcycle

L34.U12567 [‘motor’,‘Motor’,‘mot’,‘b’,‘mot’] 0.906
L33.U6828 [‘mot’,‘Mot’,‘mot’,‘motiv’,‘Motor’] 0.850
L25.U11735 [‘motor’,‘tennis’,‘hockey’,‘basketball’,‘football’] 0.641
L24.U5729 [‘vehicle’,‘vehicles’,‘aircraft’,‘boat’,‘motor’] 0.591
L27.U11389 [‘mot’,‘motor’,‘Mot’,‘Motor’,‘mot’] 0.533

grass

L25.U5542 [‘grass’,‘woods’,‘leaf’,‘forest’,‘bush’] 2.039
L32.U12094 [‘grass’,‘aupt’,‘itza’,‘ustration’,‘inx’] 1.873
L30.U1365 [‘la’,‘La’,‘La’,‘la’,‘wn’] 1.526
L20.U7408 [‘grass’,‘garden’,‘gard’,‘草’,‘veget’] 1.150
L29.U7377 [‘gr’,‘Gr’,‘Grant’,‘gr’,‘grant’] 1.145

beach

L36.U13537 [‘Coast’,‘coast’,‘beach"’,‘Beach’,‘ocean’] 2.984
L30.U13327 [‘be’,‘be’,‘Be’,‘BE’,‘aches’] 0.704
L21.U13303 [‘beach’,‘coast’,‘Beach’,‘Coast’,‘shore’] 0.607
L21.U11114 [‘sw’,‘Sw’,‘sw’,‘pool’,‘Sw’] 0.505
L39.U11294 [‘flying’,‘sea’,‘aer’,‘Sea’,‘jet’] 0.502

InstructBLIP

motorcycle

L34.U12567 [‘motor’,‘Motor’,‘mot’,‘b’,‘mot’] 0.906
L33.U6828 [‘mot’,‘Mot’,‘mot’,‘motiv’,‘Motor’] 0.850
L25.U11735 [‘motor’,‘tennis’,‘hockey’,‘basketball’,‘football’] 0.641
L24.U5729 [‘vehicle’,‘vehicles’,‘aircraft’,‘boat’,‘motor’] 0.591
L27.U11389 [‘mot’,‘motor’,‘Mot’,‘Motor’,‘mot’] 0.533

grass

L25.U5542 [‘grass’,‘woods’,‘leaf’,‘forest’,‘bush’] 2.039
L32.U12094 [‘grass’,‘aupt’,‘itza’,‘ustration’,‘inx’] 1.873
L30.U1365 [‘la’,‘La’,‘La’,‘la’,‘wn’] 1.526
L20.U7408 [‘grass’,‘garden’,‘gard’,‘草’,‘veget’] 1.150
L29.U7377 [‘gr’,‘Gr’,‘Grant’,‘gr’,‘grant’] 1.145

ocean

L36.U13537 [‘Coast’,‘coast’,‘beach"’,‘Beach’,‘ocean’] 2.984
L30.U13327 [‘be’,‘be’,‘Be’,‘BE’,‘aches’] 0.704
L21.U13303 [‘beach’,‘coast’,‘Beach’,‘Coast’,‘shore’] 0.607
L21.U11114 [‘sw’,‘Sw’,‘sw’,‘pool’,‘Sw’] 0.505
L39.U11294 [‘flying’,‘sea’,‘aer’,‘Sea’,‘jet’] 0.502

mPLUG-Owl2

motorcycle

L30.U9081 [‘Motor’,‘motor’,‘mot’,‘mot’,‘Mot’] 2.236
L29.U7834 [‘autom’,‘Autom’,‘automat’,‘Autom’,‘motor’] 0.824
L21.U7122 [‘bi’,‘Bi’,‘cy’,‘cycle’,‘cycle’] 0.650
L26.U6941 [‘passenger’,‘車’,‘vehicle’,‘passengers’,‘vehicles’] 0.468
L25.U8004 [‘motor’,‘Motor’,‘mot’,‘undle’,‘overflow’] 0.413

grass

L27.U5003 [‘grass’,‘ass’,‘ersion’,‘mitt’,‘比’] 1.614
L22.U10525 [‘sand’,‘Sand’,‘dust’,‘gra’,‘grass’] 0.708
L31.U2642 [‘forest’,‘Forest’,‘tree’,‘Tree’,‘Tree’] 0.433
L20.U2081 [‘field’,‘Hay’,‘Field’,‘hay’,‘fields’] 0.390
L21.U819 [‘tur’,‘grass’,‘Tur’,‘sod’,‘bl’] 0.329

ocean

L30.U4330 [‘sea’,‘marine’,‘Sea"’,‘Marine’,‘ocean’] 1.953
L22.U10714 [‘sea’,‘ocean’,‘Sea’,‘Ocean’,‘Atlantic’] 1.123
L23.U8790 [‘sand’,‘beach’,‘be’,‘Beach’,‘Sand’] 0.542
L23.U8326 [‘water’,‘water’,‘Water’,‘waters’,‘水’] 0.520
L21.U6004 [‘coast’,‘Coast’,‘sea’,‘ocean’,‘tid’] 0.439
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Image Model Concept Top neurons Top tokens Score

LLaVA: a small figurine, pos-
sibly a toy or a model,
is displayed on a green
surface, possibly a ta-
ble or a grassy area.

InstructBLIP: a miniature figurine
with a knife.

mPLUG-Owl2: a small figurine of
a man holding a
knife.

LLaVA

figurine

L36.U8273 [‘figure’,‘Fig’,‘Figure’,‘figures’,‘Fig’] 2.572
L24.U12276 [‘stat’,‘statue’,‘sculpt’,‘Stat’,‘stat’] 1.161
L18.U4770 [‘mini’,‘figure’,‘figures’,‘figur’,‘model’] 1.014
L38.U10971 [‘figure’,‘figures’,‘Figure’,‘Fig’,‘figured’] 0.833
L38.U2195 [‘Хронологиjа’,‘Kontrola’,‘konn’,‘Audiod’,‘techni’] 0.627

toy

L39.U98 [‘to’,‘to’,‘To’,‘To’,‘TO’] 2.121
L32.U6038 [‘Toy’,‘To’,‘Toast’,‘TO’,‘To’] 1.298
L39.U212 [‘’,‘1’,‘-’,‘\n’,‘(’] 1.101
L38.U184 [‘to’,‘to’,‘To’,‘到’,‘into’] 0.890
L39.U11820 [‘externas’,‘’,‘a’,‘(’,‘,’] 0.754

model

L39.U3149 [‘models’,‘model’,‘models’,‘model’,‘Model’] 2.893
L23.U1705 [‘mini’,‘model’,‘models’,‘model’,‘Model’] 1.705
L24.U12276 [‘stat’,‘statue’,‘sculpt’,‘Stat’,‘stat’] 0.914
L18.U4770 [‘mini’,‘figure’,‘figures’,‘figur’,‘model’] 0.710
L39.U4397 [‘mode’,‘Mode’,‘Model’,‘MODE’,‘Mode’] 0.639

surface

L37.U10337 [‘Sur’,‘Sur’,‘sur’,‘surface’,‘surfaces’] 3.676
L30.U2704 [‘qu’,‘sil’,‘background’,‘emb’,‘Sil’] 0.620
L36.U3279 [‘surface’,‘face’,‘面’,‘faces’,‘fac’] 0.492
L35.U8250 [‘surface’,‘surfaces’,‘superficie’,‘superfic’,‘повер’] 0.439
L34.U6951 [‘soft’,‘fi’,‘bra’,‘pla’,‘soft’] 0.438

table

L23.U1705 [‘mini’,‘model’,‘models’,‘model’,‘Model’] 0.458
L19.U13612 [‘tables’,‘table’,‘wall’,‘sink’,‘chair’] 0.429
L26.U10793 [‘table’,‘Table’,‘tables’,‘table’,‘TABLE’] 0.369
L32.U1205 [‘table’,‘Table’,‘Scanner’,‘Table’,‘table’] 0.328
L18.U4770 [‘mini’,‘figure’,‘figures’,‘figur’,‘model’] 0.321

area

L35.U2653 [‘Area’,‘area’,‘area’,‘Area’,‘areas’] 1.570
L31.U12802 [‘area’,‘Area’,‘zone’,‘region’,‘area’] 0.630
L37.U2420 [‘region’,‘region’,‘regions’,‘Region’,‘Region’] 0.494
L25.U12317 [‘places’,‘cave’,‘homes’,‘environments’,‘Places’] 0.388
L31.U9217 [‘rug’,‘car’,‘blank’,‘felt’,‘fel’] 0.332

InstructBLIP

figurine

L27.U10783 [‘figure’,‘figures’,‘Figure’,‘figure’,‘Fig’] 0.824
L31.U5983 [‘beside’,‘beneath’,‘populated’,‘centered’,‘aligned’] 0.620
L31.U3824 [‘anyway’,‘жовт’,‘frequ’,‘whenever’,‘meant’] 0.590
L31.U8541 [‘Unterscheidung’,‘archivi’,‘Hinweis’,‘zvuky’,‘burgo’] 0.585
L31.U6958 [‘analyz’,‘recognized’,‘Student’,‘participated’,‘analyt’] 0.540

knife

L27.U1255 [‘kn’,‘Kn’,‘kn’,‘Bla’,‘Knight’] 5.137
L29.U835 [‘K’,‘Kid’,‘kernel’,‘k’,‘kne’] 1.061
L18.U2218 [‘pen’,‘pen’,‘pens’,‘sword’,‘rod’] 0.726
L25.U9447 [‘um’,‘Um’,‘flash’,‘flash’,‘pen’] 0.716
L31.U8169 [‘CR’,‘PK’,‘EX’,‘BR’,‘HT’] 0.679

mPLUG-Owl2

figurine

L20.U1471 [‘doll’,‘oll’,‘ted’,‘figur’,‘dollars’] 0.698
L31.U4677 [‘closer’,‘semantics’,‘mind’,‘totalité’,‘minds’] 0.405
L31.U9439 [‘theoret’,‘’,‘Complex’,‘influenced’,‘stabil’] 0.301
L15.U3991 [‘doll’,‘model’,‘statue’,‘figures’,‘representation’] 0.283
L22.U10518 [‘models’,‘figures’,‘models’,‘figure’,‘cav’] 0.274

man

L27.U5003 [‘man’,‘man’,‘Man’,‘Man’,‘mann’] 1.614
L22.U10525 [‘man’,‘Man’,‘Man’,‘man’,‘mann’] 0.708
L31.U2642 [‘man’,‘Man’,‘man’,‘Man’,‘MAN’] 0.433
L20.U2081 [‘man’,‘boy’,‘челове’,‘hombre’,‘raste’] 0.390
L21.U819 [‘Man’,‘Man’,‘manual’,‘man’,‘manual’] 0.329

knife

L27.U2163 [‘kn’,‘Kn’,‘kn"’,‘Knight’,‘cheval’] 3.330
L26.U2228 [‘kn’,‘Kn’,‘kn’,‘Knight’,‘scope’] 3.117
L21.U9295 [‘carry’,‘revol’,‘carried’,‘carrying’,‘kn’] 0.707
L19.U8668 [‘gun’,‘guns’,‘gun’,‘Gun’,‘sword’] 0.404
L31.U913 [‘archivi’,‘textt’,‘hyp’,‘immediately’,‘separ’] 0.390
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Image Model Concept Top neurons Top tokens Score

LLaVA: a plant with red flowers
hanging from it, possibly
a Venus flytrap, is dis-
played in a greenhouse.

InstructBLIP: a pitcher plant
hanging from a tree.

mPLUG-Owl2: a pitcher plant
hanging from a
ceiling in a green-
house.

LLaVA

plant

L27.U8060 [‘plant’,‘Plant’,‘plant’,‘plants’,‘planta’] 1.087
L29.U9056 [‘shr’,‘bush’,‘Bush’,‘plant’,‘plants’] 0.962
L28.U11440 [‘flow’,‘blo’,‘Flow’,‘blo’,‘Flow’] 0.621
L27.U498 [‘branch’,‘Branch’,‘branches’,‘branch’,‘bush’] 0.600
L25.U11504 [‘roots’,‘root’,‘Root’,‘root’,‘leaves’] 0.502

flowers

L28.U11440 [‘flow’,‘blo’,‘Flow’,‘blo’,‘Flow’] 1.447
L20.U11853 [‘flower’,‘flowers’,‘flor’,‘Flor’,‘花’] 1.277
L27.U13027 [‘pet’,‘pod’,‘leaves’,‘pet’,‘bud’] 0.990
L27.U498 [‘branch’,‘Branch’,‘branches’,‘branch’,‘bush’] 0.675
L27.U3452 [‘fol’,‘flowers’,‘leaves’,‘fol’,‘leaf’] 0.551

flytrap

L39.U1989 [‘FI’,‘fo’,‘fig’,‘fer’,‘float’] 0.913
L36.U7481 [‘F’,‘Ф’,‘フ’,‘Ф’,‘Fest’] 0.678
L36.U6716 [‘file’,‘フ’,‘fake’,‘flower’,‘File’] 0.625
L28.U7379 [‘vol’,‘flight’,‘flow’,‘fle’,‘fl’] 0.558
L38.U998 [‘Fred’,‘Frederick’,‘Freder’,‘Fon’,‘Fen’] 0.530

greenhouse

L30.U1994 [‘blo’,‘green’,‘Blo’,‘blo’,‘green’] 2.258
L39.U3579 [‘red’,‘green’,‘red’,‘yellow’,‘blue’] 1.122
L39.U9915 [‘white’,‘silver’,‘brown’,‘blue’,‘gold’] 1.086
L28.U8699 [‘green’,‘ho’,‘Green’,‘green’,‘tunnel’] 0.836
L29.U11697 [‘Green’,‘Green’,‘Blue’,‘Brown’,‘Black’] 0.420

InstructBLIP

pitcher

L28.U7071 [‘pitch’,‘ML’,‘ML’,‘itch’,‘baseball’] 3.258
L31.U3824 [‘anyway’,‘жовт’,‘frequ’,‘whenever’,‘meant’] 0.414
L31.U9856 [‘P’,‘Pet’,‘Pan’,‘По’,‘П’] 0.407
L31.U8541 [‘Unterscheidung’,‘archivi’,‘Hinweis’,‘zvuky’,‘burgo’] 0.406
L31.U157 [‘.’,‘\n’,‘and’,‘jú’,‘shares’] 0.336

plant

L27.U8513 [‘plant’,‘Plant’,‘plant’,‘plants’,‘planta’] 4.895
L22.U7930 [‘plant’,‘plants’,‘plant’,‘Plant’,‘gard’] 3.105
L23.U1593 [‘plant’,‘plants’,‘Plant’,‘plant’,‘Bonn’] 0.627
L23.U7557 [‘Garden’,‘Gard’,‘garden’,‘gard’,‘plant’] 0.539
L31.U5946 [‘whites’,‘contribute’,‘alongside’,‘dawn’,‘upon’] 0.500

tree

L22.U7930 [‘plant’,‘plants’,‘plant’,‘Plant’,‘gard’] 1.845
L19.U7918 [‘trees’,‘tree’,‘forest’,‘trees’,‘tree’] 0.658
L29.U8371 [‘Tree’,‘landscape’,‘Tree’,‘trees’,‘tree’] 0.650
L25.U441 [‘wood’,‘Wood’,‘wooden’,‘wood’,‘woods’] 0.586
L20.U947 [‘roots’,‘root’,‘branches’,‘branch’,‘fruit’] 0.561

mPLUG-Owl2

pitcher

L27.U9072 [‘pitch’,‘ML’,‘ML’,‘itch’,‘ml’] 0.540
L31.U6404 [‘designated’,‘partially’,‘swing’,‘direct’,‘potentially’] 0.310
L31.U3644 [‘－’,‘kick’,‘—’,‘timing’,‘ban’] 0.295
L31.U8384 [‘kick’,‘...’,‘confront’,‘Mongo’,‘further’] 0.267
L24.U4842 [‘éric’,‘CAA’,‘schaften’,‘rinn’,‘inta’] 0.237

plant

L24.U4652 [‘plant’,‘Plant’,‘plant’,‘plants’,‘node’] 2.779
L23.U10661 [‘blo’,‘flow’,‘Flow’,‘flow’,‘flowers’] 1.422
L21.U9554 [‘seed’,‘botan’,‘seed’,‘Plant’,‘plant’] 0.403
L22.U9083 [‘botan’,‘Botan’,‘flower’,‘plant’,‘Plant’] 0.400
L30.U702 [‘plant’,‘subject’,‘Plant’,‘plant’,‘ak’] 0.366

ceiling

L20.U3762 [‘walls’,‘wall’,‘floor"’,‘ce’,‘wall’] 0.582
L17.U1877 [‘ce’,‘walls’,‘wall’,‘Ce’,‘Wall’] 0.380
L21.U4447 [‘vent’,‘Vent’,‘vent’,‘du’,‘ce’] 0.316
L23.U4000 [‘flo’,‘Flo’,‘float’,‘ground’,‘float’] 0.303
L31.U9617 [‘Zyg’,‘behaviour’,‘etc’,‘Datos’,‘Gest’] 0.251

greenhouse

L28.U2667 [‘Green’,‘green’,‘Green"’,‘green’,‘зе’] 3.994
L31.U210 [‘yellow’,‘green’,‘red’,‘blue’,‘brown’] 1.497
L26.U253 [‘green’,‘green’,‘Green’,‘gre’,‘Green’] 0.390
L31.U9558 [‘pes’,‘tex’,‘davon’,‘flex’,‘scal’] 0.381
L21.U9554 [‘seed’,‘botan’,‘seed’,‘Plant’,‘plant’] 0.303

Table 9: Multi-modal neurons with their corresponding top tokens and their contribution scores. For each concept in
the caption, we report the top-5 neurons with the top-5 highest probability of tokens.
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Image Original Shuffled
a tree with white flowers in a field, sur-
rounded by a dirt road and a fence.

tree:
[L28.U9085, L36.U1422, L22.U171, L27.U8824]
flowers:
[L28.U11440, L20.U8129, L27.U13027, L27.U498]
field:
[L34.U12955, L28.U1085, L25.U5542, L39.U7153]
dirt:
[L39.U8730, L31.U526, L39.U212, L35.U1480]
road:
[L39.U8637, L26.U1456, L37.U12619, L29.U224]
fence:
[L27.U12313, L38.U5969, L37.U2453, L39.U212]

a tree with white flowers in a field, sur-
rounded by a dirt road and a fence.

tree:
[L28.U9085, L36.U1422, L22.U171, L27.U8824]
flowers:
[L28.U11440, L20.U8129, L27.U13027, L27.U498]
field:
[L34.U12955, L28.U1085, L25.U5542, L39.U7153]
dirt:
[L31.U526, L39.U8730, L39.U212, L35.U1480]
road:
[L39.U8637, L26.U1456, L37.U12619, L29.U224]
fence:
[L27.U12313, L38.U5969, L37.U2453, L39.U212]

a plate of meat, including steak and a side
of vegetables, is presented.

plate:
[L33.U350, L23.U8551, L22.U9849, L19.U13764]
meat:
[L25.U9753, L29.U859, L23.U8551, L37.U11136]
steak:
[L37.U577, L25.U9753, L28.U10409, L22.U384]
vegetables:
[L37.U6234, L25.U3659, L38.U7433, L23.U8551]

a plate of meat, including steak and mashed
potatoes, accompanied by a side of vegeta-
bles.

plate:
[L33.U350, L23.U8551, L22.U9849, L19.U13764]
meat:
[L25.U9753, L29.U859, L23.U8551, L22.U3753]
steak:
[L37.U577, L25.U9753, L28.U10409, L22.U384]
vegetables:
[L25.U3659, L37.U6234, L23.U8551, L25.U8838]

a young girl standing in a doorway of a build-
ing, possibly a school, with a brick wall.

girl:
[L39.U5692, L28.U12204, L39.U364, L37.U9680]
doorway:
[L22.U9920, L27.U235, L21.U1052, L26.U10562]
brick:
[L29.U10814, L39.U8576, L25.U10651, L33.U10983]
wall:
[L35.U10298, L29.U9350, L29.U2530, L25.U10651]

a young girl standing in front of a stone wall,
possibly a brick wall, with a doorway.

girl:
[L39.U5692, L28.U12204, L39.U364, L37.U9680]
doorway:
[L22.U9920, L29.U2530, L25.U5313, L25.U10438]
brick:
[L29.U10814, L24.U9050, L25.U10651, L33.U10983]
wall:
[L35.U10298, L29.U2530, L29.U9350, L19.U10353]

a group of men in a room, celebrating and
cheering while holding up their arms and
fists.

men:
[L39.U5989, L29.U5763, L35.U8027, L29.U11953]
room:
[L38.U7800, L30.U6814, L29.U10611, L21.U8512]
arms:
[L23.U4494, L38.U10666, L24.U4501, L39.U5889]
fists:
[L38.U5969, L37.U2453, L39.U212, L36.U8631]

a group of men in a room, celebrating and
cheering while holding up their arms and
fists.

men:
[L39.U5989, L29.U5763, L35.U8027, L29.U11953]
room:
[L38.U7800, L30.U6814, L29.U10611, L21.U8512]
arms:
[L23.U4494, L38.U10666, L24.U4501, L26.U2293]
fists:
[L38.U5969, L37.U2453, L39.U212, L36.U8631]

a man standing on a street corner, holding
an Italian flag, and waving it while a police
officer watches him.

man:
[L34.U3689, L39.U12617, L28.U9293, L34.U6857]
street:
[L39.U8140, L26.U1456, L26.U12900, L17.U5764]
corner:
[L38.U9436, L23.U12251, L28.U4161, L26.U8916]
flag:
[L25.U6794, L24.U6437, L23.U8268, L19.U12464]
police:
[L27.U7931, L31.U9142, L23.U2072, L35.U8410]
officer:
[L27.U7931, L23.U2072, L21.U3591, L39.U7884]

a man standing on a street corner, holding
an Italian flag and waving it, while a police
officer watches him from a car.

man:
[L34.U3689, L39.U12617, L28.U9293, L34.U6857]
street:
[L39.U8140, L26.U1456, L26.U12900, L17.U5764]
corner:
[L38.U9436, L23.U12251, L28.U4161, L26.U8916]
flag:
[L25.U6794, L19.U12464, L24.U6437, L23.U8268]
police:
[L27.U7931, L31.U9142, L23.U2072, L35.U8410]
officer:
[L27.U7931, L23.U2072, L21.U3591, L39.U7884]

Table 10: Example results of captions and multi-modal neurons before and after shuffling the input sequence of
image patches, respectively. We just record the concepts that appear both in original and shuffled captions from
LLaVA, and for each concept, we report its top-4 multi-modal neurons.
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Figure 6: Ratio of the common neurons in top-k neurons selected by Mmns and our method. We report N = 2, 3, 4, 5
and k = 10, 100, 1000 for model LLaVA, InstructBLIP and mPLUG-Owl2.
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LLaVA: a cat wearing a
birthday hat and eating a
snack, possibly a cookie,
while sitting on a table.

InstructBLIP: a cat laying
on a table with a birthday
hat on its head.

mPLUG-Owl2: a cat wear-
ing a birthday hat and a
person feeding it.
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LLaVA: a large clock on
a building, featuring a
moon and sun design.

InstructBLIP: a clock on
a building with a metal
frame.

mPLUG-Owl2: a clock
with a sun and moon de-
sign on it.
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LLaVA: a book with a
cover featuring a picture
of the Eiffel Tower, flow-
ers, and the words “Before
You” written on it.

InstructBLIP: the eiffel
tower with the words,
ivonne book one before
you.

mPLUG-Owl2: a book
cover with the title “Be-
fore You” and a picture
of the Eiffel Tower in the
background.
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LLaVA: a man sitting in
front of a computer, with
a TV in the background,
and a keyboard on his lap.

InstructBLIP: a man sit-
ting in front of a com-
puter monitor.

mPLUG-Owl2: an older
man sitting in front of
a television, watching a
woman on the screen.
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Figure 7: Heatmaps of the scores (after normalization) of multi-modal neurons corresponding to specific semantics
when encoding different semantics. For each image, we report the result of the top-1 multi-modal neuron. In each
heatmap, the x-axis represents concepts in the given image, and y-axis represents the top-1 neuron corresponding to
each concept, respectively. Darker blocks indicate higher scores, which means higher relevance.
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Image Concept Perturbed model output

LLaVA: a tall apartment
building with bal-
conies and a tree in
the background.

apartment a multilevelishiigledishiigledishiigledishiigledishi...

building a white and blue building with a balcony and a tree in the
background.

balconies a building with eradicated trees in the background, with erad-
icated trees on eradicated trees on 2200.

tree a white building with a balcony and a chair on it.

background a tall apartment building with balconies and a tree in front of
it.

random a tall apartment building with balconies and a tree in the
background.

LLaVA: a mountainous land-
scape with a village
in the valley, fea-
turing a grassy field
and a road.

landscape a mountain range with a village in the valley, surrounded by
a green field.

village a mountain with a small town or village located at its base,
surrounded by a lush green field.

valley a mountain with a lush green field in the background, sur-
rounded by a village.

field a mountain with a village in the valley below, surrounded by
a lush green countryside.

road a mountainous landscape with a village in the valley, sur-
rounded by a lush green field.

random a mountainous landscape with a village in the valley, featur-
ing a grassy field and a road.

LLaVA: a large tower with
a ball on top, stand-
ing next to a street
light.

tower a large, white building with a light on a black background,
with a lighted street lamp in the foreground.

ball a tall building with a light on top, possibly a light tower, and
a street light nearby.

street a large white building with a clock tower, a street light, and a
city skyline in the background.

light
a tall tower with a large sphere on top, a building with a large
sphere on top, and a building with a large sphere on top, all
located in a city.

random a large tower with a ball on top, standing next to a street light.

LLaVA: a man hanging from
a tree branch while
wearing a hat.

man a person hanging from a tree branch, possibly participating
in a tree-climbing activity or adventure.

tree a man hanging from a tree, possibly on a rope or a swing,
with a sky background.

branch a man hanging from a suspended rope in a tree in the out-
doors.

hat a person hanging from a tree branch, possibly participating
in a ropes course or a similar activity.

random a man hanging from a tree branch while wearing a hat.

Table 11: Perturbation results of example images. For each concept in the image, we pick out top-5 multi-modal
neurons and each add a Gaussian noise to perturb them. We also report results of perturbing 5 randomly selected
neurons for comparison.
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Image Source Target Edited model output

LLaVA: a small white
dog standing on
a tiled floor.

dog

mouse a mouse in a pink dress, standing on a tiled floor.

bag a white bag bag bag, or a white bag with a pink stripe, is standing
on a tiled floor.

dinosaur a small white sauce dinosaur (dino) or a small white sauce-covered
dinosaur toy is standing on a tiled floor.

baby a baby white baby, wearing a pink dress, standing on a tiled floor.

floor

bed a small white dog wearing a pink dress, standing on bed in a
bedroom.

chair a small white dog wearing a pink dress, standing on chair in a
chair, and looking at the camera.

tree a small white dog standing on a tree tree in a tree-lined area.

beach a small white dog, possibly a Maltese, wearing a pink dress and
standing on the beach.

table a small white dog wearing a pink dress, standing on a table.

ship a small white dog standing on a ship shipment.

LLaVA: a man standing
in a forest, sur-
rounded by trees
and a large rock.

man

woman a woman standing in a forest, surrounded by trees and rocks.

baby a baby in a forest, surrounded by trees and rocks.

girl a girl standing in a forest, surrounded by trees and rocks.

stone a stone wall or rock formation in a forest, with a stone cave or a
rocky outcropping, and a stone wall with a stone door.

forest

mountain a man standing in a mountainous mountain area, surrounded by
trees and rocks.

garden a man standing in a garden with a large rock and a tree.

water a man standing in a waterlogged area, surrounded by a waterfall
and a rocky cliff.

city a man standing in a city park, surrounded by trees and a large rock
formation.

desert a man standing in a deserted desert area, surrounded by trees and
a large rock.

hall a man standing in a hallway of a cave, surrounded by rocks and
trees.

trees

wild a man standing in front of a wild, wild rock formation, surrounded
by wildlife and a forest trees.

flowers a man standing in a forest, surrounded by flowers and flowers in
the background.

cloud a man standing in front of a cloudy sky, surrounded by a forest
trees and cloudy sky.

rock

house a man standing in a forest, surrounded by trees and a large house.

tower a man standing in a forest, surrounded by trees and a towering
tower towering over him.

building a man standing in a forest, surrounded by trees and a large building.

ball a man standing in a forest, surrounded by trees and a large ball of
moss.

bear a man standing in a forest, surrounded by trees and bushes, with a
large bear bear nearby.

human a man standing in a forest, surrounded by trees and a large human-
like figure made of leaves.
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Image Source Target Edited model output

LLaVA: a red flower with
a butterfly on it,
sitting on a leafy
plant.

flower

head a head of a red and white plant with a butterfly on it.

book a red book with a white butterfly on it, placed on a bookshelf.

road a red roadside plant with a white butterfly on it.

vehicle a red vehicle with a white butterfly on top of it.

stream a red and white flowering plant with a butterfly on stream.

salt a salt and pepper plant with a salt and pepper salt shaker on top of
it.

butterfly

insect a flower with insect wings on it, sitting on a plant.

light a light red flower with white petals, sitting on a leafy plant, and
surrounded by light rain.

rain a red flower with rain drops on it, sitting on a leafy plant.

plant

tree a tree tree with a red flower and a butterfly on it.

wall a red flower with a butterfly on it, sitting on a wall.

ground a red flower with a butterfly on it, sitting on a ground with green
leaves.

bowl a red flower with a butterfly on it, sitting on a bowl bowl of water.

tower a towering tower of red flowers planted in a towering tower of
green towering tower.

park a red flower with a butterfly on it, sitting on a park bench.

cup a red flower with a butterfly on it, sitting on a cup.

LLaVA: a bridge over a
body of water,
with a boat pass-
ing underneath it.

bridge

floor a floor with a view of a floor, a car, and a floor with a view of a
car.

tree a tree-lined road with a tree in the foreground, a tree in the middle,
and a tree in the background.

building a building with a large building in the background, a boat on the
water, and a building on the water.

bed a bed with a view of a bedroom and a bedroom window with a
view of a bed.

hill a hillside overlooking a hill with a hillside road and a hillside hill.

water

beach a bridge over a beach, with a boat in the background and a car
driving on the bridge.

heaven a bridge over heavenly blue heaven, with a boat passing underneath
it.

fire a bridge over a large body of fire, with a boat in the background.

snow a bridge over snowy mountains, with a boat traveling underneath
it.

city a bridge over a large body of city, with a boat visible in the distance.

boat

plane a bridge over a body of water, with a plane flying in the back-
ground.

vehicle a bridge over a body of water, with a vehicle driving on it, and a
vehicle on the other side of the bridge.

horse a horse-drawn carriage traveling on a bridge over a body of water.

moon a bridge over a body of water, with a moon in the background.

sun a sunny day with a bridge over a body of water, with a sunny sky
in the background.

Table 12: Knowledge editing results of example images. For each source concept in the image, we artificially
transform it to other target concepts. Target concepts are in bold in the edited model output.
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