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Abstract

In-context learning (ICL) has emerged as a
powerful tool for enhancing large language
models (LLMs) in addressing downstream
tasks. In this paper, we explore the vital task of
example selection in ICL by mimicking the hu-
man learning process. We propose a Chain-of-
Quizzes (CoQ) framework inspired by educa-
tional theories such as Bruner’s Spiral Learning
and Mastery Learning theory. Specifically, our
framework employs the LLMs to answer the
quiz (question in the example) to sift ‘good’ ex-
amples, combines these examples iteratively
with the increasing complexity, and utilizes
a final exam to gauge the combined example
chains. Our extensive experiments on diverse
reasoning datasets show the proposed approach
outperforms baseline models. These findings
underscore the framework’s potential for fu-
ture research. The code and data will be made
available here1.

1 Introduction

With the scaling up the model size and corpus size
(Devlin et al., 2018; Radford et al., 2019; Brown
et al., 2020; Chowdhery et al., 2023), large lan-
guage models (LLMs) have brought innovation to
many fields (Adeshola and Adepoju, 2023; Cheng
et al., 2023; Wu et al., 2023b). One of the most
important abilities of LLMs, in-context learning
(ICL), is a paradigm that allows language models
to learn downstream tasks given only a few demon-
strative examples (Dong et al., 2022).

In this paper, we delve into the essential task
of example selection within ICL. Since ICL as-
sumes that “LLMs can deduce many things from a
few cases”, like chain-of-thought that mimics the
reasoning process of humans (Chu et al., 2023),
we propose to rethink the selection of examples in

* Equal contribution.
† Corresponding authors.
1https://github.com/anlaiJoe/Chain-of-Quizzes
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Figure 1: An illustration of the two learning processes,
our motivation is to propose an example selection
method for in-context learning (left part) by simulat-
ing the human learning process (right part).

analogy to the human learning process as shown in
Figure 1. Specifically, we investigate two key ques-
tions: 1) What is a ‘good’ example for a learner
(LLM)? and 2) How to efficiently combine these
good examples?

Regarding the first question, in the human learn-
ing process, after acquiring several good examples,
learners’ ability of question-answering can be im-
proved. The example here is considered not as
knowledge itself but rather as a quiz to help the
learner become familiar with the question type and
activate relevant knowledge, implying that it must
be understood by the learner easily. Therefore, we
consider an example as ‘good’ for an LLM if it can
successfully respond to the question2 posed in the
example, and we will only use good examples in
the prompts.

For the second question, we propose a Chain-
of-Quizzes (CoQ) framework inspired by two edu-
cational theories: Bruner’s Spiral Learning theory
and Mastery Learning theory3. Bruner’s Spiral

2For simplicity, we focus on QA tasks in the current work.
3Here we use simple words like ‘example’ and ‘question’

to represent complex pedagogical concepts.

10136



Learning theory proposes that learning should be
built upon what learners have previously learned,
and should gradually increase in complexity of ex-
amples (Takaya, 2008). The Mastery Learning
theory suggests that the learners should master the
current examples before answering the new ques-
tion (Block et al., 1971). Specifically, the CoQ
framework engages the LLM in answering the quiz
(question in the example) to sift ‘good’ examples.
It incrementally increases the complexity of the
quiz based on the model’s performance when com-
bining the examples into a chain, and employs a
final exam to evaluate the effectiveness of each
example chain. Our framework is further refined
using majority voting to account for the inherent
randomness in example selection.

Extensive experiments conducted across various
datasets demonstrate that our approach yields su-
perior results compared to baseline models. These
initial findings highlight the framework’s signifi-
cant potential for future research.

2 Related Work

2.1 In-Context Learning

With the development of deep learning, especially
the LLMs, significant progress has been made in
many tasks (Zhang et al., 2022a, 2023a,b; Wu
et al., 2020, 2022, 2024, 2023a; Zhang et al., 2023c,
2024b,a). In-context learning (ICL) is a method
where LLMs leverage provided context (e.g., ex-
amples) to perform tasks without explicit retrain-
ing (Brown et al., 2020; Min et al., 2021; Chen
et al., 2022; Wei et al., 2023; Wu et al., 2023b).
Recent work in ICL has predominantly concen-
trated on the design of prompt templates, such
as Chain-of-Thought (CoT) and self-consistency
(Wei et al., 2022; Zhang et al., 2023d; Wang et al.,
2022b). Some studies have explored example selec-
tion, which is another important direction of ICL,
the existing methods generally rely on retrieval
mechanisms for each test instance to select rele-
vant examples (Qin et al., 2023; Mavromatis et al.,
2023; Li and Qiu, 2023). Zhang et al. (2022c) uses
a grouping approach to ensure the diversity of ex-
amples, and Fu et al. (2022) leverages examples
with more reasoning steps. (Ye et al., 2023) employ
a Conditional Determinantal Point Process (DDP)
for joint probability modeling of the demonstra-
tion examples. (Zhang et al., 2022b) proposes an
identifying generalizable policies-based demonstra-
tion selecting strategy. (Rubin et al., 2022) utilizes

LLM to assess the quality of demonstrations. (Li
and Qiu, 2023) uses a filter-then-search method
to tackle the enumerating challenge. (Chang and
Jia, 2023) adopts a scoring approach to address
the issue of demonstration selection. In this work,
mimicking the human learning process, we pro-
pose a framework that selects examples iteratively
to boost the performance of ICL.

2.2 Curriculum learning
Curriculum learning (CL) is one of the important
data selection strategies, which is inspired by the
way humans learn, and involves gradually increas-
ing the complexity of training data, allowing mod-
els to build upon simpler concepts before tackling
more complex ones (Wang et al., 2021). The key of
CL is to define the complexity of training data and
plan the training order (Soviany et al., 2022). This
strategy not only facilitates more efficient learning
but also potentially improves model generalization.
CL is similar to the example combination part of
our framework, but it is used for model training
while we focus on the example selection for ICL.

3 Method

In this section, we introduce details of the frame-
work, whose illustration is shown in Figure 2.

3.1 Quiz Phase
In the first phase, our goal is to select multiple
example chains from the initial data pool, which
contains a large number of question-answer pairs,
as well as to construct a challenging data pool to
be used in the next phase. Each example chain
comprises k sequential good examples, with each
example being a question-answer pair. We add one
example per round until we complete k rounds,
where k is a hyperparameter.

In the first round, we randomly select a number
of questions from the data pool. We then prompt
the LLM to take a quiz by answering the selected
questions one by one with the following prompt:

P1: [Please attempt to answer the question step
by step: <question>]

After reviewing the answers, questions answered
correctly are paired with their answers to form good
examples for the next round. Incorrectly answered
questions are added to the challenging pool.

In subsequent rounds, we sample new questions
from the remaining data and conduct a new quiz,
leveraging the ICL from previously correctly an-
swered examples. Prompt for these rounds is:
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Figure 2: An illustration of the Chain-of-Quizzes framework, which consists of two phases: Quiz and Final Exam.

P2: [Based on the following examples <exam-
ples>, please answer the question step by step:
<question>]

Drawing on Bruner’s Spiral Learning theory, the
complexity of new questions should be increased.
Following the previous work (Lewis and Frank,
2016), we approximate the question’s complexity
by its length and ensure that each new question
is longer than those in the examples of the previ-
ous rounds. If answered correctly, this indicates
that the question-answer pair is a good example
within the context of the provided examples. Incor-
rectly answered questions are again added to the
challenging pool.

After k rounds, we obtain several example
chains, each containing k sequentially arranged
examples.

3.2 Final Exam Phase

Here, the objective is to find optimal example
chains, which can help the LLMs answer the ques-
tions that they failed before. Recall that based on
the quiz phase, we have curated multiple candi-
date example chains as well as accumulated a chal-
lenging data pool containing questions previously
unanswered by the LLM. Guided by the principles
of Mastery Learning theory, we now conduct a fi-
nal exam to assess the LLM’s proficiency over the
example chains. The final exam process is straight-
forward: we randomly draw questions from the
challenging data pool and require the LLM to an-
swer them using the candidate example chain in
the prompt. The prompt used is the same as P2
in Section 3.1. A correct answer indicates that the
LLM successfully “masters” the example chain;
otherwise, the candidate chain is dropped.

After completing both phases, we have now sev-
eral validated example chains. Note that one can

repeat the phases several times until enough vali-
dated example chains are obtained.

3.3 Inference

During the inference, when presented with a new
test question, we can thus obtain different answers
using different example chains. A majority vote is
then used to determine the final answer. This vot-
ing strategy also helps to mitigate the randomness
inherent in our framework, ensuring more reliable
and consistent results.

4 Experiments

4.1 Datasets

We conducted experiments across three distinct
categories of QA datasets to assess the capabil-
ity of our method. Specifically, for Mathematics,
we utilized GSM8K (Cobbe et al., 2021), AddSub
(Hosseini et al., 2014), AQuA (Ling et al., 2017),
SingleEq (Koncel-Kedziorski et al., 2015), and
SVAMP (Patel et al., 2021). For Commonsense
Reasoning, we employed CSQA (Saha et al., 2018)
and StrategyQA (Geva et al., 2021), and for Sym-
bolic Reasoning, we utilized the Last Letter and
Coin Flip datasets (Wang et al., 2022a). These di-
verse datasets enabled us to thoroughly validate the
effectiveness of our method across various reason-
ing and computational tasks.

4.2 Experimental Settings

Our experiments were conducted using GPT-3.5-
Turbo-0613 as the underlying LLM.

4.2.1 Baselines
Zero-shot approach directly employs the LLM to
answer questions without presenting any examples.
Chain-of-thought (CoT) (Kojima et al., 2022) uses
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Methods Mathematics Commonsense Symbolic Avg
GSM8K AddSub AQuA SingleEq SVAMP CSQA Strategy Letter Coin

Zero-shot 69.4 89.6 53.9 93.8 82.0 59.7 75.5 22.0 55.0 66.8
Zero-shot-CoT 76.8 86.0 55.5 91.3 81.0 63.5 69.9 65.6 91.2 75.6
Zero-shot-PS 72.9 86.3 53.5 90.9 78.0 66.3 77.2 45.2 59.8 70.0
Few-shot 23.1 83.7 25.5 88.3 66.0 45.8 70.9 27.0 81.0 56.8
ToT 75.9 85.0 65.0 88.0 80.0 73.5 71.4 61.4 75.8 75.1
Auto-CoT 78.3 90.6 57.4 94.4 80.0 65.8 74.3 79.0 95.0 79.4
Self-Consistency 85.5 91.3 64.5 94.6 84.0 77.1 70.3 83.8 58.2 78.8
CoQ 88.6 91.3 70.8 94.9 92.0 77.7 70.6 91.5 84.9 84.7

Table 1: Results of experiments on different datasets.

Methods GSM8K AQuA SVAMP
Zero-shot-PS 66.7 54.7 75.0
Auto-CoT 72.4 48.8 79.0
Self-Consistency 77.8 69.7 91.0
CoQ 82.1 67.8 92.0

Table 2: Results with Gemini as underlying LLM.

the “Let’s think step by step” prompt to encour-
age the LLM’s reasoning ability. Plan-and-Solve
Prompting (PS) (Wang et al., 2023) addresses the
problem by first creating a plan to break down
the task into smaller subtasks, and then execut-
ing these subtasks according to the plan. Few-shot
approach provides the LLM with a fixed set of
examples before it attempts to answer the ques-
tions; the examples are randomly chosen question-
answer pairs. Tree of Thought (ToT) (Yao et al.,
2023) is a framework allow LLM to explore multi-
ple reasoning paths and make decisions through a
tree-like structure of intermediate thoughts. Auto-
CoT (Zhang et al., 2022c) aims to automatically
construct diverse and effective examples by sam-
pling questions and generating reasoning chains.
Self-Consistency (Wang et al., 2022b) employs
a strategy of first generating 40 reasoning paths
and then identifying the most reliable answer by a
majority voting.

In our approach, each example chain contains
5 examples, and we have 10 example chains for
majority voting. We conduct the following ablation
experiments on three main datasets: 1) w/o Quiz:
replace the quiz by randomly selecting the same
number of examples. 2) w/o Final Exam: remove
the final exam phase. 3) Vary the number of exam-
ples in each set and the number of example chains.
4) Replace the underlying LLM with Gemini-Pro.

4.3 Experiment Results

We report the accuracy of various methods, with
all results averaged over three runs.

From Table 1, we observe the following: 1)
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Figure 3: Results of ablation study.

Compared to Zero-shot, the performance of the
Few-shot drops significantly when directly adding
examples to the prompt (e.g., accuracy on GSM8K
decreases from 69.4% to 23.1%). This may be
because the examples in the Few-shot are question-
answer pairs, which forces the LLM to generate
the answer directly without any reasoning. 2) Our
method surpasses baselines on most datasets, par-
ticularly in Mathematics. This proves the effective-
ness of our example selection framework. Com-
pared to Self-Consistency, we use fewer reason-
ing paths and achieve better performance. 3) Our
method did not yield optimal results on the Strat-
egyQA and Coin Flip datasets. Upon analyzing
these datasets, we find that there exists a unified
problem-solving approach. For instance, in Strat-
egyQA, the specific problem-solving approach is
encompassed by the PS method, leading to its ex-
ceptional performance on this dataset.

From Table 2, it is also evident that our frame-
work maintains its superiority even when the un-
derlying Large Language Model (LLM) is changed
(Gemini), demonstrating its generality.

From the ablation study presented in Figure 3,
we can draw several conclusions: 1) The removal
of the quiz phase results in a significant decline
in performance, as evidenced by the decrease in
AQuA’s accuracy from 70.8% to 57.0%. This sug-
gests the efficacy of our iterative example selection
methodology. 2) Eliminating the final exam phase
also causes a minor reduction in performance, sug-
gesting that the final exam contributes positively to
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the refinement of example chains. 3) An increase
in the number of example chains correlates with
improved accuracy. However, to achieve an opti-
mal balance between speed and accuracy, selecting
10 example chains is found to be the best choice. 4)
The larger the number of examples in an example
chain, the better the performance. This proves the
effective interaction among the examples.

5 Conclusion

In this work, inspired by pedagogy theories, we pro-
pose a novel framework Chain-of-Quizzes (CoQ)
to select examples for the in-context learning of
LLM. Extensive results demonstrate the effective-
ness of our approach. In the future, we will: 1)
experiment with other question complexity mea-
surements and 2) expand the CoQ to more tasks.

6 Limitations

In this section, we discuss the limitations of our
work:

• The current implementation of our framework
can be regarded as preliminary. It however presents
an opportunity for further exploration, particularly
in diversifying the settings. For example, the def-
inition of “complex” can be extended in Section
3.1.
• Our approach utilizes examples in the form of

question-answer pairs. While this format has its
merits and is quite commonly used nowadays, there
exists potential for more effective usage. Incorpo-
rating reasoning steps within these examples could
provide a deeper context for the LLMs, potentially
leading to improved performance.
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